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1. Introduction

Asset prices are volatile. Whether they are too volatile to reflect rational variation in expected future
cash flows, though, is by itself an unresolvable question: the true distribution of future cash-flow
streams is unobservable, as are aggregate risk and time preferences. The relevant question is instead
what joint set of assumptions on (1) beliefs and (2) risk and time preferences — the two elements at
the heart of almost all modern theories of asset prices — can be rejected in the data.

Shiller (1981) provides a classic example. He documents excess volatility in equity-index prices
relative to a proxy for fundamental value, but this proxy is constructed under the assumption that
discount rates over future cash flows are constant over time. Shiller’s test therefore provides a joint
rejection of (1) rational pricing and (2) constant discount rates. But given the ample evidence that
discount rates vary over time, it is unclear what to make of this joint rejection.1 It would seem
that changes in unobserved discount rates are capable of explaining arbitrary movements in asset
values, so can any meaningful statements be made about how much rational variation we should
observe in the data?

In this paper, we show that, even with a meaningful degree of flexibility in preferences and
discount rates, there are still certain bounds on asset-price movements that must hold under the
assumption of rational expectations (RE). Our theoretical results apply quite generally to valuation
processes for any agent with RE over an asset’s future payoffs; when we then take these bounds to
the data, the “agent” in question can be thought of as the market as a whole. Our results accordingly
bear on the efficiency of market valuations, as we show that this null can be jointly tested alongside
a much less restrictive assumption than those used in past literature. When we implement our
bounds empirically, we find that there is so much variation in the asset prices we consider that it is
difficult to rationalize the data with plausible assumptions on time and risk preferences.

As in Shiller’s case, we focus our analysis on expectations over the future value of an equity
index. But the key feature distinguishing our analysis from previous literature is that we consider
the behavior of so-called risk-neutral (RN) beliefs over the underlying index’s future price, rather than
the behavior of the underlying index itself. The risk-neutral belief distribution can be calculated
directly using option prices — options allow for bets over the future asset price, and thus the
prices of these bets allow us to back out a probability distribution over this future price — so as
is standard, we treat risk-neutral beliefs as observable. These risk-neutral beliefs represent the
probability distribution that would be equal to a hypothetical risk-neutral agent’s true (or physical)
belief distribution about the future asset price, but risk-neutral beliefs are in general distorted
relative to the marginal investor’s physical beliefs in the case that the investor is risk-averse.
Intuitively, the probability distribution we observe using asset prices will overweight states in
which the marginal investor has low wealth (e.g., when the underlying asset has a low return),
since the investor will be willing to pay to insure against these high-marginal-utility states.

1For an overview of time-varying discount rates, see Cochrane (2011). Fama (1991, p. 1586) provides a succinct
summary of the issues in interpreting Shiller’s results: “volatility tests are [a] useful way to show that expected returns
vary through time,” but they “give no help on the central issue of whether the variation in expected returns is rational.”
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We show that statements about the “correct” amount of variation in risk-neutral beliefs under
RE require less-restrictive assumptions than statements about variation of the index price itself.
Previous analyses focusing on index-price variation require keeping track of some measure of the
index’s fundamental value; in contrast, we show that one can place restrictions on the intertemporal
behavior of RN beliefs without any knowledge of the asset’s fundamental value, or knowledge of
the marginal investor’s underlying physical beliefs. Aside from the maintained assumptions of RE
and no arbitrage, our main results require only one general restriction on the stochastic discount
factor (SDF), the random variable that determines an asset’s ex-ante price by discounting the asset’s
random future cash flows: we assume that the SDF realization does not depend on the path of
unobservable state variables realized between a given trading date and the option expiration date.
We refer to this assumption as conditional transition independence (CTI), and this assumption is met
in many common macro-finance models. Further, we provide sufficient conditions under which
our bounds are robust to violations of the CTI assumption.

To demonstrate the logic of our test, it is useful first to consider the simple case in which we
can directly observe a person’s subjective belief πt(θ = 1) over some binary outcome θ ∈ {0, 1}.
Suppose we observe that πt continually moves from 0.10 to 0.90 as t progresses. While it is of
course possible to rationalize this movement ex post by constructing a set of signal realizations
from a particular signal data-generating process (DGP), this amount of movement appears intu-
itively “rare” and might bring into question the hypothesis that the agent has RE. Formalizing
this intuition, Augenblick and Rabin (2021) note that, when uncertainty is resolved by some pe-
riod T, the expectation of the sum of squared changes in beliefs across all periods (belief movement,
E ∑T−1

t=0 (πt+1 − πt)2) must equal the agent’s initial uncertainty (π0(1− π0)) under RE, regardless of
the signal DGP. Equivalently, regardless of DGP, the expected excess movement — belief movement
minus initial uncertainty, which we denote by E[X] — must always equal zero. Intuitively, under
RE, changes in beliefs must on average correspond to the resolution of uncertainty (from its initial
level π0(1− π0) to 0); rational belief movements must mean the person is learning something
about the outcome in question.2 If beliefs are instead continually shifting dramatically relative to
initial uncertainty, the RE assumption can be statistically rejected at some confidence level.

The main theoretical contribution of this paper is to show how this logic — that movement in
beliefs must correspond on average to reduction in uncertainty — can be used to restrict excess
movement in risk-neutral beliefs, E[X∗], in the general case in which only risk-neutral rather
than physical beliefs are observable. Our task becomes considerably more difficult in this case:
observable risk-neutral beliefs need not follow a martingale under RE given their distortion relative
to physical beliefs, and this means that E[X∗] can be non-zero.3 But given that the distortion

2As a simple example, take a situation in which two coins are flipped sequentially and a person with RE states her
beliefs about the likelihood that she will observe two heads. With probability 1

4 , the agent observes two heads, leading
to beliefs that move from 25% to 50% to 100%, which has movement of 5

16 ; she observes an initial tails with probability 1
2 ,

leading to belief movement of 1
16 ; and she observes heads and then tails with probability 1

4 , leading to movement of 5
16 .

As with any signal DGP with a prior of 1
4 , the expectation movement is equal to 3

16 , the initial uncertainty.
3Equivalently, some positive average amount of apparent excess movement in risk-neutral beliefs can be rationalized

under RE, as long as the person (or market) exhibits some risk aversion over the time-T outcome.
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between risk-neutral and physical beliefs is indexed by risk aversion over the terminal states, we
show in this case that the admissible E[X∗] under RE can be bounded as a simple function of this
risk-aversion value (or, more generally, the slope of the SDF across states). The broad intuition
is the same: if a person’s valuation for a binary option that pays $1 in a given state at time T
continually oscillates between $.10 and $.90, her unobservable risk aversion renders her precise
physical beliefs unidentified, but these extreme valuation changes imply belief movements that
must be rare under RE regardless of her exact risk aversion.

Our upper bound for excess RN belief movement E[X∗] is tight in the sense that it is possible to
construct a (somewhat perverse) signal DGP that produces movement that is arbitrarily close to
the bound. But this bound is, by construction, very conservative, and so we also provide a tighter
bound that holds under somewhat more restrictive assumptions. In both cases, the bound depends
on a risk-aversion parameter ϕ that corresponds to the relative marginal value of a dollar across
time-T states. For example, if the person is forming beliefs over two possible terminal consumption
states CT ∈ {Clow, Chigh} (so that the option payoff is, e.g., YT = 1 if CT = Clow), then ϕ = U′(Clow)

U′(Chigh)
.

In the empirically relevant case where we observe market-implied RN beliefs over the index return,
then ϕ =

E[Mt,T | RT=Rlow]
E[Mt,T | RT=Rhigh]

, where Mt,T is the stochastic discount factor and Rlow, Rhigh are arbitrary
index return values. Since our bound for E[X∗] depends on this parameter ϕ, any observed average
excess movement in the data is informative as to the minimal ϕ required in order for the bound
to be satisfied. We are effectively inverting the logic of the joint hypothesis problem: under the
assumption of RE, the data is informative as to the minimal ϕ needed to rationalize the observed
amount of excess movement in RN beliefs. We are, in other words, asking how restrictive it is — in
particular, how much utility curvature one must assume — to maintain the hypothesis of RE.

Our main assumption throughout — the assumption of conditional transition independence
(CTI) introduced above — is that ϕ is constant over time for a given belief stream, which generally
lasts weeks to months in our empirical exercise. This assumption holds in many leading economic
models: given a stable utility function, the marginal value of $1 in some time-T state generally does
not change relative to its marginal value in some other state.4 Nonetheless, we provide additional
results suggesting that reasonable variation in ϕ is unlikely to meaningfully affect our conclusions.
This might seem counterintuitive: for example, one might imagine that if ϕ oscillates between 2.9
and 3.1 over and over, the movement of RN beliefs can be unbounded over time even given no
movement in physical beliefs, strongly violating our results. This logic, however, ignores the fact
that the person must also have rational expectations over ϕ, making such persistent oscillations
rare under RE. To demonstrate this principle, we first theoretically prove that if expectations about
ϕ evolve as a martingale or supermartingale, our bounds continue to hold. We then numerically
simulate hundreds of DGPs in which both the underlying state and ϕ are uncertain, so that ϕ varies
within a stream. We find that, across all DGPs, larger initial uncertainty in ϕ (leading to larger
average movement in ϕ across the stream) has little to no impact on the average and maximum

4In asset-pricing terms, while permanent shocks to the SDF may alter Et[Mt,T ] for all states, they generally do not
affect the expected relative SDF realizations across possible states.

3



E[X∗] statistics. Finally, we simulate a calibrated version of the habit-formation model of Campbell
and Cochrane (1999), which implies a changing ϕ. We find that our bounds continue to hold and
continue to be conservative.

We then take our bounds to the data using S&P 500 index option prices obtained from
OptionMetrics. We use standard methods to infer the distribution of the market’s RN beliefs
over index returns for each option expiration date in the sample. In order to map to our two-
state theoretical setting, we then translate each full distribution into a set of binary RN beliefs
π∗t (RT = θj | RT ∈ {θj, θj+1}); these correspond to the RN probability that the index return will be
equal to (or in a range close to) θj, conditional on being either θj or θj+1. (We set our return states to
correspond to five-percentage-point bins for the S&P return.) We then implement our theoretical
bounds, which allow us to infer the minimal risk-aversion value ϕ (at each point in the return
distribution) needed to rationalize the observed variation in RN beliefs over the index return.

We find that extremely high risk aversion is needed to rationalize the observed excess movement:
in many cases, there is in fact no value of ϕ under which the tight version of the bound is met, and
the conservative version of the bound generally implies implausibly large values for ϕ. It is thus
quite costly (in the sense that a high ϕ is required) to maintain the assumption of RE in light of the
degree of excess movement in risk-neutral beliefs over the index return. This suggests that many
leading rational frameworks capable of explaining medium-to-low-frequency variation in asset
prices have difficulty rationalizing medium-to-high-frequency variation in beliefs.

Given that we conduct our estimation using variation in index options prices, we must also
account for the effect of possible market microstructure noise. In order to do so, we derive an
additional theoretical result that describes how microstructure noise biases our estimates through its
effect on observed excess movement X∗. This bias depends on the variance of the noise component
of observed RN beliefs. We accordingly proceed to estimate this noise variance in the data, by
turning to a set of high-frequency index option prices (which we obtain directly from the CBOE) for
this purpose. Using these intraday data, we implement the microstructure noise variance estimator
proposed by Li and Linton (2021), which is particularly well suited for our purposes. We can then
construct an empirical noise correction, removing the effect of noise from X∗ before we conduct our
estimation. All of our results are noise-corrected in this way, which help to ensure that our findings
do not depend on idiosyncrasies specific to the options market.

We then briefly explore possible explanations for our findings, with the goal of providing
some positive directions for alternative models. Conducting regressions of our excess-movement
measure on a range of macroeconomic statistics, we find that X∗ has a strong positive relationship
with measures of macroeconomic uncertainty and no relationship with measures of liquidity or
limits to arbitrage in asset markets. These results provide further evidence against the possibility
that factors specific to the option market are the main drivers of our results, but this regression
evidence is only suggestive and reduced-form.

Relation to previous literature and interpretation of results. In addition to Shiller (1981),
we follow, among others, LeRoy and Porter (1981), De Bondt and Thaler (1985), Campbell and
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Shiller (1987), and Stein (1989) in testing for excess volatility in asset prices relative to RE. Kleidon
(1986) and Marsh and Merton (1986) emphasize non-stationarity in accounting for apparent excess
volatility; much of the literature since then has emphasized time variation in discount rates
(Cochrane, 2011). We show that even without imposing any restrictions on the structure of the
data-generating process, and imposing only mild restrictions on the variation in discount rates, RE
nonetheless restricts the admissible variation in option prices in an empirically testable way.

There are two costs associated with our additional generality. First, we consider derivative prices
rather than the behavior of the underlying index directly. In this way, our work is complementary
to that of Giglio and Kelly (2018), who document excess volatility in long-maturity claims on
equity and currency volatility, inflation swaps, commodity futures, and credit default swaps. Their
framework differs from ours in that they achieve identification by parameterizing the DGP for cash
flows on the underlying, whereas we restrict the evolution of the SDF. Their parameterization —
a low-dimensional affine model under the RN measure — applies well to the term-structure-like
claims they consider, but not to claims on the equity index itself, to which our framework does
apply. The two frameworks thus provide independent and complementary evidence for excess
volatility, and both do so in a manner that allows for discount-rate variation.

Second, rather than allowing for fully binary (rejection vs. non-rejection) empirical tests of RE
models, our general framework instead allows for a mapping between the observed asset-price
variation and the risk aversion required to rationalize the data. Our results may thus appear similar
in spirit to those of Mehra and Prescott (1985), and more generally Hansen and Jagannathan (1991),
who find that the SDF must be highly volatile to rationalize the observed excess returns for risky
assets. Our results differ from theirs in two respects. First, we obtain our mapping using the
second moment of observed returns, while they use the first moment of returns.5 More importantly,
the Hansen–Jagannathan results may in principle be explained by features of the data-generating
process for consumption or returns rather than high risk aversion per se; for example, models of
rare disasters (e.g., Barro, 2006; Gabaix, 2012) can generate sufficient SDF volatility to rationalize
the observed equity premium without requiring high risk aversion. But this is not the case for our
results, as we obtain a relationship between local changes in the RN belief distribution and local
risk aversion (or the slope of the SDF) at those points of the distribution. If we observe highly
variable RN beliefs over the event that the S&P’s 90-day return will be between 5% and 10%, we
know that this cannot be attributable to disasters that affect the left tail of the return distribution;
instead, we conclude either that risk aversion is very high or that there is a departure from RE.

Finally, our results complement evidence on beliefs obtained from survey data, as, for example,
in Greenwood and Shleifer (2014), Bordalo et al. (2020), and De la O and Myers (2021), as well as
the results of Augenblick and Rabin (2021) for settings with directly observable beliefs. Another
set of related literature endeavors to measure physical beliefs indirectly from options data, for the
purpose of examining either expectations or preferences; see Garcia, Ghysels, and Renault (2010)

5One could instead map between variation in returns and the volatility of SDF volatility (or the heteroskedasticity of
the SDF), but we consider the results from our mapping to be somewhat more intuitive than this alternative.
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for a survey. As a recent example, Ross (2015) assumes a Markov process for transitions between
return states and a transition-independence assumption on the SDF more restrictive than the one
we use (see Borovička, Hansen, and Scheinkman, 2016, for a discussion), with which one can back
out a distribution of physical beliefs (see also D’Arienzo, 2020). Our approach differs from this
work in that we need not measure physical beliefs at all or know the true data-generating process
for returns to conduct our tests, so we accordingly require less structure. We also complement the
findings of van Binsbergen, Brandt, and Koijen (2012), who, like us, provide evidence of excess
volatility in short-maturity equity derivatives claims.

Organization. Section 2 introduces our theoretical framework in a simple two-state setting,
which allows for clear derivations and intuition for our main results. Section 3 then extends these
results to a more general asset-pricing setting, and Section 4 provides additional results speaking
to the robustness and economic interpretation of our bounds. We then implement our bounds
empirically in Section 5, which describes our data and presents our results. Section 6 concludes.
While we provide derivations for many of our theoretical results in the text, our online appendix
contains detailed proofs (Appendix A) as well as additional technical material (Appendix B).

2. Theoretical Results in a Simple Setting

We first examine risk-neutral (RN) belief movement in a simplified environment with a single
individual and two terminal consumption states. This simple setting allows for transparent
derivations of our main results and discussion of their economic intuition, before turning to the
more general asset-pricing framework considered in Section 3. We begin by describing our setup
and reviewing previous results concerning physical belief movement (Section 2.1), then discuss RN
beliefs and the complications introduced by risk aversion (Section 2.2), and finally provide simple
versions of our main theoretical results on RN belief movement (Section 2.3).

2.1 Bayesian Belief Movement: Setup and Results

Before considering asset prices and RN beliefs, we first consider the simplified case in which a
person’s beliefs are directly observable. The setup and results in this subsection build on Augenblick
and Rabin (AR, 2021).

Time is discrete and indexed by t ∈ {0, 1, 2, . . . , T}. At the beginning of each period, a person
observes a signal st ∈ S regarding two mutually exclusive and exhaustive events, which we
call states θ ∈ {0, 1}. The data-generating process (DGP) is general: signals are drawn from the
discrete signal distribution DGP(st | θ, Ht−1), where Ht represents the history of signal realizations
through t. Define P(HT) to be the probability of observing history HT induced by the DGP,
and write E[·] ≡ EP[·] for the expectation under P. The person’s (physical or subjective) belief
in state 1 (vs. state 0) at time t given the DGP and history Ht is denoted by πt(Ht). The belief
stream π(Ht) = [π0, π1(s1), π2({s1, s2}), . . .] is the collection of beliefs given history Ht. We will
commonly suppress the dependence of these objects on Ht to simplify notation. Given our empirical
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setting, we focus entirely on resolving streams in which the person achieves certainty about the true
state by period T with probability 1: πT(HT) = θ ∈ {0, 1} for all HT.6

Total belief movement of π is defined as the sum of squared changes in beliefs across all periods:

m(π) ≡∑ T−1
t=0 (πt+1 − πt)

2. (1)

Initial uncertainty of π is defined as the time-0 variance of the Bernoulli random variable 1{θ = 1}:

u0(π) ≡ (1− π0)π0. (2)

Given that we focus on resolving belief streams for which πT ∈ {0, 1}, final uncertainty is always
zero (uT = (1− πT)πT = 0 a.s.). Initial uncertainty u0 is therefore equal to the total amount of
uncertainty reduction for π, u0 − uT, which is helpful in interpreting some of the following results.

Our main variable of interest is the difference between movement and initial uncertainty,
which — for reasons that will become clear — we call excess movement:

X(π) ≡ m(π)− u0(π). (3)

Throughout the paper, we maintain the assumption that the person’s beliefs are a martingale
with respect to the true DGP:

ASSUMPTION 1 (Martingale Beliefs). Beliefs satisfy πt(Ht) = E[πt+1 |Ht] for any Ht.

A person with rational expectations (RE) over θ — equivalently, someone with a correct prior
who updates using Bayes’ rule according to the true DGP — will satisfy this assumption. Given
our focus on resolving streams for which πT = θ, this assumption is in fact equivalent to RE, as
πt = E[πT |Ht] = E[θ |Ht] = P(θ = 1 |Ht).7 We thus often refer to Assumption 1 as RE.

To clarify our setting, Table 1 lists some examples of possible signals, belief streams, likelihoods
of those belief streams, movement, and uncertainty resolution given three simple binary-signal
DGPs that we will return to in the subsequent sections. (Only the first five columns of the table
are relevant for now, as the remaining three refer to risk-neutral beliefs as defined and discussed
below.) For example, in the first DGP, the person has a rational prior of π0 = .25; at t = 1, she
observes s1 ∈ {l, h} with symmetric relative likelihood ratios (or precision) for each of the two
signals, Lh ≡ P[st=h|θ=1]

P[st=h|θ=0] = 3 and Ll ≡ P[st=l|θ=0]
P[st=l|θ=1] = 3; and then at t = 2, s2 ∈ {L, H} fully reveals the

state (with signal “H” revealing state 1 and vice versa). In the first row, if the person first observes
s1 = l and then s2 = L, she will first update to π1 = .1 and then π2 = 0. The ex ante likelihood
of this signal realization for this DGP is 9

16 = .5625 and the resultant belief stream [.25, .1, 0] has
movement of (.25− .1)2 + (.1− 0)2 = .0325 and initial uncertainty of π0(1− π0) = .1875. The

6As discussed in AR, a number of statements can also be made about non-resolving (sub)streams. In our setting,
these statements would often be excessively conservative and add little benefit to our empirical analysis.

7While one can construct cases for which beliefs violate RE but are a martingale under P, such cases are degenerate
(e.g., πt = 1 for all Ht) and ruled out by πT = θ. But for now we assume RE only over θ, which is weaker than a full
rationality assumption, as beliefs over individual histories HT could still differ from P(HT).
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second example uses an asymmetric DGP in which the person either sees a high signal and learns
with certainty that state 1 is true or sees a low signal and learns that state 0 is more likely. As a
result, movements towards a belief of 1 are much larger than movements toward 0. The third
example is the opposite with a resolving low signal and noisy high signal.

Under the RE assumption, belief movement and initial uncertainty are related according to the
following proposition, which restates a main result in AR.

PROPOSITION 1 (Augenblick and Rabin, 2021). Under Assumption 1, for any DGP, expected total belief
movement must equal initial uncertainty. Expected excess movement in beliefs must therefore be zero:

E[X] = 0. (4)

As discussed in AR, Proposition 1 is a straightforward implication of the assumption of martin-
gale beliefs.8 It motivates referring to X as excess movement. As an example, consider the first DGP
in Table 1: the four signal realizations [l, L], [l, H], [h, L], [h, H] have likelihood .5625, .0625, .1875,
.1875, respectively, with respective movement statistics .0325, .8325, .3125, and .3125. Therefore,
expected movement is .1875, which equals initial uncertainty, so expected excess movement is zero.
Note that the other two DGPs in the table also start with a prior of .25 and initial uncertainty of
.1875. Proposition 1 therefore implies that, although these DGPs produce different streams with
different movement statistics and likelihoods, the expected movement will be .1875 and expected
excess movement will be zero.

AR then use this relationship to create simple tests of RE if one can directly observe beliefs.
Given a set of observed belief streams, one can straightforwardly calculate the sample average of
the empirical excess movement statistic and statistically test if it differs from zero. The restriction
reflects the intuition that if the person’s beliefs are moving, this movement must on average
correspond to learning about the true terminal state (in the sense that uncertainty is resolved from
its initial value to 0). Rewriting E[X] = 0 as E[∑T−1

t=0 (1− 2πt)(πt+1 − πt)] = 0 (see footnote 8), it is
apparent that expected belief movements toward 0.5 (the point of highest uncertainty) lead to a
positive E[X] statistic, and vice versa. So it could be the case that E[πt+1 − πt] = 0 unconditionally,
but a test based on Proposition 1 would still reject the null of RE if, for instance, low values of πt

(i.e., 1− 2πt > 0, or πt < 0.5) tend to be revised upward (πt+1 − πt > 0), and high values tend to
be revised downward.

2.2 Risk-Neutral Beliefs: Setup

Proposition 1 shows that one can make statements about excess belief movement under RE when
beliefs are observable. We now consider the situation in which beliefs are not directly observable,
but it is possible to observe the stream of the person’s willingness to pay for an Arrow-Debreu

8To see this, rewrite X as ∑T−1
t=0 (2πt − 1)(πt − πt+1). Using the law of iterated expectations on each term in the sum,

E[(2πt − 1)(πt − πt+1)] = E[(2πt − 1)(πt −E[πt+1|πt])], which must be zero under the martingale assumption. This
result has appeared in other forms in past literature; for one example, see Barndorff-Nielsen and Shephard (2001).
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security that pays $1 (1 unit of the numeraire consumption good) in period T if state θ is realized.
We denote this valuation by qt(θ|Ht) for each θ ∈ {0, 1}. An object analogous to qt(θ|Ht) will be
observable using options data for suitably defined states, but we postpone this additional formalism
to Section 3 so as to maintain focus on the main economic intuition for now. Our main contribution
will be to develop a semi-parametric test of RE using only data on valuation streams.

To start, consider the simple case in which the person values consumption at all periods and in
all states equally (i.e., she is risk-neutral and does not discount future consumption). In this case,
qt(1|Ht) = π(Ht) and qt(0|Ht) = 1− π(Ht). Beliefs are thus directly observable from asset values,
and we can apply Proposition 1 as a test of the rationality of these beliefs.

The problem of identifying excess movement in asset valuations becomes significantly more
complicated when the person does not weight consumption equally across time and states, as
valuations no longer correspond directly to beliefs. To see this, assume now that the agent has
time-separable utility, with concave period utility function U(Ct), and exponentially discounts
future consumption with discount factor β. Assume that θ determines period-T consumption
CT,θ ≡ CT(θ). At an interior optimum, valuations are

qt(1|Ht) =
βT−tU′(CT,1)

U′(Ct)
πt, qt(0|Ht) =

βT−tU′(CT,0)

U′(Ct)
(1− πt). (5)

Valuations thus no longer reveal beliefs.

Following asset-pricing convention, define the stochastic discount factor (SDF) Mt,T(θ) as the
ratio of valuation to probability for state θ:

Mt,T(1) ≡
qt(1|Ht)

πt(Ht)
, Mt,T(0) ≡

qt(0|Ht)

1− πt(Ht)
.

Continuing from (5), Mt,T(θ) =
βT−tU′(CT,θ)

U′(Ct)
encodes the relative valuation of a marginal dollar in

state θ in period T versus one in period t. In our environment, the SDF ratio ϕt will be particularly
important:

ϕt ≡
Mt,T(1)
Mt,T(0)

, (6)

which encodes the slope of the stochastic discount factor across the two states. In consumption
terms, continuing the above example, we have

ϕt =

βT−tU′(CT,1)
U′(Ct)

βT−tU′(CT,0)
U′(Ct)

=
U′(CT,1)

U′(CT,0)
, (7)

so ϕt can be thought of as the marginal rate of substitution across the states. Assume that θ = 1
corresponds to the low-consumption state relative to θ = 0, or CT,1 < CT,0; this is without loss
of generality, as the states can be relabeled arbitrarily. Given this labeling, with concave utility,
we have U′(CT,1) ⩾ U′(CT,0) and thus ϕt ⩾ 1. We will maintain the convention of labeling state 1
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(corresponding to the belief πt) as the “bad” state, so we state it as an assumption:

ASSUMPTION 2 (Labeling of States). ϕt ⩾ 1 with probability 1 for all t.

In (7), given that θ determines period-T consumption, ϕt is in fact constant across t. The person’s
beliefs may be changing about the relative likelihood of the two states, but her beliefs about the
relative marginal utility outcomes conditional on each of the two states being realized are not. This
assumption is central to our results:

ASSUMPTION 3 (Constant SDF Ratio). ϕt = ϕ is constant with probability 1 for all t.

We discuss this assumption in more detail, for general settings, in Section 3. Intuitively, what
is required is that the “severity” of the bad state relative to the good state is constant, so that the
relative valuation of a marginal dollar in the two states is constant. This follows naturally in the
current example from the assumption of stable time-separable utility and fixed state-contingent
consumption values. This illustrates the manner in which restrictions on risk-neutral belief variation
require weaker assumptions than restrictions on the underlying asset price: an Arrow-Debreu state
price (and associated RN belief) depends on marginal utility in a single state, whereas the price of a
consumption claim depends on the probability-weighted sum of marginal utilities over all states.
Assuming constant discount rates allows for identification in the latter context (e.g., Shiller, 1981),
but we need not make this assumption when working with RN beliefs. RN beliefs also eliminate
dependence on time-t marginal utility by means of a convenient normalization. Appendix B.1 (in
our online appendix) discusses the relationship between RN beliefs and discount rates in greater
detail. We also later consider how our bounds are affected when ϕt is time-varying; this robustness
discussion is postponed to Section 4.3.

For further intuition on ϕ, we can conduct a Taylor expansion of U′(CT,0) around CT,1 as
U′(CT,0) = U′(CT,1) + U′′(CT,1)(CT,0 − CT,1) +O

(
(CT,0 − CT,1)

2). Then rearranging and using (7),
to first order,

γ(CT,1) ≡ −
CT,1U′′(CT,1)

U′(CT,1)
=

ϕ− 1
(CT,0 − CT,1)/CT,1

. (8)

Relative risk aversion γ depends on the ratio of marginal utilities across states ϕ relative to the
percent consumption gap across states. Thus up to a scaling constant (CT,0 − CT,1)/CT,1, the value ϕ

can be thought of as an index of risk aversion.

Given that beliefs are not directly inferable from asset valuations without knowledge of ϕ, one
cannot in general apply Proposition 1 in the current context. We instead aim to derive bounds on
excess movement in risk-neutral (RN) beliefs, which are defined (following convention) as

π∗t (Ht) ≡
qt(1|Ht)

qt(0|Ht) + qt(1|Ht)

=
U′(CT,1)

Et[U′(CT)]
πt(Ht) =

ϕπt(Ht)

1 + (ϕ− 1)πt(Ht)
, (9)
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with the second line following from (5) and (7). RN beliefs for θ = 0 can be similarly defined as
qt(0|Ht)

qt(0|Ht)+qt(1|Ht)
= 1− π∗t , so the two states’ RN beliefs are positive and sum to 1 by construction.

Risk-neutral beliefs are so named because they can be interpreted as the subjective beliefs for a
fictitious risk-neutral agent, as they coincide with actual subjective beliefs in the case that the person
is risk-neutral. In general, they represent a pseudo-belief distribution, reflecting a combination
of beliefs and risk preferences. Given ϕ ⩾ 1, the bad-state RN belief π∗t in general exceeds the
person’s subjective belief πt: the person is willing to pay more than the actuarially fair value for a
bad-state consumption claim given her high marginal utility in that state, and vice versa.

Returning to Table 1, the sixth column provides RN beliefs for the three example DGPs under
the calibration ϕ = 3. The person has a prior of .25 in each DGP, so using (9), the RN prior is
π∗0 = .5. Intuitively, the person perceives state 0 as three times as likely as state 1, but values a
marginal dollar in state 1 three times as much as in state 0, so qt(0|Ht) = qt(1|Ht) and π∗0 = .5.

One can also invert (9) to solve for πt as a function of π∗t and ϕ, the solution to which we denote
by πt(π∗t , ϕ):

πt(π
∗
t , ϕ) =

π∗t
ϕ + (1− ϕ)π∗t

. (10)

While πt is a time-varying unobservable, (10) clarifies that it can be represented as a function of the
observable π∗t and a single unknown parameter ϕ.

We define the RN belief stream π∗(Ht), RN belief movement m∗(π∗), RN initial uncertainty
u∗0(π

∗), and RN excess movement X∗(π∗) as in Section 2.1, but with RN beliefs π∗t in the place of
physical beliefs πt. It will also be useful to define the RN measure as

P∗(HT) ≡

P(HT)
π∗0
π0

if πT(HT) = 1

P(HT)
1−π∗0
1−π0

if πT(HT) = 0,
(11)

where P(HT) is the probability of observing history HT under DGP. We show in Section 3
that (11) follows from the usual definition of the RN measure in a general asset-pricing setting
(see Lemma A.1 in Appendix A). For now, it suffices to think of P∗ as representing the change of
measure that adjusts the frequency of each path of signal realizations such that a person with RN
beliefs has rational expectations: defining E∗[·] to be the expectation under P∗, we have from (11)
that

π∗t (Ht) = E∗[π∗t+1(Ht+1)|Ht]. (12)

RN beliefs are not well-calibrated under the physical measure; for instance, in the first example
in Table 1, the person has a RN prior of .5 but ends up with a belief of 1 only 25% of the time. Instead,
the RN measure adjusts the weights on signal realizations to .375, .125, .125, and .375, respectively,
so that the person ends up with a belief of 1 with 50% RN probability and is well-calibrated.

Given (12), the expectation of movement of RN beliefs under the RN measure must equal RN
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initial uncertainty and therefore expected excess RN movement must be zero:

E∗[X∗] = 0. (13)

We wish to make statements similar to Proposition 1, but applicable to the observable asset values.
The fundamental challenge in doing so is twofold. First, asset values allow for the calculation of
RN beliefs rather than physical beliefs; that is, we observe π∗t rather than πt, so we cannot construct
E[X] in equation (4). But second, the frequency of the observed RN belief streams used to construct
expected excess movement is determined by the physical measure rather than the RN measure;
that is, we cannot directly observe an empirical counterpart to E∗[X∗] in equation (13).

Instead, we can observe a counterpart to E[X∗]. But the distortion in RN relative to subjective
beliefs can cause RN movement to differ from RN initial uncertainty on average, so E∗[X∗] ̸= 0.
Thus even with rational physical beliefs, one can observe, for example, what appears to be excess
movement in RN beliefs implied by valuations. (The third example in Table 1, discussed further
below, is one such case.) So if we naïvely test for RE using Proposition 1 on observed RN (rather
than actual) beliefs, we may spuriously conclude that beliefs are excessively volatile.

2.3 Risk-Neutral Beliefs: Results

We now proceed to derive theoretical bounds for E[X∗] given a particular value of the unobservable
parameter ϕ. For any observed value for E[X∗], we can then place restrictions on the admissible
values of ϕ under the null of RE by inverting the bounds. We sketch derivations for our main
results in the text, and full formal proofs for all results are provided in Appendix A.

Main Results

To understand the object E[X∗], we start with a key observation using (11):

P∗(HT|θ) = P(HT|θ). (14)

Compared to the physical measure, the RN measure places higher likelihood of all signal histories
resolving in state 1, but does so proportionally, so that likelihoods of signal histories conditional on
state 1 do not change.9 While this is implied directly by the definition (11), it again applies under
the usual definition of the RN measure in a general setting (see Lemma A.2 in Appendix A).

Equation (14) implies that conditional expectations under the two respective measures are equal,
E∗[X∗|θ] = E[X∗|θ], which implies

E∗[X∗] = π∗0 ·E∗[X∗|θ = 1] + (1− π∗0) ·E∗[X∗|θ = 0]

= π∗0 ·E[X∗|θ = 1] + (1− π∗0) ·E[X∗|θ = 0] = 0, (15)

9For example, in the first DGP of Table 1, the signal histories [l, H] and [h, H] that imply state 1 occur in the physical
measure with probability .0625 and .1875 respectively, so that P([l, H]|θ = 1) = .25. In the RN measure, these are
increased by a factor of π∗0/π0 = 2 to .125 and .375, respectively. Consequently, P∗([l, H]|θ = 1) remains .25.
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where the last equality applies (13). For E[X∗], it is useful to separate this expectation as in (15):

E[X∗] = π0 ·E[X∗|θ = 1] + (1− π0) ·E[X∗|θ = 0]. (16)

Finally, it will be helpful to define the difference in conditional expected X∗ as

△ ≡ E[X∗|θ = 0]−E[X∗|θ = 1]. (17)

As movement must always be positive, using equation (15),10 we have that

△ ⩽ π∗0 . (18)

Combining (15) and (16), one can express E[X∗] as follows. This expression in turn generates
a set of bounds relating objects from observable asset valuations to the unobservable structural
parameter ϕ. We assume throughout that Assumptions 1–3 hold.

PROPOSITION 2. For any DGP,

E[X∗] = (π∗0 − π0)(△)

=

(
π∗0 −

π∗0
ϕ + (1− ϕ)π∗0

)
(E[X∗|θ = 0]−E[X∗|θ = 1]).

PROPOSITION 3. For any DGP and any value for△,

E[X∗] ⩽ (π∗0 − π0)π
∗
0 .

Equivalently,

E[X∗] ⩽
(

1− 1
ϕ + (1− ϕ)π∗0

)
π∗0

2. (19)

COROLLARY 1. For any DGP and any values△ and ϕ,

E[X∗] ⩽ π∗0
2.

Additionally, if one is willing to make an assumption on the sign of△ (discussed shortly), the
following stronger bound applies.

COROLLARY 2. If E[X∗|θ = 0] ⩽ E[X∗|θ = 1], for any DGP and any value for ϕ,

E[X∗] ⩽ 0.

Proposition 2 shows that the expectation of RN excess movement E[X∗] is equal to the product

10Equation (15) can be rewritten as π∗0 · E[m∗|θ = 1] + (1 − π∗0 ) · E[m∗|θ = 0] = π∗0 (1 − π∗0 ). Thus, fixing π∗0 ,
E[m∗|θ = 0] decreases monotonically in E[m∗|θ = 1]. Given that E[m∗|θ = 1] ⩾ 0, E[m∗|θ = 0] must be bounded above
by π∗0 . Therefore,△, which can be rewritten as E[m∗|θ = 0]−E[m∗|θ = 1], must be bounded above by π∗0 .
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of π∗0 − π0 and △ ≡ E[X∗|θ = 0]−E[X∗|θ = 1]. Note that if ϕ = 1, then π∗0 = π0 and therefore
E[X∗] = 0. As ϕ rises, π0 drops further below π∗0 and E[X∗] deviates from 0: the greater is risk
aversion, the more one can observe excess RN movement differ from zero on average under RE.
The size of this deviation, and whether it is positive or negative, depends on△. In other words, all
DGPs with the same△ will produce the same level of E[X∗] for a given ϕ.

Regardless of the signal distribution,△ is bounded above as in (18). Plugging this into Proposi-
tion 2 yields Proposition 3. The version of the bound expressed in (19) is one of our main results.
It gives a bound for E[X∗] as a function of π∗0 and ϕ, regardless of△. Equivalently, it relates the
unobserved structural parameter ϕ, which corresponds to the slope of the SDF across the two
states as in (6), to a set of observable values. Under risk neutrality (ϕ = 1), this upper bound
becomes zero, following Proposition 1. But this bound is otherwise positive, and the admissible
excess movement in RN beliefs given by the right side of the inequality increases monotonically
in ϕ. Movement in RN beliefs must still correspond on average to the agent learning something
about the true terminal state, but the bias in RN beliefs relative to subjective beliefs induced by risk
aversion allows for positive excess movement in those observed beliefs under RE. This result thus
formalizes a more general notion of the admissible amount of belief volatility under rationality,
this time as an increasing function of risk aversion across the two states.

The bound in Proposition 3 is very conservative, as it implicitly holds under a “worst-case”
DGP with an extreme value for △. Higher RN priors yield more “room” for downward belief
movement, so the worst case△ = π∗0 rises monotonically. For ϕ > 1, this generates asymmetry in
the bound around π∗0 = .5, as lower values of π∗0 generally yield a lower upper bound for E[X∗].11

But the bound in (19) is also non-monotonic in π∗0 for 1 < ϕ < ∞ (in particular for π∗0 > 0.5): for a
given ϕ, the first term π∗0 − π0 does not rise monotonically, exerting a countervailing force relative
to the monotonic increase in the second term π∗0 .12

While the bound in Proposition 3 maps between observed values and the slope of the SDF
required to rationalize those values, the fact that RN beliefs are bounded between 0 and 1 by
construction implies that the bound is well-defined even for infinitely large risk aversion: there
is only so far that RN beliefs can be distorted relative to subjective beliefs. Taking ϕ → ∞ in (19)
yields Corollary 1, which provides our most conservative bound for E[X∗]. In the limit as ϕ→ ∞,
π0 → 0 for any π∗0 , so π∗0 − π0 → π∗0 and the bound in Proposition 3 approaches π∗0

2. That is,
E[X∗] > π∗0

2 simply cannot be rationalized under RE given constant ϕ. For low π∗0 , this bound
again does not allow large positive E[X∗]. For example, if π0 = .2, RN excess movement can only
rise to .04, regardless of ϕ or the DGP. That is, even arbitrarily high risk aversion does not allow for
large amounts of excess movement in RN beliefs implied by asset valuations.

Taken together, Proposition 3 and Corollary 1 characterize the maximal admissible excess
movement in RN beliefs as a function of ϕ for any RN prior. Figure 1 provides a graphical
illustration of these bounds. Starting from the bottom of the chart, the thick purple line corresponds

11For example, with π∗0 = .2 and ϕ = 2, (19) gives E[X∗] ⩽ .018. This implies the maximal expected RN movement,
max E[m∗] = 0.178, is barely above E[m] = 0.16 for physical beliefs in the analogous case with π0 = .2.

12For example, take ϕ = 3. If π∗0 = .5, then π0 = .25 and π∗0 − π0 = .25. But when π∗0 = .99, π∗0 − π0 = .02.
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to the bound for ϕ = 1: in this case, E[X∗] = E[X] = 0 regardless of the prior or DGP, from
Proposition 1. The thin dashed gray lines correspond to arbitrarily selected DGPs in the case
of ϕ = 3. While there can be positive RN excess movement, this is not necessarily the case for
all possible DGPs. Taking the envelope over all of these processes for ϕ = 3 yields the bound
from Proposition 3, which is shown in the thick blue line. It is asymmetric around 0.5 as well as
non-monotonic, as described above. Finally, the thick red line shows the bound for the limiting
case ϕ→ ∞, which is equal to the squared RN prior from Corollary 1.

Finally, when △ < 0, E[X∗] is decreasing in ϕ and therefore E[X∗] < 0 for any ϕ > 1.
Consequently, as formalized in Corollary 2, the highest excess movement is E[X∗] = 0.

The above conclusions can also be seen in the examples in Table 1. For the first example, the RN
prior is .5 and the signals are symmetric, so that△ = 0 and E[X∗] = 0. For the second example,
the DGP is asymmetric with large movements upwards, so that expected movement conditional on
θ = 1 is large (.405) compared to θ = 0 (.095), so that △ is negative (-.31) and therefore E[X∗] is
negative. The converse occurs in the third example, which is asymmetric in the opposite way and
therefore leads to△ = −.31. These examples point to the relationship of π∗0 and the DGP with the
sign of△. We now study this relationship in more detail.

What Determines△?

Proposition 2 tells us that the deviation of E[X∗] from 0 depends on the product of π∗0 − π0 and
△ ≡ E[X∗|θ = 0]−E[X∗|θ = 1]. The difference π∗0 − π0 is always positive (strictly positive, for
ϕ > 1) and increases in ϕ. But how is the sign and magnitude of △ related to the RN prior and
DGP? To answer this question, we provide two theoretical results and briefly summarize a set of
numerical simulations discussed in detail in Appendix B.2.

First, given the arbitrary labeling of the two states, there is no reason to expect under RE that△
should take a particular sign:

PROPOSITION 4. Fixing ϕ, for every RN prior and DGP that leads to a given△, there exists a different
RN prior and DGP that leads to −△.

Intuitively, for any π∗0 and DGP with some△, the RN prior 1− π∗0 with the “reversed” DGP
will necessarily lead to −△. Consequently, there is no reason to assume that E[X∗] is more likely
than not to be positive given ϕ > 1 under RE.

Next, we summarize a set of numerical simulations for a large family of DGPs as described in
Appendix B.2. The results there suggest some intuitive comparative statics. First, when the DGP
changes such that downward movements become larger, expected RN movement conditional on
state 0 rises, so that △ rises and E[X∗] rises. Second, when upward movements become larger,
the opposite occurs and E[X∗] falls. Third, as π∗0 rises, △ rises. Intuitively, a higher π∗0 allows
more movement potential toward state 0 (and less toward state 1), so that expected movement
given state 0 rises (and movement given state 1 falls), leading to a higher△. For example, when
the DGP is symmetric, △ < 0 if π∗0 < .5, △ = 0 if π∗0 = .5, and △ > 0 if π∗0 > .5. Combining
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these statements suggests that, for example, low π∗0 should lead to a negative△ unless the DGP is
extremely asymmetric.13 And as we show later, the empirical DGPs in our setting appear largely
symmetric, so that we estimate△ < 0 for π∗0 < .5.

These results also suggest that extreme values of △ only occur in highly asymmetric DGPs
where movements in one direction are large and movements in the other direction are tiny. In fact,
our upper bound is attainable (in the limit) given the most asymmetric DGP possible:

PROPOSITION 5. There exists a sequence of DGPs, indexed by T, for which E[X∗] approaches the bound in
Proposition 3 as T → ∞. For each DGP in this sequence, downward movements (π∗t+1 < π∗t ) are resolving
(π∗t+1 = 0) and thus as large as possible, while upward movements are small (π∗t+1 − π∗t → 0 as T → ∞).
Meanwhile, the bound holds with strict inequality for any T < ∞ as long as ϕ > 1 and π∗0 ∈ (0, 1).

One implication of this result is that the bound in Proposition 3 is approximately tight, as one
can construct a DGP for which E[X∗] is close to the bound for large T. Perhaps more important,
though, is that it points to the bound’s conservatism: it holds under a somewhat perverse DGP that
can be thought of as a “rare bonanzas” process, where with small probability the person receives
news that the bad state (θ = 1) will not be realized (so π∗t+1 = 0), and otherwise there is mostly
uninformative bad news that increases π∗t+1 slightly. More reasonable DGPs, or T ≪ ∞, will give
lower E[X∗]. That said, the conservative bound has the advantage of being very simple and not
requiring any estimation of △. And as we show below, empirical excess movement is in fact so
high that even these conservative bounds are often violated for reasonable values of ϕ.

What Generates Bound Violations?

We have assumed throughout that Assumption 1 holds, which in general requires both a cor-
rect subjective prior π0 = P0(θ = 1) and rational updating using the true signal distribution
DGP(st | θ, Ht−1) as the likelihood. One natural question is whether an incorrect prior by itself can
generate violations of the upper bound for excess RN movement, or whether excessive movement
in general requires incorrect updating.14 The following proposition, which is straightforward to
show, makes clear that the latter is likely to be necessary for a violation of the bound.

PROPOSITION 6. Assume that Assumptions 2–3 continue to hold. In place of Assumption 1, however,
assume that the person has an incorrect prior, π0 ̸= P0(θ = 1), but updates correctly, in the sense that
πt(Ht) ∝ πt−1(Ht−1)DGP(st | θ = 1, Ht−1). Define ϕ̌ ≡ ϕL, where the person’s ϕ is as in (6) and where
L ≡ π0/(1−π0)

P0(θ=1)/(1−P0(θ=1)) indexes the prior belief distortion, with 0 < L < ∞. Then:

(i) For all Ht, the person’s RN beliefs π∗t are equivalent to the RN beliefs of a fictitious agent whose
physical beliefs {π̌t} satisfy Assumption 1 but who has ϕ̌ in place of ϕ.

13For example, in the large class of DGPs we simulate, only 2% of DGPs have a positive △ when π∗0 < .25. For
π∗0 < .5, it is 11%. When π∗0 is low, the only DGPs in which △ > 0 are asymmetric and extreme. For example, when
π∗0 = .25,△ > 0 only occurs if the likelihood ratio of the downward signals is at least two times the likelihood ratio of
the upward signals. Thus Corollary 2 (which requires△ < 0) appears likely to be applicable for low values of π∗0 .

14One might think that the distinction between the person’s prior and likelihood is artificial both formally and
empirically, but we think the result here nonetheless helps clarify what kinds of belief streams violate the bounds.
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(ii) If ϕ̌ ⩾ 1, then the restrictions on E[X∗] above (Propositions 2–3, Corollaries 1–2) continue to hold,
with ϕ̌ in place of ϕ and π̌0 in place of π0. In particular, one cannot in this case have E[X∗] > π∗0

2.

(iii) If ϕ̌ < 1 so that π∗0 < P0(θ = 1) = π̌0, then Proposition 2 continues to hold, but the bound in
Proposition 3 becomes E[X∗] ⩽ (π̌0 − π∗0)(1− π∗0), and Corollary 1 becomes E[X∗] ⩽ (1− π∗0)

2.
Thus regardless of ϕ̌, it must be the case that E[X∗] ⩽ max(π∗0

2, (1− π∗0)
2).

Part (i) formalizes that risk aversion is isomorphic to an incorrect prior, in that both have the
same effect on π∗t relative to the true Pt(θ = 1). Thus with a suitably altered value of ϕ, the bounds
generally cover the case of an incorrect prior, as in part (ii). The only case in which this argument
requires slight amendment is when the prior is so downwardly distorted that π∗0 < P0(θ = 1).
Even in this case, though, a slightly altered version of Corollary 1 still applies, as in part (iii). An
incorrect prior acts as a one-time belief distortion; while reverting to the correct belief in this case
does require some excess movement, this is generally not sufficient for a full violation of the bound
in Proposition 3. In general, then, incorrect updating behavior must be present in such a violation,
and the restriction imposed by our bound implies that this incorrect updating behavior necessarily
entails excessive volatility in beliefs relative to the degree of uncertainty resolution over time.

3. Generalized Theoretical Results for Equilibrium Asset Prices

While the setting considered in the previous section is useful for providing intuition, it is also
artificial: one cannot obtain a single person’s valuation of Arrow-Debreu claims in observational
data alone; there are more than two possible states; and the realized state determines more than just
consumption. We thus now consider a general many-state framework for equilibrium asset prices
and show how our results extend to this case. We first set up the framework and define notation
(Section 3.1), then discuss the main assumption used to derive our bounds (Section 3.2), and finally
describe how our results apply in this case (Section 3.3). This generalized setting will also allow us
to more thoroughly consider the robustness and interpretation of our results, as we do in Section 4.

3.1 Setup and Notation

Preliminaries: Probability Space, Prices, and Risk-Neutral Probabilities

Time is again indexed by t ∈ {0, 1, 2, . . .}, and we consider a discrete probability space (Ω,F , P)

with filtration {Ht}.15 A realization of the elementary state is denoted by ω ∈ Ω. To make our
results empirically implementable, we will be concerned with the ex-dividend value of the market
index, Vm

t : Ω→ R+, on some option expiration date T. (We will later extend the notation to allow
for multiple option expiration dates.) A European call option on the index with strike price K has
date-T payoff (Vm

T − K)+ = max(Vm
T − K, 0), and its time-t price is qm

t,K. Assume without loss of

15We could extend to continuous state spaces with additional technicalities, but do not do so given that empirical
implementation requires discretization and that our results are better understood for probabilities than densities. We
note as well that objects analogous to those in Section 2 are given the same denotation in this section.
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generality that these option prices are observable for some set of strike prices K ⊆ R+ beginning at
date 0. Assuming the absence of arbitrage, there exists a strictly positive stochastic discount factor
(SDF) Mt,T such that option prices satisfy qm

t,K = Et[Mt,T(Vm
T − K)+], where Et[·] ≡ EP[ · |Ht].

Option prices will be of interest for inferring a distribution over the change in value of the
market index from 0 to T (rather than consumption, for which options are not directly traded). We
say that return state θ ∈ Θ ⊂ R+ is realized for the market as of date T if Rm

T ≡ Vm
T /Vm

0 = θ. The
measure P : F → [0, 1] governs the objective or physical probabilities of these return states. In this
general case, the risk-neutral (RN) measure is defined by the change of measure

dP∗

dP

∣∣∣∣
Ht

=
Mt,T

Et[Mt,T]
, (20)

and expectations under P∗ are denoted by E∗[·].16 Using this definition of P∗, the RN probability
of return state θ is

P∗t (Rm
T = θ) =

Et[Mt,T | Rm
T = θ]

Et[Mt,T]
Pt(Rm

T = θ). (21)

The RN pricing equation qm
t,K = E∗t [(V

m
T − K)+]/R f

t,T (see footnote 16) can be used to show that
the date-t option prices {qm

t,K}K∈K reveal the set of RN probabilities {P∗t (Rm
T = θ)}θ∈Θ. Assume

that the set of return states Θ is ordered such that θ1 < θ2 < · · · < θJ , and assume for notational
simplicity that the set of traded option strikes K coincides with the set of possible date-T index
values (i.e., K = {Kj}j=1,...,J , with Kj = Vm

0 θj). We can then back out RN probabilities from option
prices as follows:

P∗t (Rm
T = θj) = R f

t,T

[
qm

t,Kj+1
− qm

t,Kj

Kj+1 − Kj
−

qm
t,Kj
− qm

t,Kj−1

Kj − Kj−1

]
. (22)

See Appendix A.2 for a derivation of this result, which follows directly from a discrete-state
application of the classic result of Breeden and Litzenberger (1978).17

Beliefs

Aside from assuming no arbitrage, we have not yet taken a stance on the market structure or
subjective beliefs underlying prices and RN probabilities. We could in principle pursue a strict
mapping from Section 2 to the current case, by assuming a setting in which all individual traders in
the economy have common beliefs satisfying RE with respect to the return state. The assumptions
required to generate such an equilibrium are well studied in the literature on information and asset

16Since Pricet = Et[Mt,TPayoffT ] for any asset, R f
t,T = Et[Mt,T ]

−1, where R f
t,T is the gross risk-free rate corresponding

to an asset with payoff 1 at T. One can thus rewrite Pricet = E∗t [PayoffT ]/R f
t,T , so P∗ incorporates the risk adjustment

needed to discount T-payoffs at the risk-free rate from t to T. This definition of P∗ is sometimes referred to as the
T-forward measure (e.g., Jamshidian, 1989, Qin and Linetsky, 2017).

17As can be seen from the result, K need not coincide with Vm
0 × Θ to back out P∗t (Rm

T = θj), as strikes at (near)
Vm

0 θj−1, Vm
0 θj, and Vm

0 θj+1 are sufficient for exact (approximate) measurement.
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prices following Radner (1979) and Milgrom and Stokey (1982).18 But rather than maintaining this
microeconomic focus on testing the rationality of individual beliefs, we prefer an interpretation in
which the “agent” in question is the market as a whole (or alternatively, the marginal trader); such
an interpretation requires no auxiliary assumptions, and our resultant tests are informative about
the efficiency of market valuations. We thus cannot and do not seek to rule out explanations for our
empirical results based on belief heterogeneity, where all individual traders begin with different
priors (about which they agree to disagree) and update rationally, but where the identity of the
marginal trader changes with the wealth distribution (as, e.g., in Martin and Papadimitriou, 2021).

We therefore assume prices correspond to valuations for an agent (“the market”) who, at
the beginning of each period, observes a signal vector st ∈ S drawn from the distribution
DGP(st | θ, Ht−1) = Pt−1(st|θ), where θ is the return state realized at T and Ht = σ(sτ, 0 ⩽ τ ⩽ t) is
the Borel σ-algebra representing the history of signal realizations. The agent’s subjective belief dis-
tribution over return states is denoted by Πt,T = {πt(Rm

T = θ)}θ∈Θ, where πt(Rm
T = θ) ⩾ 0 ∀θ ∈ Θ

and ∑θ∈Θ πt(Rm
T = θ) = 1. More generally, for any random variable Y(ω), the agent attaches

subjective probability πt(Y = y) to the outcome Y = y. We generalize Assumption 1 as:

ASSUMPTION 1′ (RE). For any random variable Y, beliefs satisfy πt(Y = y) = Pt(Y = y) with
probability 1 for all t.

An immediate implication of this assumption, from the law of iterated expectations, is that
beliefs satisfy a martingale condition analogous to Assumption 1, πt(Rm

T = θ) = Et[πt+1(Rm
T = θ)]

for all θ ∈ Θ. As in Section 2, this martingale condition for beliefs over returns is all that is required
for our main results to carry through. The full-RE generalization stated in Assumption 1′, though,
will be useful for streamlining some of the remaining discussion, as it further implies that all
conditional expectations — including over the SDF — are a martingale under the objective measure.

Given Assumption 1′, we can define the RN belief distribution without explicitly restricting
the agent’s utility or constraint set by applying the same change of measure as in (20), using
the general SDF Mt,T. This yields the RN belief-distribution Π∗t,T = {π∗t (Rm

T = θ)}θ∈Θ such that

π∗t (Rm
T = θ) =

Et[Mt,T | Rm
T =θ]

Et[Mt,T ]
πt(Rm

T = θ) as in (21), and thus (22) tells us that option prices reveal
the agent’s RN beliefs as given here.

Localization: Conditional Beliefs, SDF Ratio, and Excess Movement

To align with the analysis in Section 2, we consider the behavior of conditional RN beliefs over
adjacent pairs of return states. That is, rather than directly considering the full distribution Π∗t,T, we
instead consider restrictions on the behavior of the individual entries in {π̃∗t,j}j=1,...,J−1, defined by

π̃∗t,j ≡ π∗t (Rm
T = θj | Rm

T ∈ {θj, θj+1}) =
π∗t (Rm

T = θj)

π∗t (Rm
T = θj) + π∗t (Rm

T = θj+1)
, (23)

18Complete markets and a common-prior assumption, for example, are sufficient: prices in general reveal information
(including private signals) in a rational expectations equilibrium, giving common posteriors. Results under alternative
conditions have also been studied extensively (to take one example, see Blume, Coury, and Easley, 2006).
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for π∗t (Rm
T = θj) + π∗t (Rm

T = θj+1) > 0. In words, π̃∗t,j is the RN belief that return state θj will be
realized, conditional on either θj or θj+1. This binary localization will be useful for two reasons: (i) it
will allow us to apply results from the two-state setting of Section 2, and (ii) the main identifying
assumption used to derive our tests is less restrictive than it would be without such a transformation
(as discussed in Section 3.2 below). Conditional physical beliefs π̃t,j are defined analogously, and
the expectation under the conditional physical measure is Ẽt[ · ] ≡ Et[ · | Rm

T ∈ {sj, sj+1}].
In this context, the analogue to ϕt as defined in (6) is

ϕt,j ≡
Et[Mt,T | Rm

T = θj]

Et[Mt,T | Rm
T = θj+1]

, (24)

which encodes the slope of the SDF across the adjacent return states θj, θj+1. In a representative-
agent economy with consumption Ct, time-separable utility, and time discount factor β, the SDF is
Mt,T = βT−tU′(CT)/U′(Ct), and thus ϕt,j = Et[U′(CT) | Rm

T = θj]/Et[U′(CT) | Rm
T = θj+1], similar

to the marginal rate of substitution in (7). But the representation in (24) is general and does not
require a representative-agent structure (though we make periodic reference to such an economy
for interpretation). Return state θj corresponds to state 1 (vs. state 0 for θj+1) in Section 2, which
motivates our use of the index j to refer to variables conditioned on the pair (θj, θj+1). We maintain
the convention of labeling θj as the “bad” (i.e., low) return state, so that Assumption 2 becomes:

ASSUMPTION 2′ (Labeling of Return States). ϕt,j ⩾ 1 with probability 1 for all t, j, where the set of
return states Θ is ordered such that θ1 < θ2 < · · · < θJ .

Using (23)–(24), we can write the RN odds ratio as
π̃∗t,j

1−π̃∗t,j
= ϕt,j

π̃t,j
1−π̃t,j

, from which it is clear

that (9) and (10) hold in this context for π̃∗t,j, π̃t,j, and ϕt,j. Given the resolving RN belief stream
π∗j = [π̃∗0,j, . . . , π̃∗T,j], RN belief movement m∗j , RN initial uncertainty u∗0,j, and RN excess movement
X∗j are as defined in (1)–(3), with π̃∗t,j in place of πt. We commonly suppress the dependence on j
(writing, e.g., X∗) when considering an arbitrary state pair.

3.2 Restriction on the SDF

We now confront the joint hypothesis problem, restating the main assumption (Assumption 3) we
make alongside the maintained hypothesis of RE (Assumption 1). While the usefulness of this
assumption was described briefly in Section 2, discussing it in this context will clarify why it is
appealing economically: while it does impose a restriction on the SDF, the restriction is sufficiently
general to allow for identification in a broad class of models. First, restating the assumption:

ASSUMPTION 3′ (Constant SDF Ratio, or Conditional Transition Independence). We say the SDF
satisfies conditional transition independence (CTI) for the return-state pair (θj, θj+1) if ϕt,j is constant
with probability 1 for all t. We assume CTI is satisfied for all interior state pairs, j = 2, 3, . . . , J − 2.

REMARKS:

1. As in Section 2, this assumption requires that changes in the RN odds ratio arise from changes
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in the subjective belief π̃t,j rather than changes in the expected relative severity of the adjacent
return states θj and θj+1.

2. We exclude the extreme state pairs (θ1, θ2) and (θJ−1, θJ ) from the constant-ϕ requirement. This
will be useful theoretically: thinking of θ1 and θJ as tail return states, we are allowing for time-
varying disaster (or positive-jump) severity.19 This accordingly does not require that all changes
in the underlying RN belief distribution arise from changes in subjective beliefs πt(Rm

T = θj):
there may be simultaneous time variation in the values in the numerator and denominator
in (24), and the value Et[Mt,T] need not be constant.

3. The assumption corresponds to a notion of transition or path independence because it implies
that the realization of Mt,T in return state θj, relative to θj+1, depend in expectation only on the
return state pair and not on the path of any variables realized between t and T. This intuition is
formalized in Lemma A.1, and it motivates the CTI label we use to reference it.20

4. If, analogous to the case in Section 2, a representative agent’s utility depends only on the maturity
value of the market index, then ϕt,j is constant.21 But the assumption holds in more general cases
as well. For example, permanent shocks to the SDF that raise Mt,T in all states are admissible
under the assumption. Given that permanent shocks to the SDF are empirically much more
important for SDF variation than transitory shocks (Alvarez and Jermann, 2005), the assumption
appears reasonable to a first order. (In addition, some transitory shocks are also admissible; see
the first two examples below.)

We now turn to a set of examples to illustration the restriction concretely.

EXAMPLE 1. Assume an economy with a one-dimensional state variable At : Ω → R (e.g., pro-
ductivity, consumption, volatility), with dVm

t /dAt > 0. This process may be non-stationary but is
assumed to satisfy the Markov property. Assume further that there exists a representative agent
with time-separable utility over the consumption process {Ct(At)} and that the market index pays
dividends {Dt(At)}, where these are arbitrary but yield a stationary price-dividend ratio. Then
CTI holds for any two adjacent return states. If, in addition, consumption or consumption growth
is i.i.d. over t, then CTI holds as well if the agent instead has Epstein–Zin recursive utility.

While the assumption of a scalar Markov forcing process in this example is restrictive, it
nonetheless encompasses some simple leading cases that are useful for intuition. For example, with
log consumption as the state variable (At = ct ≡ log(Ct)), we could have ct = g + ρct−1 + h(ct−1)εt

where εt is i.i.d. with arbitrary distribution. This example allows for time variation in discount
rates and risk premia (see Appendix B.1), and it also illustrates that both temporary and permanent

19Empirically, return states will be defined as narrow intervals for the index return with the exception of θ1 and θJ ,
which contain the left and right tails of the distribution, respectively; it is likely that, e.g., E[Mt,T | Rm

T ⩽ −20%] changes
over time as the distribution of returns conditional on Rm

T ⩽ −20% changes.
20“Conditional” is used to underscore that it requires only constancy of the ratio of conditional expectations of the

SDF, rather than requiring deterministic state-contingent SDF realizations (as in the transition independence assumptions
used by, among others, Ross, 2015, which are thus more restrictive). Borovička, Hansen, and Scheinkman (2016) show
that Ross’s assumptions rule out permanent shocks to the SDF, while ours does not.

21This holds more generally as long as there is some agent whose indirect utility can be written as a function only of
the terminal index value (e.g., an investor retiring at date T with savings fully invested in the market).
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shocks to the SDF are admissible in principle.22 The same is true of the following example, which
considers a well-known (and more fully specified) model featuring time-varying risk premia
and permanent SDF shocks (see Bakshi and Chabi-Yo, 2012), and which has been advanced as a
rationalization of the excess-volatility puzzle.

EXAMPLE 2. Consider the variable rare-disasters model of Gabaix (2012), described fully in Ap-
pendix B.3. Given any market-index option horizon T and any (small) positive value δ, there exists
a return state θ such that for all θj ⩾ θ, the conditional probability of having realized at least one
disaster over the life of the option is negligible: P0

(
∑T

t=1 1{disastert} > 0
∣∣ Rm

T ⩾ θ
)
< δ. For all

θj ⩾ θ, CTI holds for the state pair (θj, θj+1) up to a negligible error, as ϕt,j = ϕj + ηt for ϕj constant
and ηt = op(1) as δ→ 0.

This result implies that for an economy described by this model, we need only focus attention on
RN beliefs across return states (θj, θj+1) for which there is negligible probability of having realized
a disaster conditional on reaching θj. This helps illustrate the use of the localization provided by
considering conditional beliefs, and this insight guides our empirical analysis in Section 5.

Finally, our last example helps illustrate the types of settings in which CTI does not hold.

EXAMPLE 3. Consider the external habit-formation model of Campbell and Cochrane (1999),
described fully in Appendix B.4. Under the assumptions stated there, CTI fails to hold for all j.

With habit formation, the path of consumption always matters in a manner not fully accounted
for by conditioning on the return state. We note, though, that nothing about our theoretical
framework requires considering beliefs over return states: all our results would apply for beliefs
over elementary states in Ω, or, in the Campbell–Cochrane case, over the joint realization of the
terminal consumption and surplus consumption values. Empirical implementation in this case,
though, is infeasible. We consider return states specifically in our theory because this allows us
to map directly between the theory and data. We later consider the effects of the violation of CTI
implied by the Campbell–Cochrane model in a calibrated simulation study.

3.3 Main Results in the General Setting

Having completed the formal setup and discussion of our main assumption, we turn now to our
main results in this more general asset-pricing setting. The bulk of the work in this case is, it turns
out, in the setup and notation, as all our main results apply with appropriate relabeling:

PROPOSITION 7. Under no arbitrage and Assumptions 1′–3′, for j = 2, 3, . . . , J− 2, Propositions 1–6 and
Corollaries 1–2 continue to hold, with π̃∗t,j replacing π∗t , π̃t,j replacing πt, X∗j replacing X∗, ϕj replacing ϕ,
Ẽ0[·] replacing E[·], and with△j ≡ Ẽ0[X∗j | Rm

T = θj+1]− Ẽ0[X∗j | Rm
T = θj] replacing△.

The main theoretical complication in applying the results in Section 2 to this setting is in proving
that the RN measure, defined in a standard manner in (20), satisfies the property that pathwise

22For example, with CRRA utility and i.i.d. consumption-growth shocks, there are only permanent shocks to marginal
utility; meanwhile, an economy with i.i.d. consumption has purely transitory shocks and a fixed Et[U′T | Rm

T = θj] ∀j.
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probabilities share the same value P̃∗(HT)/P̃(HT) conditional on Rm
T , as in (11). This result —

along with its main implication, that Ẽ∗[X∗j | Rm
T = θj] = Ẽ[X∗j | Rm

T = θj], as after (14) — is proven
to hold in Appendix A.2 for a measure that is observationally equivalent to the RN measure, which
is sufficient for our purposes.

The economic intuition for these results is largely identical to the intuition discussed in Section 2.
Two additional points, though, are worth discussing in this setting. First, in the case of a bound
violation Ẽ[X∗j ] > π̃∗0,j

2, the conclusion would not necessarily be that there are violations of the
no-arbitrage condition; instead, there would be no rational-expectations SDF process satisfying
CTI capable of generating the observed excess movement in RN beliefs. The actual SDF process
translating between objective probabilities and RN beliefs would in this case include a market-level
belief distortion that induces excess volatility.23

Second, while the results above are convenient to express in terms of the SDF slope ϕj given
that this allows for closed-form solutions that can be applied across a wide range of structural
models regardless of the origin of the SDF, the results also admit an interpretation in terms of the
approximate required risk-aversion value for a fictitious representative agent with utility over the
terminal value of the market index. Analogous to equation (8) in Section 2, we have the following
result. To avoid repetition, for the remaining results we will continue to assume no arbitrage and
that Assumptions 1′–3′ hold for j = 2, 3, . . . , J − 2, unless stated otherwise.

PROPOSITION 8. Assume additionally that there is a representative agent with (indirect) utility over
time-T wealth, with wealth equal to the market index value, and denote Vm

j ≡ Vm
0 θj. Then local relative risk

aversion γj ≡ −Vm
j U′′(Vm

j )/U′(Vm
j ) is given to a first order around return state θj by

γj =
ϕj − 1

(Vm
j+1 −Vm

j )/Vm
j

. (25)

As in Section 2, γj is proportional to ϕj − 1, as this gives the percent decrease in marginal utility
in moving from low-return state θj to high-return state θj+1. To calculate relative risk aversion, this
change in marginal utility must be normalized by the percent wealth increase (Vm

j+1 −Vm
j )/Vm

j in
moving from θj to θj+1, which is also equal to the percent return deviation (θj+1 − θj)/θj between
the two states. If, for example, θj = 1, θj+1 = 1.05, then a value ϕj = 1.5 implies γj = 10.

4. Theoretical Results on Robustness and Empirical Implementation

Building on Section 3, we now turn to a set of additional robustness results. First, to obtain a
direct mapping from theory to data, we consider the observability of the statistics in our bounds
(Section 4.1) and how to account for possible mismeasurement or market microstructure noise
(Section 4.2). We then extend our analysis to consider cases in which CTI is violated (Section 4.3).

23Such a finding would be close in spirit to a violation of the “good-deal bounds” of Cochrane and Saá-Requejo
(2000): even if the no-arbitrage condition holds, there would be an investment strategy with a large Sharpe ratio under
the objective measure — in particular, betting on mean reversion in RN beliefs — that is nonetheless not traded away.
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4.1 Aggregating Over Belief Streams

The discussion to this point has taken as given that all the values in our bounds for expected excess
RN movement are observable aside from ϕj. But this has elided one issue: the bounds are stated
with respect to date-0 expectations conditional on the RN prior, but we observe only one draw X∗j
per expiration date rather than the ex-ante expectation of this statistic for a given π̃∗0,j. We now show
how one can aggregate over multiple RN belief streams — i.e., over multiple option expiration
dates — so as to implement the bounds empirically. In doing so, we allow ϕj to change as well
across belief streams, though we continue to assume that it is fixed within a given stream.24

To do so, we must further generalize the environment slightly. We now assume that we can
observe index option prices for some set of N option expiration dates T ≡ {Ti}i=1,...,N , so that
belief streams (and their DGPs) are indexed by i. We accordingly add the subscript i to refer to
objects corresponding to expiration date Ti: ϕi,j is the SDF ratio for date Ti and state pair (θj, θj+1),
RN beliefs are π̃∗t,i,j, and RN excess movement is X∗i,j. To simplify notation for now, in order to focus
specifically on the issue of aggregation for an arbitrary state pair, we maintain the i subscripts but
otherwise revert to the notation from Section 2 (e.g., using X∗i in place of X∗i,j).

Due to Jensen’s inequality, we cannot simply insert E[ϕi] in place of ϕi or E[π∗0,i] in place of π∗0,i

(where these expectations are implicitly taken over DGPs i) when taking the expectation of both
sides of the results in Propositions 2 and 3 (or their counterparts in Proposition 7). However, we
can show that the following modified generalizations do hold:

PROPOSITION 9. Define ϕ ≡ maxπ∗0,i
E[ϕi |π∗0,i]. We have:

(i) GENERALIZATION OF PROPOSITION 2: If Cov(π0,i,△i) = 0, and π∗0,i is constant across i (i.e.,
fixing a given π∗0,i), then over all streams,

E[X∗i ] ⩽ max
{

0,
(

π∗0,i −
π∗0,i

E[ϕi] + (1−E[ϕi])π∗0,i

)
E[△i]

}
. (26)

(ii) GENERALIZATION OF PROPOSITION 3: Over all streams, we have without any additional assump-
tions that

E[X∗i ] ⩽ E

[(
π∗0,i −

π∗0,i

ϕ + (1− ϕ)π∗0,i

)
π∗0,i

]
, (27)

or, fixing a given π∗0,i, E[X∗i ] ⩽
(

π∗0,i −
π∗0,i

E[ϕi ]+(1−E[ϕi ])π
∗
0,i

)
π∗0,i.

(iii) GENERALIZATION OF COROLLARY 1: Over all streams, without any additional assumptions,

E[X∗i ] ⩽ E
[
π∗0,i

2
]
.

24While it might be palatable to assume that ϕj is constant within a belief stream (over the course of months), it
becomes more challenging to assume that ϕj is constant across belief streams (over the course of years).
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(iv) GENERALIZATION OF COROLLARY 2: If△i ⩽ 0 for all i, then over all streams,

E[X∗i ] ⩽ 0.

First consider part (ii), which generalizes Proposition 3. This result effectively applies Jensen’s
inequality for one of several variables, using the fact that the second partial derivative of the bound
with respect to ϕi,j is negative. The bound is accordingly even more conservative than the original
bound as stated for a single stream, as it effectively accounts for the worst-case possible relationship
between RN priors and ϕi. We also state the bound fixing a given value of π∗0,i, because in some of
our empirical results we report E[X∗] across streams conditional on a particular value of this RN
prior.25 This bound is quite conservative as well; for example, if π∗0,i = 0.5 for i = 1, 2, with ϕ1 = 1
and ϕ2 = 99, then under the maximizing DGP for E[X∗] (from Proposition 5), the bound would
lead us to infer E[ϕi] ⩾ 2.9, when in fact E[ϕi] = 50.

Taking ϕ→ ∞ in (27) generates the result in part (iii), which indicates that Corollary 1 does not
require any modification in taking unconditional expectations over streams. Similarly, Corollary 2
does not depend on ϕ and therefore is robust to ϕ changing across streams as long as△i ⩽ 0.

Finally, returning to part (i), the analogue to Proposition 2 requires an additional assumption.
The original formula includes the product of π∗0 − π0 and △. Therefore, when averaging over
DGPs, the covariance between π0,i and△i across DGPs affects the bounds (which otherwise follow
the logic for part (ii)). For simplicity, the proposition assumes that this covariance is zero (though
one could adjust this bound under different assumed values for the covariance). To understand
this assumption, recall from Section 2.3 that, fixing π∗0 ,△ is determined by the asymmetry of the
likelihood ratios of the upward and downward signals in the DGP. Assuming zero covariance is
thus equivalent to assuming no relationship between the asymmetry of the DGP and ϕ. Although
we have no reason to presume a particular relationship between the DGP asymmetry and ϕ, our
main empirical results apply the more conservative bound in part (ii), which has the benefit of
requiring no further assumptions. Part (i) also holds only for a fixed π∗0,i; this is sufficient for our
purposes, as our empirical results for this less-conservative bound will generally be conditional on
a given π∗0,i, in particular in Figure 2.

The bounds stated in the proposition are now empirically implementable: in particular, we can
measure a sample counterpart of the average excess-movement statistic on the left side and the RN
priors on the right side, and the minimum ϕ that solves the bound in (27) is then a conservative
estimate of the maximal conditional-mean SDF slope for the return-state pair in question.26 If no
such ϕ solves the bound, then the bound in part (iii) is violated. Even simpler, the bound in part (iv)
only requires comparing E[X∗i ] to zero.

The results and discussion above simplified notation by dropping the state-pair subscript j, but
the values ϕj are likely to vary over j. The same argument used in Proposition 9 to take expectations

25These constant-π∗0,i bounds can equivalently be read as bounds for the conditional expectation E[X∗i |π
∗
0,i] given

E[ϕi |π∗0,i]. We write them in the simpler format presented above (“fixing a given π∗0,i”) only to limit notational complexity.
26Further, if E[ϕi |π∗0,i] = E[ϕi], as might be expected to hold approximately, then ϕ = E[ϕi].
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over i, though, can also be applied to take expectations over j, thereby obtaining a single estimate
ϕ aggregated over both streams and return states (for all states meeting CTI) if desired.

4.2 Robustness to Measurement Error

The final issue we confront in making our bounds empirically implementable is the possibility of
mismeasurement or microstructure noise in RN beliefs. Our bounds provide a minimum value of
ϕ required to rationalize the observed variation in RN beliefs; if some of this variation is in fact
arising due to noise, then we may overestimate this required ϕ. A simple correction can be applied
to our bounds to account for this issue, as shown in the following result. Given that noise arises
period-by-period, we first define one-period analogues for our statistics: denote RN movement
between t and t + 1 by m∗t,t+1 ≡ (π∗t − π∗t+1)

2, RN uncertainty at t by u∗t ≡ (1− π∗t+1)π
∗
t , and RN

excess movement between t and t + 1 as X∗t,t+1 ≡ m∗t,t+1 − (u∗t − u∗t+1) (where we now omit i and j
subscripts for clarity). Similar to AR (Section II.E), we then have the following:

PROPOSITION 10. Assume that the observed π̂∗t is measured with error with respect to the true π∗t :

π̂∗t = π∗t + ϵt, (28)

where E[ϵt] = 0, E[ϵt ϵt+1] = 0, and E[ϵt+k π∗t+k′ ] = 0 for k, k′ ∈ {0, 1}. Denoting the observed
one-period RN excess movement statistic by X̂∗t,t+1, its relation to the true value X∗t,t+1 in expectation is

E
[

X̂∗t,t+1 − X∗t,t+1

]
= 2Var(ϵt).

We can thus subtract 2Var(ϵt,j) from each period’s observed excess-movement statistic to obtain
an unbiased true excess movement value, which can then be used in our bounds after summing over
the full stream. If measurement error is positively correlated over time rather than uncorrelated,
this will reduce the upward bias in measured X∗.27 We discuss estimation of Var(ϵt) in Section 5.

4.3 Robustness to Violations of CTI

Proposition 10 allows for a correction with respect to empirical misspecification; we turn now to
a result that speaks to the possibility of theoretical misspecification in the form of violations of
CTI. While this assumption of a constant ϕ within belief streams is met in some commonly used
theoretical frameworks, it is a knife-edge restriction that is unlikely to be met exactly. In this section,
we show theoretically that within a large class of environments, our main results continue to hold
even with a time-varying ϕt. We also consider a set of simulations of other environments and find
that realistic violations of CTI appear unlikely to affect our results more than minimally.

The fact that time-varying ϕt does not produce significant excess movement might seem

27One might worry about negatively correlated measurement error in the case of bid-ask bounce, but as we will see in
our empirical estimation, the autocorrelation values for estimated microstructure noise have long died out at a one-day
lag, and we use end-of-day data to construct our statistics.
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unintuitive: one might worry that even small oscillations in ϕt could cause unbounded movement
in RN beliefs and dramatically invalidate our conclusions. For example, suppose that πt is constant
at .5 and ϕt changes back and forth from 1 to 1.5 repeatedly. Without any movement in physical
beliefs, π∗0 will vary repeatedly between .5 and .6, leading to unbounded movement as T → ∞.
Crucially, however, this argument overlooks a core insight of the paper: given rational expectations,
ϕt cannot undergo such repeated oscillation if its variance is bounded, because it is itself a function
of martingale conditional expectations.

More formally, taking ϕt as defined in (24) (again suppressing i, j subscripts for clarity), write
ϕt = ϕ

(1)
t /ϕ

(0)
t , where ϕ

(1)
t ≡ Et[Mt,T | Rm

T = θj] is the numerator and ϕ
(0)
t ≡ Et[Mt,T | Rm

T = θj+1]

is the denominator of (24). We now drop Assumption 3′ (CTI) and let ϕt vary, but Assumption 1′

implies that ϕ
(ℓ)
t = Et[ϕ

(ℓ)
t+1] for ℓ = 0, 1. In spite of this restriction, though, allowing ϕt to vary

meaningfully complicates the situation, as RN beliefs become a non-linear function of time-varying
subjective beliefs and conditional SDF expectations (see, e.g., (9)), all of which have unrestricted
DGPs. Surprisingly, though, our bounds still hold as stated over a large class of such DGPs:

PROPOSITION 11. Assume no arbitrage and Assumptions 1′–2′ continue to hold, but in place of Assump-
tion 3′, assume only that Var(ϕt) < ∞. If ϕt evolves as a martingale or supermartingale (Et[ϕt+1] ⩽ ϕt),
then the bounds in Proposition 3 and Corollary 1 (and their counterparts in Propositions 7 and 9) continue
to apply, with ϕ0 replacing ϕ.

The proof of Proposition 11 demonstrates that the variation in π∗0 arising when ϕt is a non-
degenerate supermartingale always strictly lowers the expected excess belief movement period by
period, rendering the main bound in (19) even more conservative.28 Whether ϕt is a supermartingale
depends on the sign of Covt(ϕt+1, ϕ

(0)
t+1): from the definition of this covariance, write

Et[ϕt+1] = ϕt −
Covt(ϕt+1, ϕ

(0)
t+1)

ϕ
(0)
t+1

,

so Et[ϕt+1] ⩽ ϕt if and only if Covt(ϕt+1, ϕ
(0)
t+1) = Covt(ϕt+1, Et[Mt,T | Rm

T = θj+1]) ⩾ 0. Thinking
of Mt,T as proportional to U′(CT) as in Section 2, this requires that expected terminal risk aversion
(encoded in ϕt+1, as in Proposition 8) be positively correlated with expected marginal utility
(MU) in the high-consumption state. This is an intuitively reasonable restriction, as it implies
bad news (in the form of higher expected MU) generally arrives at the same time for both states,
with the expected low-consumption MU increasing more than its high-consumption counterpart.
The converse (Covt(ϕt+1, ϕ

(0)
t+1) < 0), by contrast, requires risk aversion to increase in general in

response to good news about MU in the good state.29

If one wishes to consider such a setting in which ϕt does not evolve as a supermartingale,
though, it is difficult to make analytical statements given the complexity of such a setting. Instead,

28Further, given the continuity of our bounds, if ϕt is a submartingale but close to a martingale, then our results also
hold up to a small additive error.

29For further discussion of such a restriction in a different context, see Lazarus (2019).

27



we numerically simulate a set of binary DGPs featuring strict submartingale ϕt processes alongside
learning about the return state. Results for this exercise are reported in Appendix B.5. Even in
a parameterization with extremely high ϕ uncertainty — in which ϕ can vary between 1 and 9,
corresponding to γ varying between 0 and 160 — E[X∗] rises by at most 0.015, and it breaches the
bound for ϕ = 3 (equal to ϕ0) less than one percent of the time in such DGPs.

Finally, to consider how time-varying ϕt affects our results in a less abstract environment, we
simulate the Campbell and Cochrane (1999) habit-formation model, which violates CTI, using the
baseline calibration proposed by Campbell and Cochrane. We find in this case that ϕt is closely
approximated by a martingale and therefore does not generate additional excess movement. Our
bounds thus continue to hold and continue to be conservative. See Appendix B.6 for details.

Given our theoretical and numerical results, we conclude that allowing ϕt to change within a
stream is unlikely to impact our results and bounds meaningfully. That said, we can imagine that
there exists a set of perverse distributions with negatively correlated values of ϕ

(1)
t+1 and ϕ

(0)
t+1 which,

combined with near-worst-case DGPs for information about the return state, might further increase
excess movement. Our strong suspicion based on the above results, though, is that any realistic
DGP will have a small impact.

5. Empirical Estimation and Results

Our theory leads to bounds on the variation in risk-neutral beliefs over the value of the market
index, which we proceed now to measure in the data. We begin by describing how we map from
theory to data (Section 5.1) and how we estimate microstructure noise (Section 5.2), and then we
summarize the data (Section 5.3) before turning to our empirical results (Section 5.4). We conclude
with a brief discussion of the reduced-form correlates of RN excess movement (Section 5.5).

5.1 Data and Risk-Neutral Distribution

Data. Our main source for S&P 500 index options data is the OptionMetrics database, which
provides end-of-day prices for European call and put options for all strike prices and option
expiration dates traded on the Chicago Board Options Exchange (CBOE). The sample runs from
January 1996 through December 2018. We augment this data with intraday price quotes obtained
directly from the CBOE for a subset of trading days in our sample, in order to account for market
microstructure noise; this additional data is described further in Section 5.2.

We apply standard filters to remove outliers and options with poor trading liquidity from the
OptionMetrics data, with details provided in Appendix B.7.30 Two aspects of this data cleaning bear
mention here. First, while our bounds apply for belief streams of arbitrary length, we follow past
literature (e.g., Christoffersen, Heston, and Jacobs, 2013; Martin, 2017) and consider options with

30The raw dataset contains 12.4 million option prices; the filtered data, which are then used to measure the RN
distribution, contain 4.3 million option prices corresponding to 5,537 trading dates and 991 option expiration dates. The
majority of the difference is attributable to our use of only out-of-the-money call and put strikes.

28



maturity of at most one year. Second, after transforming the filtered prices to RN beliefs (described
below), we keep only conditional RN belief observations π̃∗t,i,j for which the non-conditional beliefs
satisfy π∗t (Rm

Ti
= θj) + π∗t (Rm

Ti
= θj+1) ⩾ 5%, as conditional beliefs π̃∗t,i,j are likely to be particularly

susceptible to mismeasurement when the underlying beliefs are close to zero.

Empirical return space. For our baseline estimation, we define the return state space Θ in terms
of log excess return intervals:

Θ = R f
0i ,Ti

exp
{
(−∞,−0.2], (−0.2,−0.15], (−0.15,−0.1], . . . , (0.1, 0.15], (0.15, 0.2], (0.2, ∞)

}
,

where R f
0i ,Ti

is the gross risk-free rate from 0i to Ti.31 In words, return state 1 is realized if the
log excess S&P return from 0i to Ti is less than -0.2 ≈ -20%; state 2 is realized if the excess return
is in the five-percentage-point bin between -0.2 and -0.15; and so on. Abusing notation slightly,
we typically refer to states by the right end of their associated log excess-return bin: θ1 = −0.2,
θ2 = −0.15, . . ., θ9 = 0.2, θ10 = ∞. Following the labeling convention in Assumption 2′, we define
the binary conditional beliefs to be used in our tests as π̃∗t,i,j ≡ π∗t (Rm

Ti
= θj | Rm

Ti
∈ {θj, θj+1}), so π̃∗t,i,j

corresponds to the probability that the low state j (e.g., θ2 = −15%) will be realized, conditional on
j or j + 1 being realized (in this case, conditional on an excess return between -20% and -10%). We
again use of the right end of the return bin for j as shorthand in referencing the conditional belief
and excess movement for state pair (θj, θj+1), corresponding to the midpoint of the two return bins.

Our use of five-percentage-point ranges for return states reflects a desire to balance (i) mea-
surement accuracy for the RN beliefs and (ii) plausibility of our assumption of constant ϕj (CTI).
Wider bins lead to greater measurement accuracy, but make it less likely that there are no changes
in the expected SDF realization conditional on a given return state θj relative to θj+1. We report
empirical estimates below for all adjacent state pairs for completeness, but as discussed in Remark 2
after Assumption 3′, it is unlikely that CTI is met for the extreme state pairs (θ1 relative to θ2, and
θ9 = θJ−1 vs. θ10 = θJ ). Our focus is thus on the interior state pairs with low-return states θ2, . . . , θ8;
in particular, when we aggregate our state-by-state estimates of ϕj required to rationalize the data
into a single average value ϕ across states, we use only these interior states.32

Risk-neutral beliefs. To extract a risk-neutral distribution over the return states in Θ from the
observed option cross-sections, we use standard tools from the option-pricing literature. Our
starting point is equation (22), which tells us how to map from option prices to RN beliefs. We use
this to construct a smooth RN distribution for returns, largely following the technique proposed
by Malz (2014); Appendix B.7 provides a detailed description. With the RN beliefs π∗t,i,j in hand,
we can then calculate conditional beliefs straightforwardly as π̃∗t,i,j = π∗t,i,j/(π

∗
t,i,j + π∗t,i,j+1). We

then use the resulting conditional RN belief streams to calculate the excess movement statistics X∗i,j

31We use excess returns for convenience of interpretation. Following van Binsbergen, Diamond, and Grotteria (2022),
we measure R f

0i ,Ti
directly from the options prices by applying the put-call parity relationship; again see Appendix B.7.

32This yields an additional de facto data filter, as we are effectively considering only option strikes with moneyness
between 0.8 and 1.2 (following, e.g., Constantinides, Jackwerth, and Savov, 2013).
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needed to implement our bounds. Our general results in Section 3 restrict the expectation of X∗i,j
conditional on state θj or θj+1 being realized — in particular, Propositions 7 and 9 give bounds for
Ẽ[X∗i,j] — and we accordingly keep only observations for which π̃∗Ti ,i,j

= 0 or 1 ex post; for example,
if the total excess return on the market over the life of option contract i is -14%, then we keep only
X∗i,2 (θ2 ranges from -20% to -15% return, so π̃∗Ti ,i,2

= 0) and X∗i,3 (π̃∗Ti ,i,3
= 1).

Simplifying notation. To this point, we have taken care in this section to use detailed notation to
clarify that our conditional statistics (π̃∗t,i,j, X∗i,j) depend on the contract i and state pair j. Having
clarified this, though, in what follows we generally suppress the cumbersome use of i, j, and ·̃, and
simply write π∗t in place of π̃∗t,i,j, X∗ for X∗i,j, and so on (as, e.g., in Section 4.2). Similarly, we often
drop the “conditional” qualifier when referring to conditional RN belief statistics.

5.2 Noise Estimation

As in Proposition 10, we also wish to account for measurement error stemming from possible
microstructure noise in our estimation.33 That result shows that unlike in the classical errors-in-
variables regression model (which leads to attenuation), measurement error in our case can increase
the observed variation X∗ and thereby lead to an upward bias in the estimated SDF slope needed
to rationalize the data. With noise described by π̂∗t = π∗t + ϵt as in (28), Proposition 10 tells us that
we must estimate Var(ϵt) in order to eliminate this bias. We turn to a sample of high-frequency
option prices to estimate this noise variance in our RN beliefs data.

Specifically, we obtain minute-by-minute price quotes on S&P index options for a subset of
trading days directly from the CBOE. For each available option expiration date on each such
trading day, we recalculate the RN belief distribution at the end of each minute using exactly the
same procedure as described in Section 5.1. As this requires calculating 390 sets of RN beliefs for
each trading day (9:30 AM–4:00 PM), this procedure would be computationally infeasible if applied
to our entire sample of 5,537 trading days (each of which has an average of 11 available option
expiration dates, generating 60,543 (t, T) combinations). We accordingly select 30 trading days at
random from within our available sample period, and use the minute-by-minute quotes to calculate
intraday RN distributions for these days.34

We then use tools from the literature on microstructure noise to estimate Var(ϵt) using these
intraday data. The basic intuition for this estimation strategy — as described, for example, by
Zhang, Mykland, and Aït-Sahalia (2005) — is best understood by assuming temporarily that the
noise ϵt in (28) is i.i.d., while the true π∗t changes smoothly over time (i.e., ηt+h ≡ π∗t+h − π∗t → 0
and Var(ηt+h) → 0 as h → 0, as would be the case for an Itô process). Imagine calculating
movement using the observed beliefs, (π̂∗t+h − π̂∗t )

2, with less and less time h between consecutive
observations. As one decreases h to 0, the noise swamps the true variation: since (π∗t+h − π∗t )

2 → 0,

33For example, transient demand pressure in the option market (Bollen and Whaley, 2004) may cause variation in
observed RN beliefs unrelated to the underlying index dynamics.

34This yields an intraday data set roughly twice as large as the original one, as 30× 390× 11 ≈ 130,000.
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we have E[(π̂∗t+h − π̂∗t )
2] → 2Var(ϵt). Thus in this simple example, Var(ϵt) can be estimated by

calculating the quadratic variation in RN beliefs sampled at a high frequency.

In practice, one would expect the data to contain both non-i.i.d. noise ϵt and jumps in the true
process π∗t , and it is desirable to use a noise estimation method that is robust to these features. One
such estimator for Var(ϵt) is the ReMeDI (“Realized moMents of Disjoint Increments”) estimator
proposed by Li and Linton (2021). This estimator effectively takes the average product of disjoint
increments of the observed process, (π̂∗t − π̂∗t−h)(π̂

∗
t − π̂∗t+h).

35 The idea is that even if the true
process features jumps so that E[(π∗t+h − π∗t )

2] > 0, its increments over non-overlapping windows
are still approximately uncorrelated. Li and Linton (2021) show that this estimator is consistent for
Var(ϵt) under general semimartingale processes for π∗t (i.e., π∗t can feature jumps but must be of
bounded variation), and for quite general dependent noise processes as long as the autocovariances
for ϵt decay to 0 sufficiently quickly relative to the increment width (see their Theorem 4.1 for
precise conditions).36 It also performs well in simulations and empirical applications.

Using this ReMeDI estimator on our minute-by-minute data, we estimate Var(ϵt) = Var(ϵt,i,j)

separately for each combination of trading day t, expiration date Ti, and return state pair j in our
intraday sample.37 We then match the noise estimates (which are obtained for a subsample of days)
to the observed excess movement observations in our original data; see Appendix B.8 for details
on this procedure. Finally, we subtract 2V̂ar(ϵt,i,j) from X̂∗t,t+1,i,j to obtain a noise-adjusted estimate
of one-day excess movement following Proposition 10, and we sum these noise-adjusted one-day
values over the full stream to obtain noise-adjusted estimates of X∗i,j.

We discuss the magnitude of the noise estimates in the next subsection alongside descriptive
statistics for the excess movement values. The ReMeDI procedure also allows for estimation of
the intraday autocovariances of the noise ϵt. These autocovariances are estimated to be positive
for small lag values, but they die out quickly and are precisely estimated near zero for noise
observations more than an hour apart. This justifies the assumption in Proposition 10 that end-of-
day noise observations are uncorrelated, E[ϵtϵt+1] = 0, as ultimately we care about noise only to
the extent that it affects our excess movement statistics at a daily frequency.

Our main results in Section 5.4 use the noise-adjusted excess movement data. All standard
errors and confidence intervals are based on a bootstrap procedure (detailed in Section 5.4) that
accounts for the sampling uncertainty in the above noise estimation and averaging procedure.

35More formally and specifically, our ReMeDI estimator (following the replication code provided kindly by Li and
Linton) is V̂ar(ϵt) =

1
Nϵ,n

∑
Nϵ,n−kn
i=2kn

(π̂∗ti
− π̂∗ti−2kn

)(π̂∗ti
− π̂∗ti+kn

), where Nϵ,n is the number of observations over a fixed
time span (in our case, one trading day) and kn is a tuning parameter, with kn, Nϵ,n → ∞ and kn/Nϵ,n → 0 as n → ∞.
We select kn for each return state using the algorithm in Section F.1 of the Online Appendix of Li and Linton (2021).

36While jumps induce upward bias in a naïve estimator based on (π̂∗t+h − π̂∗t )
2, positively autocorrelated noise goes

in the other direction. To address this, the ReMeDI estimator uses a window width (kn in footnote 35) that is sufficiently
wide even as one decreases the time h between observations. The second (downward) bias in the naïve estimator seems
predominant in our data: the ReMeDI noise estimates are about 50% higher than the naïve estimates.

37For this exercise, to increase our available observations, we do not condition on the ex post state being θj or θj+1.
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5.3 Excess Movement: Descriptive Statistics and Figures

We first provide summary statistics and plots describing the RN beliefs and excess movement
values observed in our data. Table 2 summarizes the average excess movement values X∗ overall
(across all interior state pairs and expiration dates) and by subsample. Excess movement is difficult
to interpret without some normalization; we should, for example, expect movement to increase
alongside initial uncertainty under Bayesian updating. The first two columns thus divide X∗

by average initial uncertainty u0. As in Augenblick and Rabin (2021, Section II.D), the resulting
normalized statistic can be interpreted as the percent by which average movement exceeds initial
uncertainty and thus uncertainty resolution. (For example, a value of 1 corresponds to 100%
more movement than uncertainty resolution.) These values are quite high in our data: for the
noise-adjusted statistics, there is on average 123% more movement than initial uncertainty. The
splits by bin show that these values decrease for return states in the middle of the distribution. The
beginning of the sample features high but noisy X∗ statistics, but these averages remain high until
the most recent subsample. Finally, higher priors π∗0 correspond with greater excess movement,
which accords with our theoretical bounds.

The next two columns of Table 2 instead normalize X∗ by the average contract length T, so the
resulting statistics can be interpreted as excess movement per day. For a rough understanding of
the actual variation in RN beliefs corresponding to these values, consider a pair (t, t + 1) for which
π∗t+1 = 1− π∗t , so that there is no uncertainty resolution from t to t + 1. One-day excess movement
and movement therefore coincide, so that excess movement is equal to the squared change in beliefs;
for example, the noise-adjusted average of 0.0038 corresponds to a raw change of

√
0.0038 ≈ 0.06

(continuing the example above, π∗t = 0.47, and then π∗t+1 = 0.53). Under this normalization, there
is now no clear pattern for average excess movement across bins, as the more-extreme return states
also tend to have longer contract lengths.38 This pattern is in fact quite consistent in our data:
longer contract lengths tend to coincide with more excess movement, as RN beliefs bounce up and
down over the length of a contract. This general pattern is inconsistent with the null of Bayesian
updating, which tells us that excess movement in subjective beliefs should not depend at all on the
horizon at which uncertainty is resolved. Meanwhile, for the splits by date and by prior, the basic
patterns discussed above are still present under this normalization by T.

Comparing the raw and noise-adjusted values makes clear that despite the substantial excess
movement in the noise-adjusted statistics, noise does represent a meaningful portion (about 1/3) of
the raw X∗ data. The raw and noise-adjusted mean for X∗/T differ by 0.0059− 0.0038 ≈ 0.002, so
V̂ar(ϵt) ≈ 0.002/2 = 0.001. The standard deviation of ϵt is thus roughly 0.03 per day. For the splits
by state, noise variances tend to be lowest for return states near the center of the distribution, as is
intuitive.

Next, Figure 2 provides a visual summary of the X∗ statistics relative to the bounds. The blue
curves describe the raw and noise-adjusted local-average X∗ statistics as one varies the RN prior π∗0 ,

38Recall that an observation for a given state pair is only included conditional on the realized return being in one of
the two states. Longer contracts are likelier to generate greater absolute returns, explaining this positive covariance.
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calculated using all interior state pairs and streams; these curves are the same in both panels. As one
would expect, there is very little excess movement for RN priors near 0 or 1, but excess movement is
positive for intermediate π∗0 values for which there is greater initial uncertainty. We compare these
values to the theoretical bounds under different levels of ϕ (or more precisely, E[ϕi]) for each value
of π∗0 , which are shown in gray. Panel (a) uses the tighter bound from Proposition 9(i), which we
implement by estimating△ using local averages for the conditional expectations E[X∗ | θ, π∗0 ] in (17)
over π∗0 .39 Panel (b) uses the conservative bound from the second inequality in Proposition 9(ii), so
the gray lines in this panel align with the solid bound lines in Figure 1.

Across the two panels, it is evident that the values of X∗ observed in the data exceed both sets
of bounds, other than for high RN priors π∗0 and for large values of ϕ. For panel (a), we estimate
△̂ = 0 for π∗0 ≈ 0.5, △̂ < 0 for π∗0 below this cutoff, and △̂ > 0 above it, as is evident from the
bounds crossing zero at π∗0 ≈ 0.5. As discussed in Section 2.3 (see pages 15–16), this indicates
that the DGP is close to symmetric, with equally informative signals for the two states (θj, θj+1)

on average (and thus roughly equal-sized upward and downward movements of π∗t ). As the
bounds in Proposition 9 apply for each possible π∗0 , the positive point estimates for E[X∗ |π∗0 ]
clearly violate the bounds for π∗0 < 0.5, which are (at most) 0 for all ϕ. And while the empirical
curves are closer to the more-conservative bounds in panel (b), the noise-adjusted estimates still
exceed π∗0

2 (the bound for ϕ = ∞) for π∗0 less than about 2/3.

These figures do not, however, integrate over π∗0 to provide a single statistic summarizing excess
movement relative to the bounds over all streams. More importantly, they do not include any
measures of statistical uncertainty necessary to make inferential statements or conduct hypothesis
tests. To address these two issues, we move on to our main estimation and results.

5.4 Main Results

We turn now to the empirical implementation of our theoretical bounds. Given our sample of
noise-adjusted excess movement statistics and corresponding RN priors, each possible value of
ϕ leads to a residual excess movement value ei(ϕ) = X∗i − bound(π∗0,i, ϕ) for contract i (where
we continue to suppress dependence on state pair j). We calculate two versions of this residual
corresponding to the bound in part (i) and the unconditional bound in part (ii) of Proposition 9
(equations (26) and (27), respectively):

e△i (ϕ) = X∗i −max

{
0,

(
π∗0,i −

π∗0,i

ϕ + (1− ϕ)π∗0,i

)
△̂i

}
,

emain
i (ϕ) = X∗i −

(
π∗0,i −

π∗0,i

ϕ + (1− ϕ)π∗0,i

)
π∗0,i.

(29)

39We slightly modify the formula in Proposition 9(i) for the figure: we use E[X∗i ] ⩽ (π∗0,i −
π∗0,i

E[ϕi ]+(1−E[ϕi ])π∗0,i
)E[△i],

rather than cutting the bounds off at 0, to clarify that △̂ < 0 for π∗0 < 0.5.
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The first version corresponds to the tighter bound from Proposition 2, which requires a smoothed
estimate of△i as calculated for Figure 2. This version accounts for the estimated DGP (through
△̂i) and thus conveys some useful preliminary information, but strictly speaking, part (i) of the
proposition applies only conditional on a given π∗0,i and only under the unverifiable condition that
Cov(π0,i,△i) = 0.40 Thus the second version, which implements the more conservative bound
from Proposition 3 and which applies unconditionally, is the basis for our main set of results. Both
residuals can be directly calculated using our noise-adjusted data for each possible value of ϕ.

We first present sample averages of these residual statistics for a range of values of ϕ, both for
each individual return state pair j and aggregated across all interior state pairs. As these values
have no natural scaling, we present them in the form of t-statistics, te = ei(ϕ)/ŜEe, where ei(ϕ) is
the sample average of residual excess movement ei(ϕ) and ŜEe is its standard error. We calculate
these standard errors using a block bootstrap with a block length of one month, with each block
containing (i) raw excess movement statistics and priors for all contracts expiring in a given month,
and (ii) noise variance estimates for any trading days in our intraday sample that fall in the same
month. For each resampled data set, we use the set of (X∗i , π̃∗0,i, {V̂ar(ϵt,i)}) values to recalculate
noise-adjusted excess movement and residual values ei(ϕ).41 The bootstrap accordingly accounts
for sampling uncertainty in all statistics used to calculate noise-adjusted excess movement and
ei(ϕ). We conduct 10,000 such draws, from which we calculate standard errors as the standard
deviation of ei(ϕ) across bootstrap draws.

These residual t-statistics are presented in Table 3 for the two versions of the residual in (29),
both overall (for all interior state pairs) and by individual return state pair. Since E[ei(ϕ)] = 0 under
RE given a correctly specified value ϕ, these t-statistics tell us how far the residuals are from being
consistent with any hypothesized null value for the SDF slope. Positive numbers correspond to the
data exhibiting too much excess movement to be consistent with a given value of ϕ, and vice versa
for negative numbers. In panel (a), the only negative t-statistics for the tighter bound are for RN
beliefs over (θj, θj+1) = ([0%, 5%], [5%, 10%]) (i.e., j = 6) for ϕ > 10; all other t-statistics, including
the overall values, are positive (and generally large in magnitude), indicating no value of ϕ is
consistent with the degree of observed excess RN movement. In panel (b), the average conservative
bound residuals are smaller in magnitude but also generally positive, other than for large ϕ (with
magnitudes discussed below) and for return-state pairs in the middle of the distribution.

As admissible excess movement E[X∗i ] is monotonically increasing in the unobserved parameter
ϕ, our main empirical exercise is to estimate the lower bound for this SDF slope such that the
bound for E[X∗i ] is satisfied. This lower bound for ϕ is estimated as the minimal value for which
the average residual value ei(ϕ) is zero, so that we are effectively finding the root of the function
traced out in Table 3. Given that the tighter bound is generally not satisfied even for ϕ = ∞ (and
since it holds only under restrictive assumptions), we now confine attention to the conservative

40It is also stated for E[ϕi] rather than ϕ, but the bound still applies using the more conservative value ϕ as well.
41For the residual e△i (ϕ) corresponding to the tighter bound, we also re-estimate △̂i in each bootstrap draw by

calculating the same local average (with respect to π∗0,i) as in Figure 2(a), and then evaluating it at the observed π∗0,i.
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bound from Proposition 9(ii). The estimated ϕ can be interpreted as the minimal SDF slope for
which the amount of observed excess movement in RN beliefs can be rationalized; it is accordingly
an index of the restrictiveness of the joint assumptions of RE and CTI (or, given Proposition 11,
RE and supermartingale ϕt). As above, we estimate this SDF slope both for each individual state
pair (ϕ = ϕj) and over all interior state pairs (ϕ = ϕ). To make the estimates for ϕ more readily
interpretable, we also use Proposition 8 to translate them into local relative risk aversion values γ

for a fictitious representative agent who consumes the market.

Table 4 presents our main results. Whenever there is no value of ϕ for which the bound for
E[X∗i ] is satisfied — i.e., from Proposition 9(iii), when we estimate E[X∗i ] > E[π∗0,i

2] — we write
ϕ = ∞. In brackets below each point estimate, we provide the lower bound of a one-sided
95% confidence interval (CI) for the parameter in question.42 Starting from the same bootstrap
resampling procedure as described just above, we obtain these CIs by inverting a one-sided test:
the CI lower bound ϕ̂LB is the minimal ϕ such that emain

i (ϕ) = 0 is not rejected at the 5% level using
the bootstrapped data (see Appendix B.9 for further details). The first column of the table provides
estimates for the minimal SDF slopes ϕ. The second column translates these figures into relative
risk aversion values using γ = (ϕ−1)

0.05 = (ϕ− 1)× 20 from (25), since adjacent return states have
midpoints 5 percent (more precisely, 5 log points) apart by construction.

Starting with the overall estimates in the first row: the point estimate for the conservative lower
bound for ϕ is slightly greater than 50, in line with the t-statistic in Table 3(b) for ϕ = 50 (which is
slightly positive but close to zero). This translates to an extraordinarily high estimated lower bound
for γ of 1,075. Values of ϕ below 9.8 (for γ, below 175) are rejected at the 5% level. We conclude
that extremely high risk aversion is needed to rationalize the large degree of excess movement in
RN beliefs observed in the data.

Moving to the local estimates for the individual return-state pairs, all but two of the point
estimates of the lower bounds for ϕj and γj are infinite, indicating that no amount of utility
curvature (or SDF slope) can rationalize the observed excess movement such that the bounds
are satisfied. For many of the states (j = 2, 3, 4, and 8), their associated confidence intervals also
have lower bounds of ∞ (or more precisely, are empty), indicating outright model rejection. Only
for RN beliefs over the state pairs in the middle of the distribution — in particular, j = 5 and 6,
corresponding to excess-return midpoints of 0% and 5%, respectively — have finite point estimates
and confidence intervals that contain reasonable risk-aversion values of about 20. RN beliefs over
these intermediate return states are thus comparatively well-behaved; for all other states, there is
so much mean-reverting variation in RN beliefs that the bounds are only met for implausibly large
values of ϕj, if at all.

In light of Proposition 6, we conclude that belief revisions are excessively volatile in all cases for
which the data cannot be rationalized with finite risk aversion, as these findings cannot in general
be produced solely by miscalibrated priors. Further, the large local risk-aversion bounds at every
point of the return distribution and the extremely large overall estimates (which use only beliefs

42The set identification implied by our theoretical bound motivates our use of these one-sided intervals.
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over the excess-return states between -20% and +20%) imply that no feature of the true underlying
data-generating process (e.g., volatility in the left tail of the return distribution) can by itself be
responsible for these findings of excess belief volatility.

5.5 Suggestive Evidence on the Correlates of RN Excess Movement

We conclude our empirical analysis by briefly considering reduced-form evidence on the macroe-
conomic and financial correlates of RN excess movement. Online Appendix Table A.1 shows
the results of a set of time-series regressions to this end. The dependent variable is the quarterly
average of noise-adjusted RN excess movement X∗t,t+1,i,j. We consider as regressors: (1) proxies for
option liquidity and trading activity; (2) measures of volatility and macroeconomic uncertainty;
and (3) statistics related to index returns and valuations. Across all specifications, the liquidity- and
noise-related variables (bid-ask spreads and volume) have coefficients that are both economically
and statistically small, which gives further evidence that factors specific to the option market (or
mismeasurement of RN beliefs) are not driving our results. By contrast, excess movement has a
significant positive relationship with the VIX, as is intuitive (and further evidence that our measure
is in fact reflective of excess volatility). Lagged S&P 500 returns and valuation ratios are also
positively related to excess movement. The R2 value for the regression with all right-hand-side
variables included is 0.61, indicating that these statistics are capable of jointly accounting for much
of the quarterly variation in excess movement. That said, this regression evidence is only suggestive
and reduced-form.

6. Conclusion

We consider a general theoretical framework in which we show that the assumption of rational
expectations imposes testable restrictions on the time variation in risk-neutral beliefs as expressed
in asset values. Unlike in much of the previous literature, these results do not require any restrictive
assumptions on the data-generating process, and they allow for time variation in discount rates.
Further, by using asset values, we do not require direct measures of physical beliefs over future
outcomes, and our bounds exploit intertemporal consistency requirements of rational beliefs
without the need for the econometrician to know what agents’ beliefs “should” be under RE.

When taken to the data using observed asset prices, our bounds provide evidence on the
rationality of the market as a whole. Using risk-neutral beliefs over the future return on the S&P 500
index measured from options data, we find that under our assumption of conditional transition
independence, extremely high risk aversion is needed to rationalize the variation in these beliefs.
We conclude that the RE assumption appears to be quite restrictive. In many cases, no amount of
risk aversion (or SDF slope) is capable of rationalizing the behavior of RN beliefs.

While our bounds are informative in ruling out classes of models (or modeling assumptions),
this paper only provides basic suggestive evidence as to the potential causes of our bound vi-
olations. We believe, though, that there are numerous feasible ways to make progress on this
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question. Conducting additional tests on the empirical correlates of excess movement, as well as
generalizing our analysis to alternative asset classes, may provide useful additional information.
Further, detailed data on changes in individual portfolios could allow for tests on the rationality of
individual beliefs, which would help distinguish between micro and macro explanations for the
observed excess movement in RN beliefs. We leave these possibilities to future work.
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Tables and Figures

Table 1: Example DGPs, Beliefs, Movement and Uncertainty Resolution Statistics

Signals Stream Physical Movement & RN Beliefs RN Movement &
Likelihood Beliefs Init. Uncertainty (ϕ = 3) Init. Uncertainty

[s1, s2, . . .] P([s1, . . .]) [π0, π1, . . .] m u0 [π∗0 , π∗1 , . . .] m∗ u∗0

(i) Symmetric signals with Ll ≡
P[st=l|θ=0]
P[st=l|θ=1] = 3 and Lh ≡

P[st=h|θ=1]
P[st=h|θ=0] = 3, and then resolution

[l, L] .5625 [.25, .1, 0] .0325 .1875 [.5, .25, 0] .125 .25
[l, H] .0625 [.25, .1, 1] .8325 .1875 [.5, .25, 1] .625 .25
[h, L] .1875 [.25, .5, 0] .3125 .1875 [.5, .75, 0] .625 .25
[h, H] .1875 [.25, .5, 1] .3125 .1875 [.5, .75, 1] .125 .25

E[m] = .1875 = u0 E[m∗] = .25 = u∗0
=⇒ E[X] = 0 =⇒ E[X∗] = 0,

△ = 0

(ii) Asymmetric signals with Ll = 3 and Lh → ∞, and then resolution

[l, l, L] .75 [.25, .1, .04, 0] .0279 .1875 [.5, .25, .1, 0] .095 .25
[H] .1667 [.25, 1, 1, 1] .5625 .1875 [.5, 1, 1, 1] .250 .25
[l, H] .0567 [.25, .1, 1, 1] .8325 .1875 [.5, .25, 1, 1] .625 .25
[l, l, H] .0278 [.25, .1, .04, 1] .9565 .1875 [.5, .25, .1, 1] .895 .25

E[m] = .1875 = u0 E[m∗] = .1725, u∗0 = .25
=⇒ E[X] = 0 =⇒ E[X∗] = -.0775,

△ = -.31

(iii) Asymmetric signals with Ll → ∞ and Lh = 3, and then resolution

[h, h, H] .25 [.25, .5, .75, 1] .1875 .1875 [.5, .75, .9, 1] .095 .25
[L] .5 [.25, 0, 0, 0] .0625 .1875 [.5, .0, 0, 0] .250 .25
[h, L] .1667 [.25, .5, 0, 0] .3125 .1875 [.5, .75, 0, 0] .625 .25
[h, h, L] .0833 [.25, .5, .75, 1] .6875 .1875 [.5, .75, .9, 0] .895 .25

E[m] = .1875 = u0 E[m∗] = .3275, u∗0 = .25
=⇒ E[X] = 0 =⇒ E[X∗] = .0775,

△ = .31

Note: This table provides theoretical examples for physical and risk-neutral belief statistics under rational
expectations for three possible DGPs, as described in Section 2.1.
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Table 2: Descriptive Statistics for Excess Movement

X∗/u0 X∗/T

Raw Noise-Adj. Raw Noise-Adj. u0 T N (Obs.)

Overall mean: 1.89 1.23 0.0059 0.0038 0.18 56 1,809
[Bootstrapped SE] [0.25] [0.22] [0.0015] [0.0013] [0.00] [2]

By return state:
1 (-20%) 5.83 4.83 0.0049 0.0041 0.17 200 26

[1.18] [1.05] [0.0027] [0.0024] [0.01] [20]

2 (-15%) 11.61 5.70 0.0180 0.0088 0.22 141 19
[3.32] [3.06] [0.0096] [0.0083] [0.01] [25]

3 (-10%) 5.76 2.37 0.0151 0.0062 0.21 81 49
[0.99] [1.07] [0.0059] [0.0051] [0.01] [12]

4 (-5%) 2.67 1.39 0.0088 0.0046 0.14 42 272
[0.59] [0.50] [0.0038] [0.0029] [0.01] [5]

5 (0%) 0.70 0.47 0.0045 0.0030 0.23 37 700
[0.16] [0.14] [0.0019] [0.0017] [0.00] [2]

6 (+5%) 1.71 1.14 0.0039 0.0026 0.11 49 567
[0.35] [0.34] [0.0015] [0.0014] [0.01] [3]

7 (+10%) 3.87 2.92 0.0053 0.0040 0.18 129 144
[1.00] [1.03] [0.0023] [0.0023] [0.01] [9]

8 (+15%) 5.65 5.26 0.0060 0.0056 0.21 200 58
[1.48] [1.48] [0.0027] [0.0027] [0.01] [11]

9 (+20%) 3.44 2.09 0.0032 0.0020 0.22 232 36
[0.89] [1.27] [0.0015] [0.0020] [0.01] [9]

By date:
1996–2000 10.89 9.67 0.0211 0.0187 0.21 107 109

[2.24] [2.17] [0.0074] [0.0072] [0.01] [11]

2001–2005 1.75 0.55 0.0042 0.0013 0.22 90 112
[0.51] [0.40] [0.0021] [0.0015] [0.01] [11]

2006–2010 1.25 0.68 0.0065 0.0035 0.17 32 502
[0.22] [0.19] [0.0026] [0.0021] [0.00] [4]

2011–2015 1.75 1.09 0.0050 0.0031 0.19 67 530
[0.36] [0.28] [0.0024] [0.0019] [0.00] [5]

2016–2018 0.36 -0.11 0.0011 -0.0003 0.16 50 556
[0.21] [0.14] [0.0017] [0.0009] [0.00] [3]

By π∗0 :
0–0.25 1.01 0.30 0.0055 0.0017 0.09 16 185

[0.60] [0.55] [0.0048] [0.0047] [0.01] [2]

0.25–0.5 1.58 0.91 0.0067 0.0039 0.23 55 883
[0.21] [0.17] [0.0017] [0.0014] [0.00] [3]

0.5–0.75 2.84 2.19 0.0053 0.0041 0.23 123 284
[0.61] [0.58] [0.0020] [0.0019] [0.00] [7]

0.75–1 2.54 1.88 0.0048 0.0036 0.06 31 457
[0.95] [0.90] [0.0031] [0.0029] [0.00] [2]

Notes: Empirical conditional means of risk-neutral excess movement X∗≡ Ê[X∗i,j] are calculated over all
interior state pairs j = 2, . . . , 8, aside from averages by bin, which are calculated for each state pair separately.
Standard errors are estimated using a block bootstrap for the normalized statistic X∗/u0 or X∗/T, with a
block size of one month (where contracts are classified by the month in which they expire) and 10,000 draws.
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Table 3: Residual Excess Movement t-Statistics for Different ϕ

(a) Tighter Bound from Proposition 9(i)

ϕ = 1 2 5 10 50 ∞

Overall t-stat.: 5.19 5.15 4.98 4.64 3.03 0.78

By return state:
1 (-20%) 4.06 3.69 3.04 2.57 1.94 1.72
2 (-15%) 2.13 2.13 2.13 2.13 2.14 2.14
3 (-10%) 2.23 2.23 2.23 2.23 2.23 2.23
4 (-5%) 2.78 2.78 2.77 2.77 2.76 2.76
5 (0%) 3.09 3.09 3.08 3.08 3.06 3.06
6 (+5%) 3.26 2.66 1.27 0.04 -1.71 -2.42
7 (+10%) 2.82 2.73 2.51 2.29 1.70 1.23
8 (+15%) 3.53 3.49 3.42 3.37 3.29 3.25
9 (+20%) 1.63 1.58 1.52 1.48 1.44 1.43

(b) Conservative Bound from Proposition 9(ii)

ϕ = 1 2 5 10 50 ∞

Overall t-stat.: 5.19 4.08 2.68 1.75 0.07 -1.48

By return state:
1 (-20%) 4.06 3.58 2.79 2.22 1.47 1.21
2 (-15%) 2.13 2.03 1.94 1.90 1.87 1.86
3 (-10%) 2.23 2.03 1.86 1.79 1.72 1.70
4 (-5%) 2.78 2.51 2.28 2.18 2.09 2.06
5 (0%) 3.09 1.86 0.74 0.26 -0.19 -0.31
6 (+5%) 3.26 1.96 -0.12 -1.77 -5.22 -8.39
7 (+10%) 2.82 2.38 1.73 1.28 0.50 0.06
8 (+15%) 3.53 3.20 2.77 2.51 2.21 2.10
9 (+20%) 1.63 1.36 1.05 0.89 0.72 0.68

Notes: Both panels report t-statistics for the average residuals ei(ϕ)

in (29) for different values of ϕ. Panel (a) uses e△i (ϕ), with△i estimated
as in panel (a) of Figure 2. Panel (b) uses emain

i (ϕ). Standard errors are
estimated using a block bootstrap with block size of one month and
10,000 draws. All statistics are calculated using conditional means of
noise-adjusted excess movement.
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Table 4: Main Estimation Results

Conservative
Lower Bound for:

SDF Slope ϕ RRA γ

Overall bound: 54.7 1,075
[95% CI Lower Bound] [9.8] [175]

By return state:
1 (-20%) ∞ ∞

[24.2] [464]

2 (-15%) ∞ ∞
[∞] [∞]

3 (-10%) ∞ ∞
[∞] [∞]

4 (-5%) ∞ ∞
[∞] [∞]

5 (0%) 19.4 368
[2.1] [22]

6 (+5%) 4.8 75
[2.2] [24]

7 (+10%) ∞ ∞
[4.6] [73]

8 (+15%) ∞ ∞
[∞] [∞]

9 (+20%) ∞ ∞
[1.0] [1]

Notes: The first column reports estimates for the minimal
value of ϕ satisfying the conservative bound for excess
movement in Proposition 9(ii). These estimates are trans-
lated to relative risk aversion values γ using Proposition 8,
as shown in the second column. Point estimates are ob-
tained by finding the value ϕ such that emain

i (ϕ) = 0 in (29).
Confidence interval lower bounds are obtained by invert-
ing a test for ϕ using bootstrapped data; see Appendix B.9
for details. All estimates use conditional means of noise-
adjusted excess movement.
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Figure 1: RN Excess Belief Movement vs. Prior by ϕ Under RE
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Note: Theoretical bounds are obtained from the formulas in Proposition 3 and Corollary 1.
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Figure 2: Excess Movement vs. RN Prior: Data and Theoretical Bounds

(a) Tighter Bound from Proposition 9(i)
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(b) Conservative Bound from Proposition 9(ii)
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Notes: Empirical excess movement curves are kernel-weighted local averages (Epanechnikov kernel, bandwidth for π∗0
of 0.07) over all interior state pairs j = 2, . . . , 8. All statistics are estimates of conditional means Ẽ[·] for RN beliefs π̃∗t,i,j,
and theoretical curves correspond to ϕ ≡ Ẽ[ϕi,j], with notation simplified for clarity. Bounds for (a) obtain △̂ using a
kernel-weighted local average over π∗0 for each of the two terms in (17), with △̂ then plugged into the inequality in
Proposition 9(i). Bounds for (b) use only the second inequality in Proposition 9(ii).
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A. Proofs of Theoretical Results

A.1 Proofs for Section 2

Section 2.1

Proof of Proposition 1. Following Augenblick and Rabin (2021), it is useful to define period-by-
period movement, uncertainty reduction, and excess movement, respectively, as

mt,t+1(π) ≡ (πt+1 − πt)
2,

rt,t+1(π) ≡ πt(1 − πt)− πt+1(1 − πt+1),

Xt,t+1(π) ≡ mt,t+1(π)− rt,t+1(π).

Given the definitions of movement, initial uncertainty, and excess movement in the text, note that

m(π) = ∑ T−1
t=0 mt,t+1(π), u0(π) = ∑ T−1

t=0 rt,t+1(π), X(π) = ∑ T−1
t=0 xt,t+1(π),

where the second equality relies on the fact that πT ∈ {0, 1} and therefore πT(1 − πT) = 0 for any
belief stream π. We have that

E[Xt,t+1|Ht] = E[mt,t+1 − rt,t+1|Ht]

= E[(πt+1 − πt)
2 − ((πt(1 − πt)− (πt+1(1 − πt+1))|Ht]

= E[(2πt − 1)(πt − πt+1)|Ht]

= (2πt(Ht)− 1)(πt(Ht)− E[πt+1|Ht])

= (2πt(Ht)− 1) · 0

= 0,

where the fifth line uses the martingale beliefs assumption (Assumption 1). Summing and applying
the law of iterated expectations (LIE),

E[X] =
T−1

∑
t=0

E[Xt,t+1] =
T−1

∑
t=0

E[E[Xt,t+1|Ht]] = 0.

Sections 2.2–2.3

Proof of Equations (12)–(14). For the physical measure,

P(HT) = P(θ = 1) · P(HT|θ = 1) + P(θ = 0) · P(HT|θ = 0)

= π0 · P(HT|θ = 1) + (1 − π0) · P(HT|θ = 0), (A.1)
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where the second line uses that π0 = E[πT] = E[θ] = P(θ = 1) (as shown after Assumption 1).
Meanwhile, for the RN measure, we have from (11) and (A.1) that

P∗(HT) =
π∗

0
π0

· π0 · P(HT|θ = 1) +
1 − π∗

0
1 − π0

· (1 − π0) · P(HT|θ = 0)

= π∗
0 · P(HT|θ = 1) + (1 − π∗

0) · P(HT|θ = 0). (A.2)

For any HT such that πT = 1, we have as well from (11) that P∗(HT) =
π∗

0
π0

P(HT), which implies

P∗(θ = 1) =
π∗

0
π0

P(θ = 1). Thus by the definition of conditional probability, P∗(HT|θ = 1) =

P(HT|θ = 1). A similar argument gives P∗(HT|θ = 0) = P(HT|θ = 0), and thus (14) holds. Then
(A.2) becomes

P∗(HT) = π∗
0 · P∗(HT|θ = 1) + (1 − π∗

0) · P∗(HT|θ = 0).

Summing over all possible HT for which θ = 1 gives π∗
0 = P∗(θ = 1), so that P∗ is a valid

probability distribution for which LIE holds. Then noting P∗(θ = 1) = E∗[θ] = E∗[πT] = E∗[π∗
T],

equation (12) follows.1 Equation (13) then follows from Proposition 1.

Proof of Equation (18). Footnote 10 provides a brief derivation. For a full derivation, first write

△ ≡ E∗[X∗|θ = 0]− E∗[X∗|θ = 1]

= E∗[m∗|θ = 0]− u∗0 − (E∗[m∗|θ = 0]− u∗0)

= E∗[m∗|θ = 0]− E∗[m∗|θ = 1]. (A.3)

Further, using equation (15),

0 = π∗
0 · E[X∗|θ = 1] + (1 − π∗

0) · E[X∗|θ = 0]

= π∗
0 · (E[m∗|θ = 1]− u∗0) + (1 − π∗

0) · (E[m∗|θ = 0]− u∗0),

so using the definition of u∗0 ,

π∗
0 · E[m∗|θ = 1] + (1 − π∗

0) · E[m∗|θ = 0] = π∗
0(1 − π∗

0). (A.4)

Solving for E[m∗|θ = 0] gives

E[m∗|θ = 0] = π∗
0 −

π∗
0

1 − π∗
0
· E[m∗|θ = 1].

1Lemma A.1 provides a more detailed algebraic derivation of this fact.
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Using this in (A.3),

△ = π∗
0 −

π∗
0

1 − π∗
0
· E[m∗|θ = 1]− E∗[m∗|θ = 1]

= π∗
0 −

1
1 − π∗

0
· E[m∗|θ = 1] (A.5)

Given that 1
1−π∗

0
⩾ 0 and E[m∗|θ = 1] ⩾ 0, △ is bounded above by π∗

0 .

Proof of Proposition 2. Start from equation (16) and apply equation (15):

E[X∗] = π0 · E[X∗|θ = 1] + (1 − π0) · E[X∗|θ = 0]− 0

= π0 · E[X∗|θ = 1] + (1 − π0) · E[X∗|θ = 0]− (π∗
0 · E[X∗|θ = 1] + (1 − π∗

0) · E[X∗|θ = 0])

= (π∗
0 − π0)(E[X∗|θ = 0]− E[X∗|θ = 1])

= (π∗
0 − π0)(△), (A.6)

as stated. Then the second equality holds using equation (10) and the definition of △.

Proof of Proposition 3. From the proof of equation (18) above, we have △ ⩽ π∗
0 . Further, equa-

tion (10) implies

π∗
0 − π0 = π∗

0 −
π∗

0
π∗

0 + ϕ(1 − π∗
0)

= π∗
0

(
1 − 1

π∗
0 + ϕ(1 − π∗

0)

)
⩾ 0, (A.7)

where the last inequality uses π∗
0 + ϕ(1 − π∗

0) ⩾ 0 since ϕ ⩾ 1. Using these two inequalities in the
expression for E[X∗] in (A.6),

E[X∗] = (π∗
0 − π0)(△) ⩽ (π∗

0 − π0)π
∗
0 . (A.8)

Plugging in the expression for π∗
0 − π0 in (A.7) then gives equation (19).

Proof of Corollary 1. This is an immediate implication of (A.8) and π0 ⩾ 0.

Proof of Corollary 2. As in (A.7), we have π∗
0 −π0 ⩾ 0. Using this in the equality in (A.8) alongside

the assumption that △ = E∗[m∗|θ = 0]− E∗[m∗|θ = 1] ⩽ 0 gives E[X∗] ⩽ 0.
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Proof of Proposition 4. Consider a given ϕ, RN prior π∗
0 , and signal DGPs DGP(st|θ = 0, Ht−1)

and DGP(st|θ = 1, Ht−1) that lead to some E[X∗|θ = 0], E[X∗|θ = 1], and △. Now consider
the “reversed” DGP D̂GP in which we modify the DGP by relabeling state 1 as state 0 and state
0 as state 1. That is, D̂GP(st|θ = 0, Ht−1) ≡ DGP(st|θ = 1, Ht−1) and D̂GP(st|θ = 1, Ht−1) ≡
DGP(st|θ = 0, Ht−1). Similarly, we consider the “reversed” RN prior π̂∗

0 = 1 − π∗
0 implied by the

physical prior π̂0 = 1−π∗
t

ϕ+(1−ϕ)(1−π∗
t )

.

As a result of this relabeling, if the RN belief in the original DGP following history Ht is π∗
t (Ht),

then the RN belief in the reversed D̂GP with RN prior 1 − π∗
0 must be π̂∗

t (Ht) = 1 − π∗
t (Ht). Thus

E∗[X̂∗|θ = 0] = E∗[X∗|θ = 1] and E∗[X̂∗|θ = 1] = E∗[X∗|θ = 0]. Using that E∗[X∗|θ] = E[X∗|θ]
by equation (14) as proven above, this gives E[X̂∗|θ = 0] = E[X∗|θ = 1] and E[X̂∗|θ = 1] =
E[X∗|θ = 0]. We conclude that for D̂GP, △̂ ≡ E[X̂∗|θ = 0]− E[X̂∗|θ = 1] = −△.

Proof of Proposition 5. Consider a sequence of binary resolving DGPs indexed by T. There are
two possible signals in each period, l and h, and assume that for any history,

DGP(st = h|θ = 1) = 1, (A.9)

DGP(st = h|θ = 0) =
π∗

t−1(1 − π∗
t−1 − ϵ)

(1 − π∗
t−1)(π

∗
t−1 + ϵ)

, with ϵ ≡ 1 − π∗
0

T
. (A.10)

Since DGP(st = l|θ = 1) = 0 from (A.9), beliefs (both physical and RN) update to 0 given any l
signal. Meanwhile, after seeing h (and assuming no l signals through t − 1), Bayes’ rule gives that
physical beliefs update to

πt({s1 = h, . . . , st = h}) = πt−1

πt−1 + (1 − πt−1)DGP(st = h|θ = 0)
.

Applying the transformation (10) to the πt−1 values on the right side of this equation, we have after
some algebra that

πt({s1 = h, . . . , st = h}) =
π∗

t−1

π∗
t−1 + (1 − π∗

t−1)ϕDGP(st = h|θ = 0)
.

Now applying the transformation (9), we obtain that π∗
t given an only-h signal history (suppressing

the dependence on this history for simplicity) is, after additional tedious but straightforward
algebra,

π∗
t =

π∗
t−1

π∗
t−1 + (1 − π∗

t−1)DGP(st = h|θ = 0)
.

Now using (A.10), we obtain after further algebra that

π∗
t − π∗

t−1 = ϵ.

Note given the definition of ϵ, then, that this DGP is resolving for any T: given any l signal at any t,
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beliefs resolve to 0, while given only h signals, beliefs increase slowly (π∗
t = π∗

0 + tϵ) and resolve
to 1 at period T. We thus have

E[m∗|θ = 1] = Tϵ2 = T
(

1 − π∗
0

T

)2

=
(1 − π∗

0)
2

T
T→∞−−−→ 0.

Thus for such a sequence, using equation (A.5),

△ = π∗
0 −

1
1 − π∗

0
· E[m∗|θ = 1] T→∞−−−→ π∗

0 .

Using this in equation (A.6) gives E[X∗] → (π∗
0 − π0)π∗

0 as T → ∞, as stated. And as further stated,
the sequence of DGPs is constructed such that any downward movement is resolving and any
upward movement is small (π∗

t − π∗
t−1 = ϵ → 0). We have thus proven the first two statements in

the proposition.

For the final statement, given ϕ > 1 and 0 < π∗
0 < 1, the inequality in (A.7) is strict, so that

π∗
0 − π0 > 0. Further, the only way to obtain m∗ = 0 for finite T is if π∗

0 = π∗
1 = . . . = π∗

T, which is
ruled out by 0 < π∗

0 < 1 since π∗
T = 0 or 1 with probability 1, and therefore E[m∗|θ = 1] > 0. Thus

in (A.5), we have the strict inequality △ < π∗
0 for fixed T < ∞. Combining these in (A.6) gives

E[X∗] < (π∗
0 − π0)π∗

0 for fixed T, as stated.

Proof of Proposition 6. For part (i), first define the likelihood of a prior π0 as

L(π0) ≡
π0

1 − π0
, (A.11)

and the likelihood of a signal st as

L(st) ≡
DGP(st|θ = 1)
DGP(st|θ = 0)

,

where the dependence of the latter on the history Ht−1 is left implicit for simplicity. The likelihood
for any belief πt is defined as well following (A.11). The above likelihoods are well-defined for
interior priors (as we assume given finite L in the proposition) and for DGP(st|θ = 0, Ht−1) > 0
(we return to the situation in which DGP(st|θ = 0, Ht−1) = 0 shortly). Bayes’ rule gives that beliefs
satisfy

L(πt) = L(π0) · L(s1) · L(s2) · · · L(st).

Now note from (9) that

L(π∗
0) ≡

π∗
0

1 − π∗
0
= ϕ

π0

1 − π0
,

5



from which it follows that under Bayesian updating,

L(π∗
t ) = L(π∗

0) · L(s1) · L(s2) · · · L(st)

= ϕL(π0) · L(s1) · L(s2) · · · L(st).

For a fictitious agent with a rational prior, one could replace L(π0) with L(P0(θ = 1)). In our case,
given the incorrect prior (but correct Bayesian updating), we have

π∗
t

1 − π∗
t
= ϕ̌

P0(θ = 1)
1 − P0(θ = 1)

,

where ϕ̌ ≡ ϕL, with L defined as in the proposition. We can therefore write

L(π∗
t ) = ϕ̌L(P0(θ = 1)) · L(s1) · L(s2) · · · L(st).

As the likelihood ratio of the RN beliefs in this case are equal to those of a fictitious agent with
a correct prior π̌0 = P0(θ = 1) and ϕ̌ in place of ϕ, we conclude that the RN beliefs are as well.
Finally, for the case in which DGP(st|θ = 0, Ht−1) = 0 and this signal st is observed, the person
will update to πt = 1, matching the belief of a rational agent again. We have thus shown part (i).

We can thus treat the agent with the incorrect prior as if she were fully rational (satisfying
Assumption 1) but with ϕ̌ in place of ϕ. We know as well that ϕ̌ satisfies Assumption 3, since L is
constant and ϕ is constant by that assumption as well. For part (ii) of the proposition, if ϕ̌ ⩾ 1, then
Assumption 2 holds as well, so all three assumptions are satisfied, and all the stated results carry
through.

For part (iii), assuming 0 < ϕ̌ < 1 (so Assumption 2 no longer holds for the fictitious rational
agent), note first that the proof of Proposition 2 never employs Assumption 2 and therefore still
holds straightforwardly, as we can write E[X∗] = (π∗

0 − π̌0)△ without use of this assumption. For
Proposition 3, the result as stated for a rational agent requires that π∗

0 > π̌0, which is not true for
ϕ̌ < 1. An alternative bound, though, can be shown for this case, by obtaining a lower bound for △
similar to the upper bound in equation (18). Starting from (A.4) but solving now for E[m∗|θ = 1],
we have

E[m∗|θ = 1] = (1 − π∗
0)−

1 − π∗
0

π∗
0

· E[m∗|θ = 0].

Using this in (A.3),

△ = E[m∗|θ = 0]−
(
(1 − π∗

0)−
1 − π∗

0
π∗

0
· E[m∗|θ = 0]

)
=

1
π∗

0
· E[m∗|θ = 0]− (1 − π∗

0).

Then, given that 1
π∗

0
⩾ 0 and E[m∗|θ = 0] ⩾ 0, △ must be bounded below by −(1 − π∗

0). Returning
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to the formula from Proposition 3, if ϕ̌ < 1, then π∗
0 − π̌0 ⩽ 0, which gives

E[X∗] = (π∗
0 − π̌0)(△)

⩽ (π̌0 − π∗
0)(1 − π∗

0).

Further, as π̌0 ⩽ 1,

E[X∗] ⩽ (π̌0 − π∗
0)(1 − π∗

0)

⩽ (1 − π∗
0)(1 − π∗

0) = (1 − π∗
0)

2.

Thus taking (ii) and (iii) together, we have that E[X∗] ⩽ max(π∗
0

2, (1 − π∗
0)

2) given an incorrect
prior.

A.2 Proofs for Section 3

Section 3.1

Proof of Equation (22). This follows from a discrete-state application of Breeden and Litzenberger
(1978), or see Brown and Ross (1991) for a general version. To review why the stated equation
holds, the risk-neutral pricing equation for options can be written

qm
t,K =

1

R f
t,T

E∗
t [max{Vm

T − K, 0}] = 1

R f
t,T

[
∑

j : Kj⩾K

(Kj − K)P∗
t (V

m
T = Kj)︸ ︷︷ ︸

P∗
t (Rm

T =θj)

]
.

This implies that for two adjacent return states θj−1 and θj,

qm
t,Kj

− qm
t,Kj−1

=
1

R f
t,T

[
∑
j′⩾j

(Kj′ − Kj)P∗
t (V

m
T = Kj′)− ∑

j′⩾j−1
(Kj′ − Kj−1)P∗

t (V
m
T = Kj′)

]

=
1

R f
t,T

[
∑
j′⩾j

(Kj−1 − Kj)P∗
t (V

m
T = Kj′)

]
=

1

R f
t,T

(Kj−1 − Kj)
[
1 − P∗

t (V
m
T < Kj)

]
.

Rearranging,

R f
t,T

qm
t,Kj

− qm
t,Kj−1

Kj − Kj−1
= P∗

t (V
m
T < Kj)− 1.

Repeating this analysis for the pair θj and θj+1, we obtain R f
t,T

qm
t,Kj+1

−qm
t,Kj

Kj+1−Kj
= P∗

t (V
m
T < Kj+1)− 1.

Subtracting the preceding equation from this equation and using P∗
t (Rm

T = θj) = P∗
t (V

m
T = Kj)

yields equation (22).
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Section 3.2

Proof of Example 1. We prove the statement separately for the two assumptions on the form of the
utility function:

(i) Time-separable utility: Denote Vm
j ≡ Vm

0 θj and Vm
j+1 ≡ Vm

0 θj+1, so the event Rm
T = θj is

equivalent to Vm
T = Vm

j , and similarly for θj+1 and Vm
j+1. Since dVm

T /dAT > 0 (and with
P(Vm

T = Vm
j ) > 0, P(Vm

T = Vm
j+1) > 0), there exist unique values aj and aj+1 such that

Vm
T = Vm

j if and only if AT = aj, and Vm
T = Vm

j+1 if and only if AT = aj+1. Then with
Mt,T = βT−tU′(CT)/U′(Ct) given the assumptions for this example, we have

ϕt,j ≡
Et[Mt,T | Rm

T = θj]

Et[Mt,T | Rm
T = θj+1]

=
Et[Mt,T | AT = aj]

Et[Mt,T | AT = aj+1]

=
U′(CT(aj))

U′(CT(aj+1))
,

which is almost surely constant, as required for CTI to hold.

(ii) Epstein–Zin (1989) utility: The Epstein–Zin (1989) preference recursion is

Ut =

(1 − β)C
1− 1

ψ

t + β
(

Et

[
U1−γ

t+1

]) 1− 1
ψ

1−γ


1

1− 1
ψ

. (A.12)

It can be shown (e.g., Campbell, 2018, p. 178) that given such preferences the SDF evolves
according to

Mt,t+1 = β

(
Ct+1

Ct

)− 1
ψ

 Ut+1

Et

[
U1−γ

t+1

] 1
1−γ


−
(

γ− 1
ψ

)
,

which gives that

Mt,T = Mt,t+1Mt+1,t+2 · · · MT−1,T

= βT−t
(

CT

Ct

)− 1
ψ

T−1

∏
τ=t

 Uτ+1

Eτ

[
U1−γ

τ+1

] 1
1−γ


−
(

γ− 1
ψ

)
(A.13)

= βT−t
(

CT

Ct

)−γ T−1

∏
τ=t

(
Uτ+1

Cτ+1

)−
(

γ− 1
ψ

)
Eτ

[(
Cτ+1

Cτ

)1−γ (Uτ+1

Cτ+1

)1−γ
] γ− 1

ψ
1−γ

. (A.14)

Denote aj and aj+1 as in part (i). From the first representation of Mt,T, equation (A.13),
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it follows immediately that with i.i.d. consumption (or i.i.d. innovations to an otherwise
predetermined consumption path),

ϕt,j =
Et[Mt,T | AT = aj]

Et[Mt,T | AT = aj+1]

=

(
CT(aj)

CT(aj+1)

)− 1
ψ
(

UT(aj)

UT(aj+1)

)−
(

γ− 1
ψ

)
,

which is almost surely constant given the definition (A.12) and that Eτ[U
1−γ
T+1] is constant

given the i.i.d. assumption. When consumption growth Ct/Ct−1 is i.i.d., note that the scale
independence of Epstein–Zin (1989) utility in (A.12) allows us to guess and verify that Ut/Ct

is constant almost surely. Then from the second representation of Mt,T, equation (A.14), we
have in this case that

ϕt,j =

(
CT(aj)

CT(aj+1)

)−γ

.

Proof of Example 2. Gabaix (2012, Theorem 1) shows that

Vm
t =

Dt

1 − e−βm

(
1 +

e−βm−h∗ Ĥt

1 − e−βm−ϕH

)
,

where h∗ ≡ log(1 + H∗) and βm ≡ β − gd − h∗ (where β is the agent’s time discount factor). Thus
for any value θ and given H0, there exists some value dθ and function f (dθ , ĤT), which is strictly
increasing in the first argument and strictly decreasing in the second argument, such that, by Bayes’
rule,

P0

(
T

∑
t=1

1{disastert} > 0

∣∣∣∣∣ Rm
T ⩾ θ

)

=
P0

(
Rm

T ⩾ θ | ∑T
t=1 1{disastert} > 0

)
P0

(
∑T

t=1 1{disastert} > 0
)

P0(Rm
T ⩾ θ)

=
P0

(
DT ⩾ f (dθ , ĤT)

∣∣∣ ∑T
t=1 1{disastert} > 0

)
P0

(
∑T

t=1 1{disastert} > 0
)

P0

(
DT ⩾ f (dθ , ĤT)

) .

Note now that (i) the innovation to Ĥt+1 is independent of the disaster realization; (ii) Ft+1 (the
exponential of the disaster shock to Dt) has support [0, 1]; and (iii) Pt(εd

t+1 ⩾ ϵ) = o(e−ϵ2
) as

ϵ → ∞.2 Thus P0(DT ⩾ f (dθ , ĤT) | ∑T
t=1 1{disastert} > 0) = o(P0(DT ⩾ f (dθ , ĤT))) as dθ → ∞,

2To see why point (iii) holds, denote σd ≡ Var(εd
t ) and then note that

∫ ∞
ϵ exp(−x2/(2σ2

d ))/
√

2πσ2
d dx <
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from which the first statement given in the example follows. Denote the value δ in that statement
by δ = δ0. Then it follows immediately that for any t > 0 (with t < T), for any δt > 0, there exists
an θ such that Pt(∑T

τ=1 1{disastert} > 0 | Rm
T ⩾ θ) < δt asymptotically P0-a.s. as δ0 → 0.

Thus moving to the second statement, given a value δt > 0, consider θj, θj+1 large enough that
Pt(∑T

τ=1 1{disastert} > 0 | Rm
T ∈ {θj, θj+1}) < δt. We then have from (24) that

ϕt,j =
Et[Mt,T | Rm

T = θj]

Et[Mt,T | Rm
T = θj+1]

=

Et[Mt,T | Rm
T = θj, ∑T

τ=1 1{disasterτ} = 0]Pt(∑T
τ=1 1{disasterτ} = 0 | Rm

T = θj)

+ Et[Mt,T | Rm
T = θj, ∑T

τ=1 1{disasterτ} > 0]Pt(∑T
τ=1 1{disasterτ} > 0 | Rm

T = θj)

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 1{disasterτ} = 0]Pt(∑T
τ=1 1{disasterτ} = 0 | Rm

T = θj+1)

+ Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 1{disasterτ} > 0]Pt(∑T
τ=1 1{disasterτ} > 0 | Rm

T = θj+1)

=
Et[Mt,T | Rm

T = θj, ∑T
τ=1 1{disasterτ} = 0](1 −O(δt)) +O(δt)

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 1{disasterτ} = 0](1 −O(δt)) +O(δt)

=
Et[Mt,T | Rm

T = θj, ∑T
τ=1 1{disasterτ} = 0]

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 1{disasterτ} = 0]
+O(δt).

Note that the fraction in the last expression is constant almost surely given that conditional on

∑T
t=1 1{disastert} = 0, the conditions from Example 1 hold. Thus denoting

ϕj ≡
E0[Mt,T | Rm

T = θj, ∑T
t=1 1{disasterτ} = 0]

E0[Mt,T | Rm
T = θj+1, ∑T

t=1 1{disasterτ} = 0]
,

we have ϕt,j = ϕj +O(δt). Since we can take δt → 0 asymptotically P0-a.s. as δ0 → 0, we have
ϕt,j = ϕj + op(1) for any sequence of values δ = δ0 → 0.

Proof of Example 3. As in Campbell and Cochrane (1999), the SDF evolves according to

Mt,t+1 = β

(
Ct+1

Ct

)−γ (Sc
t+1

Sc
t

)−γ

,

with terms defined as in Appendix B.4, and thus

Et[Mt,T | Rm
T = θj]

Et[Mt,T | Rm
T = θj+1]

=
Et

[
exp

(
∑T−t−1

τ=0 −γ
(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = θj

]
Et

[
exp

(
∑T−t−1

τ=0 −γ
(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = θj+1

] .

∫ ∞
ϵ (x/ϵ) exp(−x2/(2σ2

d ))/
√

2πσ2
d dx = σd exp(−ϵ2/(2σ2

d ))/(
√

2πϵ). A similar calculation can be used to derive
a lower bound for the upper tail of the normal CDF. Then applying the previous upper-bound calculation to
P0(DT ⩾ f (dθ , ĤT) | ∑T

t=1 1{disastert} > 0) and the lower-bound calculation to P0(DT ⩾ f (dθ , ĤT)), it follows
that P0(DT ⩾ f (dθ , ĤT) | ∑T

t=1 1{disastert} > 0)/P0(DT ⩾ f (dθ , ĤT)) = o(1), as stated, since the distribution of the
value in the denominator is shifted to the right relative to the distribution of the value in the numerator given (i)–(ii).
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For a counterexample to the constant-ϕt restriction, set T = 2 and ct = dt (i.e., for simplicity,
consumption and dividends are identical, as in the simplest case considered by Campbell and
Cochrane, 1999, so the market is a consumption claim). Note that a sufficient condition for time
variation in ϕt is

Cov0(ϕ1, E1[M1,2 | Rm
2 = θj+1]) ̸= 0, (A.15)

as this implies E0[ϕ1] ̸= ϕ0 (see after Proposition 11). As of t = 0, both ε1 and ε2 are relevant for Rm
2

and M0,2, as ε1 determines sc
1 and thus the conditional volatility λ(sc

1) of surplus consumption sc
2.

Meanwhile, as of t = 1 (i.e., conditional on ε1), the only source of uncertainty for both Rm
2 and M1,2

is ε2: sc
2 and d2 together determine Rm

2 , and conditional on time-1 variables, these both depend only
on ε2. Thus write ε1

j for the realization of ε2 needed to generate Rm
2 = θj conditional on ε1 — i.e.,

ε1
j ≡ {ε2 : Rm

2 = θj | ε1} — and similarly write ε1
j+1 for the realization of ε2 needed for Rm

2 = θj+1

conditional on ε1. We then have

E1[M1,2 | Rm
2 = θj′ ] = exp

(
−γ (1 + λ(sc

1)) ε1
j′

)
for j′ = j, j + 1, and thus

ϕ1 = exp
(
−γ (1 + λ(sc

1))
(

ε1
j − ε1

j+1

))
.

The covariance in (A.15) is therefore

Cov0

(
exp

(
−γ (1 + λ(sc

1))
(

ε1
j − ε1

j+1

))
, exp

(
−γ (1 + λ(sc

1)) ε1
j+1

))
.

Given Gaussian ε1, this value is generically non-zero.

Additional Lemmas Used in Proofs for Section 3.3

Before proceeding to the proof of our main results, we provide two additional lemmas that are
useful in proving those results. As usual, assume throughout that Assumptions 1′–3′ hold.

LEMMA A.1. For some return-state pair (θj, θj+1), with P̃ ≡ P(· | Rm
T ∈ {θj, θj+1}) as per (23), define a

new pseudo-risk-neutral measure P̃⋄ by

dP̃⋄

dP̃

∣∣∣∣∣
Ht

=
π̃∗

t,j

π̃t,j
1{Rm

T = θj}+
1 − π̃∗

t,j

1 − π̃t,j
1{Rm

T = θj+1}. (A.16)

Denote the conditional expectation under P̃⋄ by Ẽ⋄
t [ · ]. If conditional transition independence holds for the

return-state pair (θj, θj+1), and Pt(Rm
T ∈ {θj, θj+1}) > 0, we have that P̃⋄ serves as a martingale measure

for the risk-neutral belief in the sense that

π̃∗
t,j = Ẽ⋄

t [π̃
∗
t+1,j]. (A.17)

11



We conclude from Proposition 1 that

Ẽ⋄
0 [X

∗
j ] = 0. (A.18)

Proof of Lemma A.1. From (23)–(24), we have after some algebra that

π̃∗
t,j

π̃t,j
=

ϕj

1 + π̃t,j(ϕj − 1)
, (A.19)

1 − π̃∗
t,j

1 − π̃t,j
=

1
1 + π̃t,j(ϕj − 1)

. (A.20)

Note therefore that P̃⋄ is absolutely continuous with respect to P̃.

Recall that Ht = σ(sτ, 0 ⩽ τ ⩽ t), where σ(sτ, 0 ⩽ τ ⩽ t) is the σ-algebra generated by
the stochastic process {st} and st ∈ S is the date-t signal vector. Denote NS ≡ |S|, so that
st ∈ {s1, s2, . . . , sNS}, and further denote

pt,k ≡ P̃t(st+1 = θk),

ϱt,k ≡ P̃t(Rm
T = θj | st+1 = sk),

ϱ∗t,k ≡ P∗
t (Rm

T = θj | st+1 = sk, Rm
T ∈ {θj, θj+1}),

so that π̃t+1,j = ϱt,k if st+1 = sk, and similarly π̃∗
t+1,j = ϱ∗t,k if st+1 = sk.

Combining (A.16), (A.19), (A.20), and these definitions, we have

Ẽ⋄
t [π̃

∗
t+1,j] =

π̃∗
t,j

π̃t,j

NS

∑
k=1

pt,k ϱ∗t,k Ẽt
[
1{Rm

T = θj} | st+1 = sk
]

+
1 − π̃∗

t,j

1 − π̃t,j

NS

∑
k=1

pt,k ϱ∗t,k Ẽt
[
1{Rm

T = θj+1} | st+1 = sk
]

=
ϕj

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k
ϕjϱt,k

1 + ϱt,k(ϕj − 1)
ϱt,k

+
1

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k
ϕjϱt,k

1 + ϱt,k(ϕj − 1)
(1 − ϱt,k)

=
ϕj

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k
ϱt,k
(
1 + ϱt,k(ϕj − 1)

)
1 + ϱt,k(ϕj − 1)

=
ϕj

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k ϱt,k

=
ϕjπ̃t,j

1 + π̃t,j(ϕj − 1)

12



= π̃∗
t,j,

where the second-to-last equality uses that π̃t,j = Ẽt[π̃t+1,j], as can be seen from the law of
iterated expectations given that π̃t,j = Et[1{Rm

T = θj} | Rm
T ∈ {θj, θj+1}] = Ẽt[1{Rm

T = θj}] =
Ẽt[Ẽt+1[1{Rm

T = θj}]] = Ẽt[π̃t+1,j], and the last equality above again uses (A.19). The fact that
Ẽ⋄

0 [X
∗
j ] = 0 then follows immediately from the proof of Proposition 1.

LEMMA A.2. For any return-state pair (θj, θj+1) meeting CTI, risk-neutral belief movement must satisfy
the following for j′ = j, j + 1:

Ẽ⋄
0 [m

∗
j | Rm

T = θj′ ] = Ẽ0[m
∗
j | Rm

T = θj′ ]. (A.21)

Proof of Lemma A.2. The stream of risk-neutral beliefs is π∗
j ≡ (π̃∗

0,j, π̃∗
1,j, . . . , π̃∗

T,j), and denote
some arbitrary realization for that path by bj. The realization of m∗

j depends on the path of
risk-neutral beliefs, so denote m∗

j = m∗
j (π

∗
j ) = ∑T

t=1(π̃
∗
t,j − π̃∗

t−1,j)
2.

For any bj such that π̃∗
T,j = 1 (i.e., Rm

T = θj), the definition of P̃⋄ in (A.16) gives that

P̃⋄
0(π

∗
j = bj) =

π̃∗
0,j

π̃0,j
P̃(π∗

j = bj), (A.22)

and further P̃⋄
0(Rm

T = θj) = (π̃∗
0,j/π̃0,j) P̃0(Rm

T = θj) trivially. Combining these two equations yields
P̃⋄

0(π
∗
j = bj | Rm

T = θj) = P̃0(π∗
j = bj | Rm

T = θj). (Intuitively, all paths ending in π̃∗
T,j = 1 receive

the same change of measure under P̃⋄ relative to P̃, so probabilities conditional on Rm
T = θj are

preserved, and similarly for Rm
T = θj+1, as was the case for the simpler version of the RN measure

in Section 2.) Thus

Ẽ⋄
0 [m

∗
j | Rm

T = θj] = ∑
bj : π̃∗

T,j=1
m∗

j (bj) P̃⋄
0

(
π∗

j = bj

∣∣∣ Rm
T = θj

)

= ∑
bj : π̃∗

T,j=1
m∗

j (bj) P̃0

(
π∗

j = bj

∣∣∣ Rm
T = θj

)
= Ẽ0[m

∗
j | Rm

T = θj].

The same steps apply for Rm
T = θj+1: for any bj such that π̃∗

T,j = 0, (A.22) now becomes
P̃⋄

0(π
∗
j = bj) = (1 − π̃∗

0,j)/(1 − π̃0,j) P̃(π∗
j = bj). We also have in this case that P̃⋄

0(Rm
T = θj+1) =

(1 − π̃∗
0,j)/(1 − π̃0,j) P̃0(Rm

T = θj+1), so again P̃⋄
0(π

∗
j = bj | Rm

T = θj+1) = P̃0(π∗
j = bj | Rm

T = θj+1),
and thus Ẽ⋄

0 [m
∗
j | Rm

T = θj+1] = Ẽ0[m∗
j | Rm

T = θj+1].

Note that the definition in (A.16) aligns with the definition of the RN measure in equation (11),
so the two lemmas above prove the statements in the text connecting the RN measure in the simple
case in Section 2 to the general case in Section 3 (see after equation (11) and equation (14), as well
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as the footnote in the proof of equation (13) above). Indeed, equation (A.17) is the precise analogue
to equation (14) in the text; equation (A.18) is the analogue to equation (13); and equation (A.21) im-
plies immediately that Ẽ⋄

0 [X
∗
j | Rm

T ] = Ẽ0[X∗
j | Rm

T ], which was the main implication of equation (14)
used in deriving the results in Section 2. We will thus be able to directly apply those results in this
case using the above two lemmas, by virtue of these three results, as follows.

Section 3.3

Proof of Proposition 7. No arbitrage gives the existence of a positive SDF for which equation (24)
and Assumption 2′ are valid. We have

π̃t,j = Et[π̃t+1,j],

π̃∗
t,j = Ẽ⋄

t [π̃
∗
t+1,j],

Ẽ⋄
0 [X

∗
j ] = 0,

Ẽ⋄
0 [X

∗
j | Rm

T ] = Ẽ0[X∗
j | Rm

T ],

where the first equality uses LIE and the remainder use Lemmas A.1–A.2 as above. The last
equation in addition implies, using the same argument as applied for equation (18), that △j ⩽

π̃∗
0,j. Further, Equations (9)–(10) hold immediately for π̃t,j, π̃∗

t,j, ϕj. We have thus obtained all
the conditions used to prove Propositions 1–6 and Corollaries 1–2 given Assumptions 1–3, and
thus under Assumptions 1′–3′ (for j = 2, 3, . . . , J − 2), those results continue to hold, with π̃∗

t,j

replacing π∗
t , π̃t,j replacing πt, X∗

j replacing X∗, ϕj replacing ϕ, Ẽ0[·] replacing E[·], and with
△j ≡ Ẽ0[X∗

j | Rm
T = θj+1]− Ẽ0[X∗

j | Rm
T = θj] replacing △, as stated.

Proof of Proposition 8. The result follows immediately from equation (8), with Vm
j and Vm

j+1 re-
placing CT,1 and CT,0, respectively.

A.3 Proofs for Section 4

Section 4.1

Proof of Proposition 9. In what follows, we will often use Ei[·] to make explicit that we are taking
expectations over DGPs indexed by i, and for now we will use the notational simplifications used in
the statement of the proposition. First, for (i), start with the case fixing π∗

0,i = π∗
0 across i. Applying

Proposition 2,

Ei[E[X∗
i ]] = Ei[(π

∗
0 − π0,i) · △i]

= Ei[π
∗
0 · △i]− Ei[π0,i · △i]

= π∗
0 · Ei[△i]− Ei[π0,i] · Ei[△i]

= (π∗
0 − Ei[π0,i]) · Ei[△i]

= Ei[π
∗
0 − π0,i] · Ei[△i]

14



= Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· Ei[△i]

where the main step in line three from Ei[π0,i · △i] to Ei[π0,i] · E[△i] follows from the assumption
that Cov(π0,i,△i) = 0.

Now consider ζ1(ϕi, π∗
0) ≡ π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0
. This is a concave function in ϕi given that π∗

0 ∈
[0, 1] and ϕi ⩾ 1; the second derivative of this function is

∂2ζ1

∂ϕ2
i
=

−2π∗
0(1 − π∗

0)
2

(π∗
0 + ϕ(1 − π∗

0))
3 ,

which is weakly negative if π∗
0 ∈ [0, 1] and ϕ ⩾ 1. Thus using Jensen’s inequality, the expectation of

the function over ϕi must be less than the function evaluated at the expectation of ϕi:

Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
⩽ π∗

0 −
π∗

0
ϕ + (1 − ϕ)π∗

0
,

where ϕ ≡ Ei[ϕi]. Now, returning to the equation above, suppose that Ei[△i] > 0. In this case,

Ei[E[X∗
i ]] = Ei[π

∗
0 −

π∗
0

ϕi + (1 − ϕi)π∗
0
] · Ei[△i]

⩽ (π∗
0 −

π∗
0

ϕ + (1 − ϕ)π∗
0
) · Ei[△i]

Now assume that Ei[△i] ⩽ 0. Then, as π∗
0 − π∗

0
ϕi+(1−ϕi)π

∗
0
= π∗

0 − π0 ⩾ 0 under our maintained
assumption that ϕi ⩾ 1:

Ei[E[X∗
i ]] = Ei[π

∗
0 −

π∗
0

ϕi + (1 − ϕi)π∗
0
] · Ei[△i].

⩽ 0

Taken together,

Ei[E[X∗
i ]] ⩽ max{0, (π∗

0 −
π∗

0
ϕ + (1 − ϕ)π∗

0
) · Ei[△i]}.

For part (ii), first consider the situation in which π∗
0,i is constant and equal to π∗

0 . As above,

Ei[E[X∗
i ]] ⩽ Ei[(π

∗
0 − π0,i) · π∗

0 ]

⩽ Ei[π
∗
0 − π0,i] · π∗

0

⩽ Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· π∗

0

Following the same logic as above, given the concavity of ζ2 ≡ π∗
0 −

π∗
0

ϕi+(1−ϕi)π
∗
0

with respect to ϕi
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and the fact that π∗
0 ⩾ 0,

Ei[E[X∗
i ]] ⩽ Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· π∗

0

⩽

(
π∗

0 −
π∗

0
ϕ + (1 − ϕ)π∗

0

)
· π∗

0 ,

as stated in the second inequality. Now allowing π∗
0,i to vary, write the upper bound for E[X∗] in

Proposition 3 as ζ2′(ϕi, π∗
0,i) ≡

(
π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0

)
π∗

0,i. Again since ∂2ζ2′/∂ϕ2
i ⩽ 0, for any arbitrary

realization of π∗
0,i = ϱ, we have from the application of Jensen’s inequality above (now dropping

the dependence of E on i) that

E[ζ2′(ϕi, π∗
0,i) |π∗

0,i] ⩽ ζ2′
(
E[ϕi |π∗

0,i = ϱ], ϱ
)

.

Now, using Proposition 3 and applying LIE to the above inequality,

E[X∗
i ] ⩽ E[ζ2′(ϕi, π∗

0,i)] ⩽ E
[
ζ2′
(
E[ϕi |π∗

0,i], π∗
0,i
)]

⩽ E
[
ζ2′(ϕ, π∗

0,i)
]

, (A.23)

where ϕ is as in the proposition statement and where the second line uses ∂ζ2′/∂ϕi ⩾ 0. Substituting
the definition of ζ2′ into this inequality yields equation (27).

For part (iii), as (π∗
0,i −

π∗
0,i

ϕ+(1−ϕ)π∗
0,i
) ⩽ π∗

0,i for any ϕ ⩾ 1,

E[X∗
i ] ⩽ E[(π∗

0,i − 0)π∗
0,i] = E[(π∗

0,i)
2],

as stated. (Equivalently, one can use (A.23) and note again that ∂ζ2′/∂ϕ ⩾ 0, so that the bound is
most slack as ϕ → ∞, giving the same bound.)

Finally, for part (iv), Corollary 2 notes that if E[X∗|θ = 0] ⩽ E[X∗|θ = 1], then E[X∗] ⩽ 0.
Therefore, if E[X∗

i |θ = 0] ⩽ E[X∗
i |θ = 1] for all i, then E[X∗

i ] ⩽ 0 for all i and thus over all streams,
completing the proof.

Section 4.2

Proof of Proposition 10. Starting with measured belief movement, under the stated assumptions
for ϵt,

E[m̂∗
t,t+1] = E[(π̂∗

t+1 − π̂∗
t )

2]

= E
[(
(π∗

t+1 − π∗
t )

2 + (ϵt+1 − ϵt)
)2
]

= E[m∗
t,t+1] + 2E[π∗

t+1ϵt+1 − π∗
t ϵt+1 − π∗

t+1ϵt + π∗
t ϵt] + E[(ϵt+1 − ϵt)

2]

= E[m∗
t,t+1] + E[ϵ2

t + ϵ2
t+1].
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For the measured counterpart of uncertainty resolution r∗t,t+1 ≡ (u∗t − u∗t+1),

E[̂r∗t,t+1] = E[(π∗
t + ϵt)(1 − π∗

t − ϵt)− (π∗
t+1 + ϵt+1)(1 − π∗

t+1 − ϵt+1)]

= E[r∗t,t+1] + E[ϵ2
t+1 − ϵ2

t ].

Combining these two, with Var(ϵt) ≡ E[(ϵt − E[ϵt])2] = E[ϵ2
t ] and X∗

t,t+1 ≡ m∗
t,t+1 − r∗t,t+1,

E[X̂∗
t,t+1] = E[X∗

t,t+1] + 2Var(ϵt).

Section 4.3

Proof of Proposition 11. We work in the context of the example in Section 2 for simplicity of
notation (and without loss of generality), so write ϕt as in equation (7) as Et[U′(CT,1)]/Et[U′(CT,0)],
where the two states are again θ = 0, 1, but where ϕt can now vary. Regardless of the DGPs
for θ, U′(CT,1) and U′(CT,1), we will show that if ϕt evolves as a martingale or supermartingale
(E[ϕt+1] ⩽ [ϕt]), then the bounds in Proposition 3 and Corollary 1 apply with ϕ0 replacing ϕ.

Intuition: Given the length of the proof, it is useful to briefly outline the steps and intuition.
(1) First, we focus on a particular situation in which a) ϕt can only take a high, medium, and
low value, and b) ϕt evolves as a martingale. Then, we assume — for the sake of contradiction —
that there exists a DGP in which ϕ moves in a way that "beats our bounds" (produces expected
RN movement that is higher than that in our bounds). We then focus on the highest-movement
DGP where ϕ changes and focus on the last meaningful movement of ϕ in this DGP. We show that
expected RN movement is strictly increased if ϕ instead remains constant, leading to a contradiction.
We conclude that there is not a DGP with expected RN movement that beats our bounds in which
a) ϕt evolves as a martingale and b) ϕt only takes three values. Then, we expand this result to the
general case. (2) First, we consider the situation in which ϕt can instead take an arbitrary number of
values. We show that if there exists a general DGP that beats our bound in which ϕt is a martingale,
there must exist a DGP that beats our bounds in which ϕt is a martingale and evolves into three
values. But, given that we proved that this is not possible, we conclude that there is not a DGP
that beats our bounds in which ϕt evolves as a martingale. (3) Finally, we expand this result to
supermartingales. We show that if there exists a DGP in which ϕt evolves as a supermartingale and
beats our bounds, there must be a DGP in which ϕt evolves as a martingale and beats our bounds.
But, given that we proved that this is not possible, we conclude that there is not a DGP that beats
our bounds.

Setup: Given that ϕt can change, we explicitly allow it to depend on the signal history. Therefore,
RN beliefs are now denoted:

π∗
t (Ht) =

ϕt(Ht) · πt(Ht)

(ϕt(Ht)− 1)πt(Ht) + 1

We still assume that the uncertainty about θ is resolved by period T. We allow more periods to
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allow resolution of uncertainty about ϕ, although we now show this is inconsequential. Specifically,
movement in ϕt is only consequential for RN movement when there is still uncertainty about θ.
Specifically, as πT ∈ {0, 1}, then πt must be constant for any t ⩾ T. Also, if πt ∈ {0, 1}, then
π∗

t = πt, so RN beliefs must also be constant for t ⩾ T. Therefore, there is no RN movement for
t ⩾ T, regardless of whether ϕt for is changing over these periods. Given that ϕt then has no impact
on RN movement for t ⩾ T, we can restrict our attention to DGPs in which ϕt is constant for t ⩾ T.

Proof : Now, assume for the sake of contradiction that there exists some DGP in which ϕt changes
and expected RN movement is higher than the bounds in Proposition 3 for some T. Consider a
DGP of this set with the highest expected RN movement. We now consider the last meaningful
movement of ϕ in this DGP. Specifically, given that ϕt is assumed to change at some point, but
ϕt is constant when t ⩾ T, there must exist some history Ht in which πt ∈ (0, 1), ϕt can change
between t and t + 1 (i.e., there exists a signal st+1 for which ϕt+1(Ht ∪ st+1) ̸= ϕt(Ht)) but for which
ϕt is constant after t + 1. We will now show that, in fact, expected RN movement is higher if ϕt

is constant following Ht, contradicting the assumption that the ϕ-changing DGP has the highest
expected RN movement.

(1) We start by focusing on a particular situation, drawing conclusions for this situation, and
then showing how the results from this situation extend to the general case. We start by considering
the case in which, following any Ht,

(a) ϕt+1(Ht ∪ st+1) can only take three values:

• ϕH
t+1 > ϕt following signal sH

t+1 with probability qH > 0

• ϕM
t+1 = ϕt following signal sM

t+1 with probability qM ⩾ 0

• ϕL
t+1 < ϕt following signal sL

t+1 with probability qL > 0

(b) ϕt evolves as a martingale: ∑i∈{L,M,H} qi · ϕi
t+1 = ϕt.

Given these assumptions and the maintained assumption that πt does not evolve in the same
period as ϕt and therefore is constant immediately following history Ht, π∗

t (Ht ∪ st+1) can take at

most three values: π∗i
t+1 =

ϕi
t+1·πt

(ϕi
t+1−1)πt+1

for i ∈ {L, M, H}.

Now, we will consider expected RN movement following Ht. From period t to t + 1, given
signal si

t+1, RN beliefs move from π∗
t to π∗i

t+1, leading to per-period RN movement

E[m∗
t,t+1|Ht ∪ si

t+1] = (π∗
t − π∗i

t+1)
2

= (
ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt+1

(ϕi
t+1 − 1)πt+1 + 1

)2

= (
ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2.

The second line is expressed in terms of πt and ϕt rather than π∗
t as this will turn out to be

easier later given that, unlike in the rest of the paper, ϕt is not constant. The third line uses our
assumption that πt = πt+1.
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After period t + 1, ϕt is assumed to be constant, so our main bounds hold with π∗
0 replaced

with π∗i
t+1 and ϕ replaced with ϕi

t+1. For example, expected RN movement (excess RN movement
plus initial RN uncertainty) given signal si

t+1 from period t + 1 onward is then bounded above by:

E[m∗
t+1,T|Ht ∪ si

t+1] = E[X∗
t+1,T|Ht ∪ si

t+1] + E[r∗t+1,T|Ht ∪ si
t+1]

⩽ (πi∗
t+1 − πt+1) · πi∗

t+1 + (1 − πi∗
t+1) · πi∗

t+1

= (1 − πt+1) · πi∗
t+1

= (1 − πt+1) ·
ϕi

t+1 · πt+1

(ϕi
t+1 − 1)πt+1 + 1

= (1 − πt) ·
ϕi

t+1 · πt

(ϕi
t+1 − 1)πt + 1

,

where the first line is the definition of RN movement, the second line plugs in our bound for excess
RN movement and uncertainty reduction given that uncertainty is zero at period T, the third
line simplifies, the fourth line casks everything in terms of ϕt and πt, and the final line uses our
assumption that πt = πt+1.

Therefore, expected RN movement from period t onward following history Ht is then bounded
above by:

E[m∗
t,T|Ht] = E[m∗

t,t+1|Ht] + E[m∗
t+1,T|Ht]

⩽ ∑
i∈{L,M,H}

qi ·
(
(

ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2 + (1 − πt) ·
ϕi

t+1 · πt

(ϕi
t+1 − 1)πt + 1

)
We now show that — given that ϕt evolves as a martingale — this DGP will have higher RN

movement if ϕt is constant from Ht onward. To see this, consider the “worst-case” DGP noted in
Proposition 5 in which ϕ remains constant at ϕt. In this case, RN movement is (arbitrarily close to):

EmaxDGP[m
∗
t,T|Ht] = (1 − πt) ·

ϕt · πt

(ϕt − 1)πt + 1

We now subtract the expected RN movement given ϕ changes (E[m∗
t,T|Ht]) from the worst-case

RN movement (EmaxDGP[m
∗
t,T|Ht]) and show it is positive given the assumption that ϕt evolves as a

martingale. To start, note that as ϕM
t+1 = ϕt, the martingale assumption can be rewritten:

∑
i∈{L,M,H}

qi · ϕi
t+1 = ϕt

∑
i∈{L,M,H}

qi · ϕi
t+1 = ∑

i∈{L,M,H}
qi · ϕt

∑
i∈{L,H}

qi · ϕi
t+1 = ∑

i∈{L,H}
qi · ϕt
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∑
i∈{L,H}

qi

qH + qL · ϕi
t+1 = ∑

i∈{L,H}

qi

qH + qL · ϕt

∑
i∈{L,H}

pi · ϕi
t+1 = ∑

i∈{L,H}
pi · ϕt

∑
i∈{L,H}

pi · ϕi
t+1 = ϕt,

where pi ≡ qi

qH+qL . Similarly, the difference EmaxDGP[m
∗
t,T|Ht]− E[m∗

t,T|Ht] is positive if and only if:

(1 − πt) ·
ϕt · πt

(ϕt − 1)πt + 1
− ∑

i∈{L,H}
pi ·
(( ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2

+ (1 − πt) ·
ϕi

t+1 · πt

(ϕi
t+1 − 1)πt + 1

)
> 0.

Substituting this martingale equation into the modified difference equation above and simplify-
ing yields EmaxDGP[m

∗
t,T|Ht]− E[m∗

t,T|Ht] > 0 if and only if

π3
t (1 − πt)

2(ϕH
t+1 − ϕt)(ϕt − ϕL

t+1)
(
(ϕH

t+1 − ϕt) + (ϕL
t+1 − 1) + (πt)(2 + πt(ϕt − 1))(ϕH

t+1 − 1)(ϕL
t+1 − 1)

)
(1 + πt(ϕt − 1))2(1 + πt(ϕH

t+1 − 1))2(1 + πt(ϕL
t+1 − 1))2

> 0.

While the expression on the left side of the inequality is rather long, it is in fact straightforward
to see that it is positive: every parentheses contains a positive value as ϕH

t+1 > ϕt > ϕL
t+1 ⩾ 1

and πt ∈ (0, 1). Therefore, we conclude that expected RN movement can be increased if ϕt

remains constant following Ht rather than changing. But this gives us a contradiction, as it violates
the assumption that the DGP with ϕt moving following Ht has the highest possible movement.
Therefore, we conclude that there does not exist a DGP satisfying our assumptions (a) and (b) that
produces more expected RN movement than the bound in Proposition 3.

(2) We now extend this observation to DGPs in which assumption (a) is relaxed. In particular,
we now consider a DGParb in which ϕt+1 following Ht can now take an arbitrary number of
values (indexed by i). Following the proof above, our goal is to show that for every DGParb,
EmaxDGP[m

∗
t,T|Ht] ⩾ EDGParb [m

∗
t,T|Ht]. To do this, we will show that if there exists a DGParb such

that EmaxDGP[m
∗
t,T|Ht] < EDGParb [m

∗
t,T|Ht] is true, there is a contradiction. Specifically, we show

that this inequality would imply that there must exist a DGP satisfying assumption (a) in which
trinary movements lead to EmaxDGP[m

∗
t,T|Ht] < E[m∗

t,T|Ht]. But, given that we just showed this is
not possible, we have a contradiction and it must be that the DGParb does not exist.

Intuition: To do this, we will show that the expected RN movement of DGParb at history Ht

can be replicated with a DGP that only using trinary movements. Although the implementation is
annoying clunky, the intuition is simple: rather that doing all of the arbitrary martingale movements
of ϕ in period t + 1, we “separate out” the movements into trinary martingale movements in
sequential periods. For example, suppose that ϕt = 3 and ϕt + 1 takes values 1, 2, 4, and 5 with
probability .25 and πt = πt+1 = 1/2 That is, we have a martingale process on ϕ with a constant
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π that leads π∗
t = 3/4 and π∗

t+1 to take values 1/2, 2/3, 4/5 and 5/6 with equal probability, such
that RN movement then takes values (3/4 − 1/2)2, (3/4 − 2/3)2, (3/4 − 4/5)2, and (3/4 − 5/6)2

with equal probability. Instead, consider a sequential DGP in which ϕt = 3 but ϕt+1 equals 1 with
probability .25 and 5 with probability .25, but stays constant at 3 with probability .5. Then, following
ϕt+1 staying constant at 3, ϕt+2 can take values 2 or 4 with equal probability (and, when ϕt+1 equals
1, ϕt+2 remains constant at 1 and when ϕt+1 equals 5, ϕt+2 remains constant at 5). Note that this
new sequential DGP only used trinary martingale movements following every history. And, note
that the likelihood of each outcome is the same: the sequential DGP has a equal probability of
ending with ϕ equal to 1, 2, 4, and 5. Finally, the total RN movement of the sequential DGP between
t and t + 2 matches the RN movement of the original DGP between t and t + 1. For example, there
is a .25 probability that RN beliefs shift from 3/4 to 1/2 and then stay constant at 1/2, for a total
RN movement of (3/4 − 1/2)2 + (1/2 − 1/2)2 = (1/2 − 3/4)2. Similarly, there is a .25 probability
that RN beliefs stay constant at 3/4 and then shifts from 3/4 to 2/3, for a total RN movement
of (3/4 − 3/4)2 + (3/4 − 2/3)2 = (1/2 − 2/3)2. Overall, then, RN movement still takes values
(3/4 − 1/2)2, (3/4 − 2/3)2, (3/4 − 4/5)2, and (3/4 − 5/6)2 with equal probability. This simple
idea is slightly clunky to implement because one needs an algorithm to separate the arbitrary
number of movements into individual movements that satisfy the martingale property.

To understand the algorithm, consider a full list of the probabilities of each ϕt+1 and the
differences ϕt+1 −ϕt, i.e. {(q1, ϕ1

t+1 −ϕt), (q2, ϕi
t+1 −ϕt), . . .}. In the example DGP mentioned above,

this difference list would be {(.25,−2), (.25,−1), (.25, 1), (.25, 2)}. For each two-part component
in a list, we define the product of the component as (qi · (ϕi

t+1 − ϕt). As we assume that ϕt is a
martingale, it must be that the sum of the product of the components of the full list is zero:

∑
i

qi · ϕi
t+1 = ϕt

∑
i

qi · (ϕi
t+1 − ϕt) = 0

Therefore, we call the full list balanced. Our first step is to remove from the list any component
with a difference of 0 (that is, remove components where ϕi

t+1 is equal to ϕt). Given this change,
note that the list is still balanced as we removed a difference of zero. Also, note that the list must
still contain some elements as we assumed that there existed some signal at history Ht for which
ϕi

t+1 ̸= ϕt. Now, we consider an algorithm on this list to create j binary balanced lists, which each
have two members. To do this, we start by separating the full list into two sub-lists depending on
whether the difference is positive or negative. Note that as the main list was balanced (the sum of
the products in the list was zero), the sum of the products in the positive and negative lists must be
equal. For example, in the above example, the negative list would be {(.25,−2), (.25,−1)} and the
positive list would be {(.25, 2), (.25, 1)}. The algorithm then proceeds as such:

1. Enter with a positive and negative difference list in which the sum of the products is equal.
Consider the first element of the current positive list (q1

pos, ϕ1
t+1,pos − ϕt) and negative list
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(q1
neg, ϕ1

t+1,neg − ϕt).

• If q1
pos · (ϕ1

t+1,pos − ϕt)− q1
neg · (ϕ1

t+1,neg − ϕt) ⩾ 0:

• Let q∗ ⩽ q1
pos solve q∗ · (ϕ1

t+1,pos − ϕt)− q1
neg · (ϕ1

t+1,neg − ϕt) = 0.

• Add the balanced list {(q∗, ϕ1
t+1,pos − ϕt), (q1

neg, ϕ1
t+1,neg − ϕt)} to set of the binary

difference lists.

• Modify the current positive and negative difference lists: remove (q1
neg, ϕ1

t+1,neg − ϕt)

from the current negative list and replace (q1
pos, ϕ1

t+1,pos − ϕt) in the current positive
list with (q1

pos − q∗, ϕ1
t+1,pos − ϕt). Note that as these subtractions are equal, the sum

of the current negative and positive lists remains equal.

• If q1
pos · (ϕ1

t+1,pos − ϕt)− q1
neg · (ϕ1

t+1,neg − ϕt) < 0:

• Let q∗ < q1
neg solve qi

pos · (ϕ1
t+1,pos − ϕt)− q∗ · (ϕ1

t+1,neg − ϕt) = 0.

• Add the balanced list {(q1
pos, ϕ1

t+1,pos − ϕt), (q∗, ϕ1
t+1,neg − ϕt)} to the binary lists.

• Modify the current positive and negative lists: remove (q1
pos, ϕ1

t+1,pos − ϕt) from the
current positive list and replace (q1

neg, ϕ1
t+1,neg − ϕt) in the current negative list with

(q1
neg − q∗, ϕ1

t+1,neg − ϕt). Note that as these subtractions are equal, the sum of the
current negative and positive lists remains equal.

2. If there are no elements left in the current positive and negative list, end the algorithm.
Otherwise, repeat.

We are left with a set of j balanced binary lists, each with two members. In the above example,
there would be two binary lists: {(.25,−2), (.25, 2)} and {(.25,−1), (.25, 1)}. Intuitively, we have
taken the original balanced difference list {(.25,−2), (.25,−1), (.25, 1), (.25, 2)} and broken it into a
set of binary balanced lists. We now take our set of j binary balanced lists and use an algorithm to
create a new sequential DGP starting at history Ht and lasting to period t + j.

1. In the initial period period t + 1:

• With probability q1
pos, let ϕt+1 equal ϕ1

t+1,pos.

• With probability q1
neg, let ϕt+1 equal ϕ1

t+1,neg.

• With probability 1 − q1
pos − q1

neg, let ϕt+1 equal ϕt.

2. In period t + k, we enter the period with (1) histories in which ϕ has remained constant
between period t and t + k − 1, which has occurred with probability 1 − ∑k−1

j=1 qj
neg − ∑k−1

j=1 qj
pos

and (2) histories in which ϕ has changed between period t and t + k − 1, which has occured
with probability ∑k−1

j=1 qj
neg + ∑k−1

j=1 qj
pos.

• For histories in which ϕ has changed, let ϕt+k = ϕt+k−1 with probability 1.

• For histories in which ϕ has remained constant:
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• With probability
qk

pos

1−∑k−1
j=1 qj

neg−∑k−1
j=1 qj

pos
, let ϕt+k equal ϕk

t+1,pos.

• With probability
qk

neg

1−∑k−1
j=1 qj

neg−∑k−1
j=1 qj

pos
, let ϕt+k equal ϕk

t+1,neg.

• With probability
1−qk

pos−qk
neg

1−∑k−1
j=1 qj

neg−∑k−1
j=1 qj

pos
, let ϕt+k equal ϕt.

Therefore, we enter period t + k + 1 with (1) histories in which ϕ has remained constant
between period t and t + k − 1, which has occurred with probability 1 − ∑k

j=1 qj
neg − ∑k

j=1 qj
pos

and (2) histories in which ϕ has changed between period t and t + k, which has occured with
probability ∑k

j=1 qj
neg + ∑k

j=1 qj
pos.

This algorithm outputs a newly-constructed DGP that has a set of important characteristics
between period t and t + j:

1. It is composed entirely of trinary movements from period t to period t + j.

2. At period t + j, the newly-constructed trinary DGP has the same probability distribution of
ϕt + j as at period t + j as the arbitrary DGP has for ϕt+1 at period t + 1 following history
Ht. To see this, first focus on the values of ϕt+1 that are positive. All of these values and
probabilities are collected in the positive binary lists above. For the newly-constructed trinary
DGP, in period t+ 1, there is a q1

pos probability that ϕt+1 equals ϕ1
t+1,pos. Then, following period

t+ 1, there will be no movement in ϕ from period t+ 1 to period t+ j following the movement
to ϕ1

t+1,pos. Therefore, in period t + j, there will be histories (which occur with probability q1
pos)

in which ϕt+j equals ϕ1
t+1,pos. Next, in period t + 2, there will be a set of histories (which occur

with probability 1 − q1
pos − q1

neg) in which there was no movement in ϕ from period t to t + 1.

Conditional on reaching this history, there is a q2

1−q1
pos−q1

neg
probability that ϕt+2 equals ϕ2

t+1,pos.

Therefore, the unconditional probability is (1 − q1
pos − q1

neg) ·
q2

1−q1
pos−q1

neg
= q2. Then, following

period t + 2, there will be no movement in ϕ from period t + 2 to period t + j following the
movement to ϕ2

t+1,pos. Therefore, in period t + j, there will be histories (which occur with
probability q2

pos) in which ϕt+j equals ϕ2
t+1,pos. The same argument extended to later periods

t + k shows that in period t + j, there will be histories (which occur with probability qk
pos) in

which ϕt+j equals ϕk
t+1,pos. Therefore, we have replicated in the newly-constructed DGP the

exact positive values and probabilities from the positive binary lists above created using the
arbitrary DGP. The same argument holds for the negative values. Therefore, at period t + j,
the newly-constructed DGP has the same probability distribution of ϕt + j as at period t + j
as the arbitrary DGP has for ϕt+1 at period t + 1.

3. The total expected movement between period t and t + k must be the same in the newly
constructed DGP as in the arbitrary DGP between periods t and t + 1. To see this, note that
in the arbitrary DGP, for every possible value of ϕt+1, the associated movement from period

t to t + 1 is ϕt·πt
(ϕt−1)πt+1 −

ϕi
t+1·πt

(ϕi
t+1−1)πt+1

)2. In the newly-constructed DGP, there are j periods of
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possible movement. However, movement in ϕ only occurs after histories in which there was
no previous movement and is only followed by periods in which there is no future movement.
Therefore, given a history in which we reach a given ϕt+j, the only associated movement

from period t to period t + j is ϕt·πt
(ϕt−1)πt+1 − ϕi

t+j·πt

(ϕi
t+j−1)πt+1

)2. But, as we just showed that the

newly-constructed DGP has the same probability distribution of ϕt + j as at period t + j as
the arbitrary DGP has for ϕt+1 at period t + 1, the movements for each must be the same.

Following period t + k, the newly-constructed DGP can be designed given ϕt+k to match the
arbitrary DGP after period t + 1 with the same value of ϕt+1. That is, in the example above, if in
the arbitrary DGP there is complete resolution following a realization of ϕt+1 = 2, then the newly-
constructed DGP is designed to have complete resolution following ϕt+k = 2. Therefore, following
history Ht, the newly-constructed DGP has the same total expected movement as the arbitrary
DGP. But recall that we were considering the existence of a DGParb such that EmaxDGP[m

∗
t,T|Ht] <

EDGParb [m
∗
t,T|Ht]. Given this existence, consider the DGP with the highest possible movement.

Then (following the proof above), consider the history from this arbitrary DGP in which there is
a meaningful final movement following history Ht. We can use the algorithm above to replicate
the all of this movement for a trinary DGP following history Ht. But, from the previous proof,
we know that there exists a DGP in which there is no movement in ϕ following Ht that produces
more expected movement than any non-degenerate trinary DGP following Ht. But, then, as the
constructed trinary DGP has the same movement following Ht as the arbitrary DGP, this non-
movement DGP must also produce more expected movement than the arbitrary DGP. But, then we
have a contradiction as we supposed that this arbitrary DGP had the highest possible movement.

(3) Finally, we now extend this observation to DGPs in which movement in ϕ is a supermartin-
gale rather than a martingale. The logic here is relatively simple: if there exists a DGP where ϕ

evolves as supermartingale and leads to expected movement that is higher than our bound, there
there must exist a martingale that leads to higher expected movement. But, we just showed that
this is not possible, and therefore we have a contradiction.

Following the same logic as the proofs above, we start by assuming that there exists a DGPsuper

in which ϕ evolves as a supermartingale such that the expected movement of this DGP is higher
than our bound for a given T. Then, consider the supermartingale DGP with the maximum
expected movement. We then focus on a history Ht with the last meaningful movement in which
movement in ϕ is a strict supermartingale. If this period does not exist, the process is a martingale,
and the previous results hold. Note that, following this movement, there cannot be further change
in ϕ. If there were and the change in ϕ was a martingale, the previous proofs show that no change in
ϕ would produce more expected movement, contradicting the assumption that this DGP produces
the highest expected movement in the class. If instead there was movement and the change in ϕ

was a strict supermartingale, it would contradict the assumption that the previous movement was
the last meaningful movement of that type.

Now, we show that it is possible to adjust DGPsuper following history Ht to increase the expected
movement following Ht by making adjusting the change in ϕ from period t to period t + 1 to be a
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martingale rather than a supermartingale. Then, as we have previously shown that a martingale
cannot have more movement than our bound, it must be that a supermartingale can also not have
more movement.

To show this, we first show that any upward movement from ϕt to ϕt+1 > ϕt always leads to
more total movement following history Ht than any downward movement from ϕt to ϕt+1 < ϕt.
To see this, consider the total expected movement from Ht onward given a change from ϕt to ϕt+1.
Following above, this is:

E[m∗
t,T|Ht, ϕt, ϕt+1] = (

ϕt · πt

(ϕt − 1)πt + 1
− ϕt+1 · πt

(ϕt+1 − 1)πt + 1
)2 + (1 − πt) ·

ϕt+1 · πt

(ϕt+1 − 1)πt + 1
.

Our claim is that this is higher if ϕt+1 > ϕt than if ϕt+1 < ϕt. To see this, it is useful to compare the
above with movement if ϕt+1 = ϕt. In this case:

E[m∗
t,T|Ht, ϕt = ϕt+1] = (1 − πt) ·

ϕt · πt

(ϕt − 1)πt + 1
.

Subtracting the two and simplifying (and writing π = πt for simplicity) yields:

E[m∗
t,T|Ht, ϕt, ϕt+1]− E[m∗

t,T|Ht, ϕt = ϕt+1]

=
(π − 1)2 · π · (1 + π · (2 + π · (ϕt − 1)) · (ϕt+1 − 1)) · (ϕt − ϕt+1)

(1 + π(ϕ − 1))2 · (1 + π(ϕt+1 − 1))2 .

As with the equation in part (a), while this is a complicated expression, it is easy to see that every
component is weakly positive (as 0 < π < 1 because the ϕ movement is meaningful and ϕ ⩾ 1),
except for (ϕt − ϕt+1). Therefore, this equation is positive if ϕt+1 < ϕt and negative if ϕt+1 > ϕt.
But then it must be that E[m∗

t,T|Ht, ϕt, ϕt+1] is greater if ϕt+1 > ϕt than if ϕt+1 < ϕt.

In this case, we can adjust the evolution of ϕ following history Ht — which was assumed to
be a supermartingale — to be a martingale by taking a probability from downward change in
ϕ and shifting it to an upward change in ϕ. Specifically, if ϕt is a strict supermartingale at Ht,
there must be at least some probability on a realization of ϕt+1 < ϕ. Consider the lowest possible
realization of ϕL

t+1 with associated probability qL. There are two possibilities. First, there is some
value ϕH

t+1 > ϕ such shifting the probability qL from ϕL
t+1 to ϕH

t+1 makes ϕ a martingale. Second,
there is some qH < qL such that shifting qH from ϕL

t+1 to ϕH
t+1 makes ϕ a martingale. In either case,

we are shifting probability from ϕL
t+1 < ϕt to ϕH

t+1 > ϕt. But, as just proven above, it must be that
E[m∗

t,T|Ht, ϕt, ϕt+1] is greater if ϕt+1 > ϕt than if ϕt+1 < ϕt. But then the total movement of the
change from ϕ at Ht must increase.

This implies that there exists a martingale process of ϕ at Ht that has higher expected movement
than the proposed strict supermartingale process of ϕ at Ht. This contradicts the assumption
that the strict supermartingale process has the highest movement in the class of supermartingale
processes (which includes a martingale process), and we have a contradiction, completing the
proof.
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B. Additional Material

B.1 Risk-Neutral Beliefs and Discount Rates

We again work in the context of the example in Section 2 for simplicity of exposition. The price of
the terminal consumption claim is given in equilibrium in by Pt(CT) = Et

[
βT−t

t
U′(CT)
U′(Ct)

CT

]
, where

βt is now the agent’s (possibly time-varying) time discount factor. Defining the gross return
RC

t,T ≡ CT
Pt(CT)

, rearranging this equation for Pt(CT) yields

Et[RC
t,T] =

1 − Covt

(
βT−t

t
U′(CT)
U′(CT)

, CT

)
Et

[
βT−t

t
U′(CT)
U′(Ct)

]

=

U′(Ct)

βT−t
t

− Covt(U′(CT), CT)

Et[U′(CT)]
, (B.1)

as usual. For full concreteness, we can write Et[U′(CT)] = πtU′(Clow) + (1 − πt)U′(Chigh) in our
two-state example, and Covt(U′(CT), CT) can be similarly rewritten as a function of πt, CT, and
U′(CT). This decomposition makes clear that intertemporal discount-rate variation can arise from
four sources:

1. Changes in the time discount factor βt.

2. Changes in contemporaneous marginal utility U′(Ct).

3. Changes in the relative probability πt.

4. Changes in state-contingent terminal consumption Ci and/or state-contingent marginal utility
U′(Ci).

Our framework thus allows for discount-rate variation arising from the first three sources, but not
the last one. One might not consider this to be particularly restrictive in the context of this example;
in theory, we can define the states such that the realization of the state fully determines consumption
and marginal utility. But when taken to the data, we define states by the return on the market
index, in which case this does become more restrictive. (We in fact slightly relax these assumptions
and allow for independent consumption-growth or marginal-utility shocks for a given return state;
Section 3.2 more fully discusses the models covered by our assumptions.)

Now consider a simple example in which a deterministic consumption stream for t < T is given
by (C0, C1, C2, C3, . . . , CT−1) = (1, 1/2, 1, 1/2, . . .) but πt is constant at πt = π0 = 0.5 for t < T.
Assume for simplicity that β = 1. Because the mapping between πt and π∗

t is one-to-one for a
given ϕ as in equation (10), measured risk-neutral beliefs would be constant for t < T in this case:
risk-neutral beliefs are invariant to changes in the risk-free rate arising from proportional changes
to Arrow-Debreu state prices across the two states, as can be seen in equations (5) and (9), and all
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discount-rate changes for the consumption claim are in fact driven by the risk-free rate in this case.
The gross (T − t)-period risk-free rate with β = 1 is R f

t,T = U′(Ct)
Et[U′(Ci)]

in equilibrium; we can thus
rewrite (B.1) as

Et[RC
t,T] = R f

t,T − Covt(U′(CT), CT)

Et[U′(CT)]
, (B.2)

and the second term is constant for t < T under the current assumptions. But we need not restrict
ourselves to settings in which all discount-rate variation arises due to changes in the risk-free rate.
For example, with π0 = 0.3, Ct = C = 1 for t < T and π1 = 0 or 0.6 with equal probability, has no
equity premium at t = 1 if π1 = 0 since pricing is risk-neutral in this case (given that there is no
risk); meanwhile, if π1 = 0.6, then E1[RC

1,T] > R f
1,T since the second term in (B.2) is positive. So the

framework is capable of achieving identification in cases in which both the risk-free rate and risk
premia are time-varying.

More generally, this example shows that the framework can handle cases in which an object
that can be intuitively thought of as the quantity of aggregate risk is time-varying. As in Hansen
and Jagannathan (1991), the conditional risk premium on any asset depends on the conditional
volatility of the stochastic discount factor, which in this case is given for the horizon T − t by
Vart(βT−tU′(CT)/U′(Ct)); we could rewrite (B.2) in terms of this value if desired. In the current
example, this value is again equal to 0 at t = 1 if π1 = 0, while it is positive if π1 = 0.6. Further,
while relative risk aversion (and thus the aggregate “price” of risk) is constant in the current
example, nothing about the example restricts utility to take this form; we could, e.g., specify
exponential utility and thus obtain time-varying relative risk aversion, and the analysis in Section 2.3
and here would nonetheless apply as well with slight modification.

Further, as discussed in Section 3.2, our framework in fact allows for much more general
variation in discount rates; for example, permanent changes to the SDF are admissible, which (as
discussed there) greatly broadens the scope of allowable variation relative to the constant-discount-
rates framework.

B.2 Simulations for the Relationship of RN Prior and DGP with △

As noted in Section 2.3, we run numerical simulations of a large number of DGPs and priors in
order to understand the precise impact of the RN prior and DGP on △ (and therefore E[X∗] for a
given ϕ).

In particular, we consider the entire class of history-independent binary signal DGPs with a
prior π∗

0 where st ∈ {l, h} and P[st = h|θ = 1] and (assumed lower) P[st = h|θ = 0] are constant
over t. These signal distributions imply likelihood ratios for the signals of Lh ≡ P[st=h|θ=1]

P[st=h|θ=0] > 1 and

Ll ≡ P[st=l|θ=0]
P[st=l|θ=1] > 1. The simulations then allow the mapping of three variables Lh, Ll , and π∗

0 into
a numerically estimated △. We find:

CONCLUSIONS OF NUMERICAL SIMULATIONS:

1. When π∗
0 is low, △ > 0 is very unlikely: the percentage of DGPs with positive △ given a
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π∗
0 < .25 is 2%. For π∗

0 < .5, it is 11%.

2. When π∗
0 is low, the only DGPs in which △ > 0 are very asymmetric and extreme. For

example, when π∗
0 = .25, △ > 0 only occurs if P[st = h|θ = 1] > .95 and Ll > 2 · Lh.

3. The converse is true when π∗
0 is high: △ < 0 is rare and only occurs given a very asymmetric

and extreme DGP.

4. For symmetric DGPs (Lh = Ll), △ ⪋ 0 when π∗
0 ⪋ .5.

5. Holding the DGP constant, △ rises with π∗
0 .

6. Holding all else constant, as Lh rises and the size of upward updates rises, △ falls. As Ll rises
and the size of upward-updates rises, △ rises.

In order to present the results visually in a simple graph, we reduce the dimensionality of the
mapping by focusing on the likelihood ratio Lh

Ll
rather than Lh and Ll individually (although this

compression leads to a slightly messier graph). In particular, while the impact of both Lh and Ll

on △ appears monotonic, the impact of Lh
Ll

is only monotonic on average. For example, there are
many combinations of Lh and Ll in which Lh

Ll
= 1 but each combination leads to a different △.

Figure A.1 is a contour plot with the RN prior on the x-axis, with the y-axis stacking all of the DGP
combinations in order of the likelihood ratio, and the contour colors showing the approximate
value of △ (darker colors corresponding to higher values) for each prior and DGP (with the dotted
line highlighting the points at which △ = 0). For example, drawing a vertical line at a prior of
π∗

0 = .25 suggests that a large portion of DGPs produce a △ < 0 and the only DGPs that produce
△ > 0 have extreme likelihood ratios.

We briefly note that these conclusions shows up in Table 1. For the first DGP, the RN prior is
.5 and the signals are symmetric. Symmetry then requires that E[X∗|θ = 0] = E[X∗|θ = 1] and
△ = 0, with Proposition 2 then implying that E[X∗] = 0. For the second DGP, the signals are such
that updating sizes are asymmetric: updates upwards are large, whereas updates downward are
small. Consequently, the expected movement given a state of 1 is large (.405) compared that given
a state of 0 (.095), such that △ is negative (−.31). Proposition 2 then implies that E[X∗] will also
be negative. The opposite occurs in the third DGP, which is asymmetric in the opposite way and
therefore leads to the opposite △ = −.31.

B.3 Description of Gabaix (2012) Rare Disasters Model for Example 2

Assume a representative agent with CRRA consumption utility, and assume that log consumption
ct ≡ log(Ct) and log dividends dt ≡ log(Dt) evolve respectively according to

ct+1 = ct + gc + εc
t+1 + log(Bt+1)1{disastert+1},

dt+1 = dt + gd + εd
t+1 + log(Ft+1)1{disastert+1},
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where (εc
t+1, εd

t+1)
′ is i.i.d. bivariate normal with mean zero and arbitrary covariance and is indepen-

dent of all disaster-related variables,3 and Bt+1 and Ft+1 are arbitrarily correlated random variables
with support [0, 1] (or some discretization thereof) that affect consumption and dividends respec-
tively in the case of a disaster in period t + 1, which occurs with probability pt. Define resilience
Ht according to Ht = ptEt[B

−γ
t+1Ft+1 − 1 | 1{disastert+1}], write Ht = H∗ + Ĥt, and assume that the

variable part follows

Ĥt+1 =
1 + H∗
1 + Ht

e−ϕH Ĥt + εH
t+1,

where Et[εH
t+1] = 0 and this shock is independent from all other shocks. Then the statements in

Example 2 follow.

B.4 Description of Campbell–Cochrane (1999) Habit Formation Model for Example 3

Assume a representative agent with utility E0{∑∞
t=0 βt[(Ct − Ht)1−γ − 1]/(1 − γ)}, where Ct is

consumption and Ht is the level of habit, taken as exogenous by the agent. Defining the surplus-
consumption ratio Sc

t ≡ (Ct − Ht)/Ht, assume that sc
t ≡ log(Sc

t ), ct ≡ log(Ct), and log dividends
dt ≡ log(Dt) evolve respectively according to

sc
t+1 = (1 − ϕ)sc + ϕsc

t + λ(sc
t)εt+1,

ct+1 = g + ct + εt+1,

dt+1 = g + dt + ηt+1,

where εt+1
i.i.d.∼ N (0, σ2

ε ) (see footnote 3), ηt+1
i.i.d.∼ N (0, σ2

η), Corr(εt+1, ηt+1) = ρ, and the sensitivity
function λ(sc

t) is specified as

λ(sc
t) =

[
1
Sc

√
1 − 2(sc

t − sc)− 1
]
1{sc

t ⩽ sc
max},

where Sc
= exp(sc) = σε

√
γ/(1 − ϕ) is the assumed steady-state surplus-consumption ratio and

sc
max = sc + (1 − Sc

)2/2. Then the statement in Example 3 follows.

B.5 Simulations for Submartingale ϕt

For simplicity, we consider the framework in Section 2, and we simulate a situation in which the
person learns about θ, U′(CT,1) and U′(CT,1) via constant binary DGPs with different combinations
of signal strengths. Figure A.2 plots distributions for E[m∗] (rather than E[X∗], since E[m∗] in this
case is what changes with the DGP) across these simulations.

First (using the very dark line), we consider the baseline situation in which π∗
0 = .5 and ϕt = 3

for all t. This produces a symmetric distribution around 0. Minus smoothing and simulation errors,

3To be complete with respect to our discrete-state setting, we can assume (εc
t+1, εd

t+1)
′ is in fact an appropriately

discretized normal distribution (e.g., a shifted binomial distribution).
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E[X∗] never crosses .125 (the theoretical upper bound from Proposition 3 for E[X∗] given π∗
0 = .5

and ϕt = 3.)

Next, we allow additional uncertainty about U′(CT,1) and U′(CT,1) so that ϕt also evolves
over time. To start, consider the slightly lighter-dark set of distributions with the label "low ϕ

uncertainty." In this case, U′(CT,1) is assumed to be 2.5 or 3.5 with equal probability and U′(CT,0)

is 0.833 or 1.167 with equal probability, so that ϕ0 = 3 but ϕT can vary from 2.14 to 4.2 (with a
coefficient of variance of 12%). Each line then represents a different E[X] distribution given a
different set of DGPs that reveal information about U′(CT,1) and U′(CT,0). In this case, changing
ϕ has virtually no impact on the E[X∗] statistic regardless of how information is revealed about
ϕ: the average E[X∗] rises by 0.0012, and the percentage of DGPs in which E[X∗] rises above the
bound of .375 rises by just .00007. Similarly, in the gray set of distributions with the label "medium
ϕ uncertainty," U′(CT,1) is 2 or 4 and U′(CT,0) is 0.667 or 1.333, so that ϕ0 = 3 but ϕT can vary from
1.5 to 6 (with a coefficient of variance of 54%). Even given this large uncertainty about ϕT, E[X∗]

rises by 0.006 on average, and the percentage of DGPs above the bound rises by .0003. Finally, in
the lightest-colored set of distributions with the label "high ϕ uncertainty," U′(CT,1) is 1.5 or 4.5 and
U′(CT,0) is 0.5 or 1.5, so that ϕ0 = 3 but ϕT can vary from 1 to 9 (with a coefficient of variance of
100%). Given this extreme uncertainty about ϕT, average E[X∗] still only rises by 0.015, and the
percentage of DGPs above the bound rises by .0012.

B.6 Solution Method and Simulations for Habit Formation Model

See Appendix B.4 for a description of the model, and the calibrated parameters are identical to
those used by Campbell and Cochrane (1999, Table 1), converted to daily values, for the version of
their model with imperfectly correlated consumption and dividends. We consider 90-day option-
expiration horizons (i.e., Ti − 0i = 90), and after solving the model for the price-dividend ratio,
we then solve for the joint distribution for returns (from t to Ti) and the SDF at every point in a
gridded state space as of t = Ti − 1, then t = Ti − 2, and so on, as below.

The initial market index value is normalized to Vm
0i

= 1, and the joint CDF for the SDF
realization and the return as a function of the current surplus-consumption state is then solved
by iterating backwards from Ti: after solving the model for the price-dividend ratio as a function
of the surplus-consumption value, we then calculate the Ti − 1 CDF for any possible surplus-
consumption value by integrating over the distributions of shocks to consumption (and thus
surplus consumption) and dividends at Ti; we then project this CDF onto an interpolating cubic
spline over the three dimensions (Sc

Ti−1, MTi , log(Rm,e
Ti

)); we then calculate the Ti − 2 CDF by
integrating over the distribution of shocks at Ti − 1 and the projection solutions for the conditional
distribution functions for (Ti − 1) → Ti obtained in the previous step; and so on. These CDFs are
then used for the model simulations.

We conduct 25,000 simulations, where each simulation runs from 0i to Ti, and for which the
initial surplus-consumption state is drawn from its unconditional distribution. For each period
in each simulation, we evaluate risk-neutral beliefs over return states at every point in the space
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Sbaseline as used above and use these to calculate the set of conditional risk-neutral beliefs {π̃∗
t,i,j}j.

Further, we store the associated set of expected SDF slopes {ϕt,i,j}j. We can thus calculate the true
average values of these objects of interest, ϕ0i ,j ≡ Ê[ϕ0i ,i,j], where Ê[·] denotes the expectation over
all simulations i and we have fixed the state pair j. And using the risk-neutral beliefs series, we can
naïvely apply our theoretical bound in Proposition 9 to obtain lower-bound estimates for those SDF
slopes and compare those estimates to the true simulated values. Relative risk aversion for this
model’s representative agent does not match the definition used in Proposition 8, as this agent’s
utility does not depend only on terminal wealth (see Campbell and Cochrane, 1999, Section IV.B),
so we accordingly present estimates for the SDF slope rather than for relative risk aversion.

Figure A.3 presents these simulation results. The blue circles show the true simulated average
values of the SDF slopes ϕ0i ,j, while the red triangles show the naïve lower-bound estimates of
these values using our theoretical bound on the simulated risk-neutral beliefs data. Considering
the first question posed at the outset of this subsection, it is clear in both cases that these SDF-slope
values are far below those obtained from our empirical estimates above, so the model does not
replicate the observed variation in risk-neutral beliefs even with the violation of CTI. We can
understand the validity of the theoretical bound for the interior states by way of Proposition 11,
which shows that the bounds hold approximately for violations of CTI for which the ϕt,i,j process
is close to a martingale. In our simulations, the values |Ê[ϕt+1,i,j − ϕt,i,j]| for different state pairs j
range from a minimum of 0.00002 to a maximum of 0.00011, which is not large enough to invalidate
the theoretical bounds.

B.7 Data Cleaning and Measurement of Risk-Neutral Distribution

Before detailing measurement of the risk-neutral distribution, we note that we must collect ad-
ditional data in order to follow the procedure below. In particular, in order to obtain the ex post
return state for each option expiration date Ti (and thereby assign probability 1 to that state on
date Ti, so that our streams are resolving), we need S&P 500 index prices used as option settlement
values. Our first step in this exercise is therefore to obtain end-of-day index prices (which we
take as well from OptionMetrics). But the settlement value for many S&P 500 options in fact
reflects the opening (rather than closing) price on the expiration date; for example, the payoff
for the traditional monthly S&P 500 option contract expiring on the third Friday of each month
depends on the opening S&P index value on that third Friday morning, while the payoff for the
more recently introduced end-of-month option contract depends on the closing S&P index value
on the last business day of the month.4 To obtain the ex-post return state for A.M.-settled options,
we hand-collect the option settlement values for these expiration dates from the Chicago Board
Options Exchange (CBOE) website, which posts these values.

In addition, in order to measure the risk-neutral distribution and to measure realized excess
index returns, we need risk-free zero-coupon yields R f

t,Ti
for t = 0i, . . . , Ti − 1. To obtain these,

4See http://www.cboe.com/SPX for further detail. For our dataset, the majority (roughly 2/3) of option expiration
dates correspond to A.M.-settled options.
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we follow van Binsbergen, Diamond, and Grotteria (2022) and obtain the relevant yield directly
from the cross-section of option prices by applying the put-call parity relationship. We apply
their “Estimator 2,” which obtains R f

t,Ti
= β−1/T from Theil–Sen (robust median) estimation of

qm,put
t,i,K − qm,call

t,i,K = α + βK + εt,i,K. This provides a very close fit to the option cross-sections (see van
Binsbergen, Diamond, and Grotteria, 2022, for details) and thus produces a risk-free rate consistent
with observed option prices, as is necessary to correctly back out the risk-neutral distribution.

Finally, for both the OptionMetrics end-of-day and CBOE intraday data, we apply standard
filters (e.g., Christoffersen, Heston, and Jacobs, 2013; Constantinides, Jackwerth, and Savov, 2013;
Martin, 2017) to the raw option-price data before estimating risk-neutral distributions. We drop
any options with bid or ask price of zero (or less than zero), with uncomputable Black–Scholes
implied volatility or with implied volatility of greater than 100 percent, with more than one year to
maturity, or (for call options) with mid prices greater than the price of the underlying; we drop
any option cross-section (i.e., the full set of prices for the pair (t, Ti)) with no trading volume on
date t, with fewer than three listed prices across different strikes, or for which there are fewer
than three strikes for which both call and put prices are available (as is necessary to calculate the
forward price and risk-free rate); and after transforming the data to a risk-neutral distribution as
below, we keep only conditional RN belief observations π̃∗

t,i,j for which the non-conditional beliefs
satisfy π∗

t (Rm
Ti
= θj) + π∗

t (Rm
Ti
= θj+1) ⩾ 5%. Our bounds can be calculated using data of arbitrary

frequency, so we calculate X∗
i,j using changes in RN beliefs over whatever set of trading days are

left in the sample after this filtering procedure.

As introduced in Section 5.1, we measure the risk-neutral distribution for returns by applying
the following steps to the remaining observed option prices (for which we use mid prices), following
Malz (2014):

1. Transform the collections of call- and put-price cross-sections (for example, for call options on
date t for expiration date Ti, this set is {qm

t,i,K}K∈K) into Black–Scholes implied volatilities.

2. Discard the implied volatility values for in-the-money calls and puts, so that the remaining steps
use data from only out-of-the-money put and call prices (as, e.g., in Martin, 2017). Moneyness is
measured relative to the at-the-money-forward price, measured (again following Martin, 2017)
as the strike K at which qm,put

t,i,K = qm,call
t,i,K .

3. Fit a cubic spline to interpolate a smooth function between the points in the resulting implied-
volatility schedule for each trading date–expiration date pair. The spline is clamped: its boundary
conditions are that the slope of the spline at the minimum and maximum values of the knot
points K is equal to 0; further, to extrapolate outside of the range of observed knot points,
set the implied volatilities for those unobserved strikes equal to the implied volatility for the
closest observed strike (i.e., maintain a slope of 0 for the implied-volatility schedule outside the
observed range).

4. Evaluate this spline at 1,901 strike prices, for S&P index values ranging from 200 to 4,000 (so
that the evaluation strike prices are K = 200, 202, . . . , 4000), to obtain a set of implied-volatility
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values across this fine grid of possible strike prices for each (t, Ti) pair.5

5. Invert the resulting smoothed 1,901-point implied-volatility schedule for each (t, Ti) pair to
transform these values back into call prices, and denote this fitted call-price schedule as
{q̂m

t,i,K}K∈{200,202,...,4000}.

6. Calculate the risk-neutral CDF for the date-Ti index value at strike price K using P∗
t (V

m
Ti

< K) =

1 + R f
t,Ti

(q̂m
t,i,K − q̂m

t,i,K−2)/2. (See the proof of equation (22) in Appendix A.2 for a derivation of
this result; the index-value distance between the two adjacent strikes is equal to 2 given that we
evaluate the spline at intervals of two index points.)

7. Defining Vm
i,j,max and Vm

i,j,min to be the date-Ti index values corresponding to the upper and lower
bounds, respectively, of the bin defining return state θj,6 we then calculate the risk-neutral
probability that return state θj will be realized at date Ti, referred to with slight notational abuse
as P∗

t (θj), as
P∗

t (θj) = P∗
t (V

m
Ti

< Vm
i,j,max)− P∗

t (V
m
Ti

< Vm
i,j,min),

where the CDF values are taken from the previous step using linear interpolation between
whichever two strike values K ∈ {200, 202, . . . , 4000} are nearest to Vm

i,j,max and Vm
i,j,min, respec-

tively.

Steps 1 and 2 represent the only point of distinction between our procedure and that of Malz,
who assumes access to a single implied-volatility schedule without considering put or call prices
directly; our procedure is accordingly essentially identical to his. Note that we transform the option
prices into Black–Scholes implied volatilities simply for purposes of fitting the cubic spline and
then transform these implied volatilities back into call prices before calculating risk-neutral beliefs,
so this procedure does not require the Black–Scholes model to be correct.7 The clamped cubic spline
proposed by Malz (2014), and used in step 3 above, is chosen to ensure that the call-price schedule
obtained in step 5 is decreasing and convex with respect to the strike price outside the range
of observable strike prices, as required under the restriction of no arbitrage. Violations of these
restrictions inside the range of observable strikes, as observed infrequently in the data, generate
negative implied risk-neutral probabilities; in any case that this occurs, we set the associated
risk-neutral probability to 0.

As noted in step 3, the clamped spline is an interpolating spline, as it is restricted to pass through
all the observed data points so that the fitted-value set {q̂m

t,i,K} contains the original values {qm
t,i,K}.

Some alternative methods for measuring risk-neutral beliefs use smoothing splines that are not
constrained to exhibit such interpolating behavior. To check the robustness of our results to the

5This set of ∼1,900 strike prices is on average about 20 times larger than the set of strikes for which there are prices
in the data, as there is a mean of roughly 90 observed values in a typical set {qm

t,i,K}K∈K .
6That is, formally, Vm

i,j,min = R f
0i ,Ti

Vm
T0

exp(θj − 0.05) and Vm
i,j,max = R f

0i ,Ti
Vm

0i
exp(θj). For example, for excess return

state θ2, we have Vm
i,j,min = R f

0i ,Ti
Vm

0i
exp(−0.2) and Vm

i,j,max = R f
0i ,Ti

Vm
T0

exp(−0.15).
7We conduct this transformation following Malz (2014), as well as much of the related literature, which argues that

these smoothing procedures tend to perform slightly better in implied-volatility space than in the option-price space
given the convexity of option-price schedules; see Malz (1997) for a discussion.
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choice of measurement technique, we have accordingly used one such alternative method proposed
by Bliss and Panigirtzoglou (2004). Empirical results obtained using risk-neutral beliefs calculated
in this alternative manner are unchanged as compared to the benchmark results in Section 5.4.

We have also conducted robustness tests with respect to the fineness of the grid on which we
evaluate the spline in step 4 and calculate the risk-neutral CDF in step 6, with results from these
exercises also indistinguishable from the benchmark results.

B.8 Matching Noise Variance Estimates to X∗ Observations

After estimating Var(ϵt) = Var(ϵt,i,j) separately for each combination of trading day t, expiration
date Ti, and return state pair j in our intraday sample following Section 5.2, we must then match the
noise estimates (which are obtained only for a subsample of days) to the observed excess movement
observations in our original daily data. To do so, we take advantage of the fact that the best
predictors of V̂ar(ϵt,i,j) are (i) state pair j (we see more noise for tail states) and (ii) the observed RN
belief of either θj or θj+1 being realized, Σ∗

t,i,j ≡ π∗
t (Rm

Ti
= θj) + π∗

t (Rm
Ti
= θj+1) (conditional beliefs

are noisier when the underlying sum Σ∗
t,i,j is lower, as Σ∗

t,i,j enters into the denominator of π̃∗
t,i,j).

We thus partition Σ∗
t,i,j into 5-percentage-point bins ([0, 0.05), [0.05, 0.1], . . .), and then calculate the

average noise σ̂ϵ,j,Σ ≡ V̂ar(ϵt,i,j) for each combination of state pair j and bin for Σ∗
t,i,j. We then match

σ̂ϵ,j,Σ to each observed one-day excess movement observation X̂∗
t,t+1,i,j in our original end-of-day

data, based on that observation’s state j and total probability Σ∗
t,i,j.

B.9 Details of Bootstrap Confidence Intervals

Our block-bootstrap resampling procedure is described in Section 5.4, and we provide further
details on how we construct our one-sided confidence intervals for Table 4 here. Fixing a given
ϕ, denote the point estimate for emain

i (ϕ) by ê(ϕ). The null that emain
i (ϕ) = 0 is rejected at the 5%

level if 2ê(ϕ)− e∗(0.95)(ϕ) > 0, where e∗(0.95)(ϕ) is the 95th percentile of the bootstrap distribution

of emain
i (ϕ) statistics (i.e., it is rejected if it is outside of the one-sided 95% basic bootstrap CI for

emain
i (ϕ)). We conduct this procedure for all possible ϕ values, and we obtain ϕ̂LB = minϕ s.t.

2ê(ϕ)− e∗(0.95)(ϕ) ⩽ 0.

A more straightforward procedure for conducting inference on ϕ would be to construct the
basic bootstrap CI directly for ϕ (i.e., ϕ̂LB = 2ϕ̂ − ϕ∗

(0.95)). The challenge preventing us from doing
so is that in nearly all cases, the 95th percentile of the bootstrap distribution for ϕ̂ is ∞, given how
large our point estimates are (and how much excess movement we observe in our data). This
motivates our use of a test-inversion confidence interval using the residuals for different possible
values of ϕ, which solves this problem. These CIs achieve asymptotic coverage of at least the
nominal level under weak conditions (discussed further below), given the duality between testing
and CI construction; see, e.g., Carpenter (1999). We find that our procedure performs quite well,
with unbiased and symmetric bootstrap distributions around the full-sample point estimate.

We note that our bootstrap procedure fully preserves the groupings of return-state pairs (in-
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dexed by j = 1, . . . , J − 1) for each set of observations indexed by i (corresponding to the option
expiration date) within each block, as we split the observations into blocks only by time and not by
return states. We do so in order to obtain valid inference for the aggregate value ϕ, which uses ob-
servations for state pairs (θ2, θ3), . . . , (θJ−2, θJ−1), in the face of arbitrary dependence for the obser-
vations across those state pairs and a fixed number of return states J (whereas we assume N → ∞,
and further the number of blocks B → ∞ according to a sequence such that (TN + 1)/B → ∞). In
this way our procedure is in fact a panel (or cluster) block bootstrap; see, for example, Palm, Smeekes,
and Urbain (2011). Lahiri (2003, Theorem 3.2) provides a weak condition on the strong mixing coef-
ficient of the relevant stochastic process — in our case, {(X∗

i,j, π̃∗
0,i,j, {V̂ar(ϵt,i,j)})t,j}i — under which

the blocks are asymptotically independent and the bootstrap distribution estimator is consistent for
the true distribution under the asymptotics above, so that our test-inversion confidence intervals
have asymptotic coverage probability of at least 95% for the population parameters of interest in
the presence of nearly arbitrary (stationary) autocorrelation and heteroskedasticity.8 This coverage
rate may in fact be greater than 95% given that we are estimating lower bounds for the parameters
of interest rather than the parameters themselves, and this motivates our use of one-sided rather
than two-sided confidence intervals, as in Section 5.4.

B.10 Regressions for RN Excess Movement

As discussed in Section 5.5, we consider reduced-form evidence on the macroeconomic and financial
correlates of RN excess movement. Table A.1 shows the results of the regressions discussed in that
section. The dependent variable is the quarterly average of noise-adjusted RN excess movement
X∗

t,t+1,i,j, where the average is calculated across all available expiration dates and interior state pairs
for all trading days in a quarter. We aggregate to the quarterly level given the frequency of data
available for the regressors we consider, and we use quarterly averages as well for any dependent
variables with data available at a higher frequency. Aside from the constant and time trend, all
variables (both dependent and independent) are normalized to have unit standard deviation for
purposes of interpretation, and we present heteroskedasticity- and autocorrelation-robust standard
errors using the equal-weighted periodogram estimator of the long-run variance; see Lazarus,
Lewis, and Stock (2021) for results on the optimality properties of this estimator.

Across all specifications — see columns (1), (4), and (5), in particular — the liquidity- and
noise-related variables (bid-ask spreads and volume) have coefficients that are both economically
and statistically small, which provides further evidence that factors specific to the option market
(or mismeasurement of RN beliefs) are not driving our results. By contrast, excess movement
has a significant positive relationship with the VIX in (2), as is intuitive. Lagged S&P 500 returns

8There are additional conditions required for the result of Lahiri (2003, Theorem 3.2) to hold, but they will hold
trivially in our context under the RE null given the boundedness of the relevant belief statistics. Our block bootstrap is
a non-overlapping block bootstrap (NBB); others (Künsch, 1989; Liu and Singh, 1992) have proposed a moving block
bootstrap (MBB) using overlapping blocks, among other alternatives. While the MBB has efficiency gains relative to the
NBB (Hall, Horowitz, and Jing, 1995), these are “likely to be very small in applications” (Horowitz, 2001, p. 3190), so we
use the NBB for computational convenience.
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and valuation ratios are also positively related to excess movement, depending on the particular
specification. The R2 value for the regression with all right-hand-side variables included is 0.61,
indicating that these statistics are capable of jointly accounting for a significant portion of the
quarterly variation in excess movement.
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Additional Tables and Figures

Table A.1: Regressions for Quarterly Average of RN Excess Movement

(1) (2) (3) (4) (5)

Bid-Ask Spread 0.22 -0.20 -0.26
[0.12] [0.13] [0.15]

Option Volume 0.12 0.13 0.17
[0.07] [0.07] [0.09]

VIX 0.55 0.84 0.91
[0.16] [0.17] [0.18]

Baker–Bloom–Davis Uncertainty -0.36 0.08 0.05
[0.15] [0.13] [0.12]

12-Month S&P Return 0.03 0.50 0.50
[0.09] [0.12] [0.12]

Price to 10-Year Earnings Ratio 0.40 0.34 0.38
[0.11] [0.11] [0.12]

Time 0.00
[0.00]

R2 0.09 0.26 0.18 0.60 0.61
N 88 88 88 88 88

Notes: Dependent variable in all regressions is the empirical average Ê[X∗
t,t+1,i,j] calculated

across all available expiration dates and interior state pairs, using all trading dates t within
each given quarter. Regressors are correspondingly quarterly averages of each relevant series.
All variables (dependent and independent, aside from time trend) are normalized to have
unit standard deviation. Constant is included in each regression. Heteroskedasticity- and
autocorrelation-robust standard errors are in parentheses, calculated using the equal-weighted
periodogram orthonormal series estimator for the long-run variance with 8 degrees of freedom,
following the formula recommended in Lazarus, Lewis, Stock, and Watson (2018).
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Figure A.1: Contour Plot: Simulations for △ by DGP and π∗
0

Note: See text in Appendix B.2 for description of simulations.
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Figure A.2: RN Belief Movement Distributions with Time-Varying ϕt

Note: See text in Appendix B.5 for description of simulations.
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Figure A.3: Estimates of SDF Slope in Habit Formation Model Simulations
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Notes: See text in Appendix B.6 for description of simulations.
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