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Abstract

We study the intertemporal dynamics of investors’ return expectations. Using both
options and survey data, we estimate stock-return expectations at different horizons and
test if these term structures are consistent with investors’ expectations in the future.
We find that investors consistently overestimate long-run expected stock returns during
bad times: when expected returns are high, investors believe expected returns will
stay elevated for longer, and by more, than their own subsequent beliefs justify (and
vice versa during good times). This excess persistence can account for excess volatility
in prices, inelastic demand for equities, and stylized facts about the equity term structure.
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1 Introduction

One of the organizing facts in asset pricing is that expected returns on equities vary over time.
A key question is how investors perceive this variation ex ante. One aspect of this question,
which has been studied extensively, is how investors perceive the contemporaneous level of the
equity premium. Another aspect, which is the focus of this paper, is how investors perceive
the term structure dynamics of expected returns. In particular, how do investors, at given
points in time, expect the equity premium to develop in the future? This often-overlooked
question is of key importance for understanding stock-price dynamics, as prices depend not
only on the contemporaneous equity premium but the full term structure of future expected
equity premia.

We study the dynamics of these return expectations using both option prices and survey
data. First, using a global sample of equity index options, we extract the equity premium
at multiple horizons as perceived by the “representative agent,” by which we mean any
investor willing to hold the market portfolio. We focus for the most part on changes in these
expectations over time, and we provide theoretical results showing that these changes can
be identified under much weaker assumptions than those usually used to estimate the level
of expected returns at any given time. The option prices thus provide a powerful lab for
testing the intertemporal consistency of return expectations in a rich data set covering 20
equity indices over 30 years. We then complement the options data with return expectations
from surveys of professional forecasters and CFOs. We focus on surveys eliciting return
expectations at multiple horizons, allowing us to study the dynamics of return expectations
in a more model-free setting.

Our main empirical finding is that investors have excessively persistent expectations about
future expected returns. We find across surveys and options that expectations about long-run
returns are countercyclical, and in fact excessively so: in bad times, investors believe expected
returns will stay elevated for longer, and by more, than their own subsequent beliefs justify.
(The reverse applies in good times.) During the 2008 financial crisis and the 2020 Covid
crisis, for instance, investors believed that equity premia would stay elevated for years; ex
post, however, their perception of the equity premium had almost completely reverted to
its usual level within a year. This pattern applies consistently over time, and across all the
settings we study.

This excess persistence in perceived equity premia represents a new source of excess
volatility in stock prices. One interpretation of our results is that during crises, investors
expect their risk aversion and required returns to stay elevated for long periods of time,
leading to substantial decreases in prices. Risk aversion and required returns, however, quickly
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return to normal, generating a large rebound in prices. Without the initial overestimation of
the persistence of required returns, fluctuations in prices would be more modest; we show,
for instance, that predictable risk-premium forecast errors can account for nearly half of the
decrease in prices during the global financial crisis, and nearly all of the decrease during the
Covid crash.1

Our findings on the term structure of return expectations also help explain a number of
facts documented in recent work, related to (i) stylized facts about the equity term structure,
(ii) investors’ inelastic demand for equities in response to a given change in prices, and (iii)
disagreements in previous research related to survey expectations of returns. We explore
these implications further below.

1.1 Framework and Stylized Facts

To understand the nature of our analysis, we begin by defining the following notation for the
expected log return on the market over n periods:

µ
(n)
t = Et[rt,t+n].

We refer to these expected returns as spot rates. If at time t we observe the n-period and
(n+ 1)-period spot rates, we can back out the expected returns between these two periods,
which we call the forward rate:

f
(n)
t = µ

(n+1)
t − µ

(n)
t = Et[µ

(1)
t+n].

After n periods, we can compare this forward rate to the realized one-period spot rate, µ(1)
t+n.

Under the law of iterated expectations, the forward rate should be an unbiased predictor of
the realized spot rate, which means that forecast errors,

εt+n = µ
(1)
t+n − f

(n)
t ,

should have an expected value of zero and be unpredictable by any time-t information.
The forward rates and forecasts errors can be estimated straightforwardly with survey

data, as long as the given survey provides return expectations at multiple horizons. This is
the case for two well-known surveys in the finance literature, namely the Livingston survey of
professional forecasters and the Duke CFO survey of financial executives. In the Livingston

1That said, the expected return is an endogenous variable determined in equilibrium. The finding that
investors have excessively persistent expectations about the equity premium can be thus be interpreted as
though investors have excessively persistent beliefs about the state variables that determine expected returns.
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survey, for instance, we observe expected returns at the 6-month and 12-month horizon.
These expectations allow us to calculate a 6-month, 6-month forward rate, namely today’s
expectation of the 6-month spot rate, 6 months from now. By comparing this forward rate to
the realized 6-month spot rate, as observed 6 months later, we can calculate forecast errors
and evaluate how well forward rates predict future spot rates.

These forecast errors for return expectations can also be estimated from option prices
under relatively mild conditions. We start by considering a simple special case, in which an
investor has log utility over the market return. For this investor, we can directly estimate
expected returns at different horizons from option prices, allowing us to estimate forward
rates and forecast errors over time. But an important contribution of our paper is to show
that we can extract the forecast errors under much more general conditions than log utility:
for any investor, we can identify expected forecast errors up to a small risk premium term
that can be managed empirically or through theory. Our forecast-error estimates are thus
useful for a wide range of specifications of preferences and the data generating process. The
advantage of the option-based data is that we observe forward rates and forecasts errors at
many different horizons, in a long sample that spans 20 countries.

We present the main stylized facts about the behavior of forward rates and forecast errors
in Table 1. First, as shown in Panel A, forward rates are decent predictors of future realized
spot rates. Across the three data sources, future realized spot rates increase by around 0.7
percentage points when ex ante forward rates increase by 1 percentage point. The R2 value
varies between 0.38 and 0.71. In more detailed analysis, we find that forward rates are useful
for predicting both transitory and more persistent fluctuations in spot rates. Taken together,
the predictive regressions suggest that forward rates have predictive power over future spot
rates, but that future spot rates move by significantly less than predicted by forward rates.

As such, investors appear to make predictable forecast errors in expected returns. When
forward rates are high, subsequent spot rates are lower than expected by investors ex ante.
This result can be seen in Panel B, which reports results of predictive regressions of realized
forecasts errors on ex ante forward rates: spot rates are around 0.25 percentage points
lower than expected when forward rates are 1 percentage point higher.2 These results are
statistically significant, and the R2 values indicate meaningful economic predictability. This
pattern illustrates one of the key results of the paper, namely that there is excess persistence
in return expectations: when expected returns are relatively high — as measured by spot
rates or forward rates — investors think that returns will stay elevated for longer, and by
more, than what their subsequent beliefs justify.

To illustrate this excess persistence, Figure 1 shows forward rates and realized spot rates

2There are slight differences in the regression specifications in Panels A and B, as explained further below.
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Table 1Table 1
Stylized Facts about Forward Rates and Forecasts Errors

This table reports stylized facts about implied equity forward rates measured in three different ways. The first
measure is the 6-month, 6-month forward rate estimated in our global sample of option prices (1990-2021);
the second measure is the U.S. 6-month, 6-month forward rate from the Livingston survey of professional
forecasters (1992-2022); the third measure is the U.S. 1-year, 9-year forward rate from the Duke CFO Survey
(2004-2021). The forecast error εi,t+1, where i indexes the data set, is the difference between the realized
spot rate at t+ 1 and the ex ante forward rate. See the remainder of the paper for details.

Expectations Measured by:

Livingston CFO
Options Survey Survey

Panel A. Predictability in Spot Rates (µi,t+1 = β0 + β1 fi,t + ei,t+1)

β1 0.88 0.68 0.63
R2 0.71 0.38 0.46

Panel B. Predictability of Forecast Errors (εi,t+1 = β0 + β1 fi,t + ei,t+1)

β1 -0.34 -0.19 -0.15
R2 0.06 0.06 0.03

Panel C. Cyclical Variation in Forward Rates and Forecast Errors

ρ (fi,t, 1/CAPEt) 0.04 0.42 0.21
ρ (εi,t+1, 1/CAPEt) -0.38 -0.19 -0.38

from the option-based measure during three crises: the 1998 Russian debt crisis, the 2008
global financial crisis, and the early-2020 Covid crisis. The blue circles show one-month
forward rates maturing n = 0, 1, 2, 3, 4, and 5 months from the first plotted date t (which is
soon after each crisis onset). The orange triangles show ex post realized one-month spot rates
as of months t, t+1, . . ., t+5. In all cases, the spot equity premium (the first point) increases
substantially as of the crisis onset. Forward rates also increase, but the forward curve is
strongly downward sloping, suggesting that investors expect significant mean reversion of
spot rates in subsequent months; the slope of the term structure of return expectations is
procyclical. Going forward, the spot rate indeed decreases substantially as the crisis recedes.

In all cases, however, forward rates are too high at the peak of the crisis relative to future
realized spot rates. This suggests that while investors understood that the equity premium
would decrease in the future, they appear to have underestimated the speed of mean reversion.
One interpretation of this finding is that the rebound following each crisis was driven by
news, like a series of policy shocks, that was unexpected ex ante. Another interpretation
is that investors systematically overreact to high spot rates observed during the crises and
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Figure 1Figure 1
U.S. Forward Rates and Realized Spot Rates in Three Crises

This figure plots the forward curve f
(0)
t , f (1)

t , · · · , f (5)
t (dark blue) and the corresponding ex post spot rates

µ
(1)
t , µ(1)

t+1, · · · , µ
(1)
t+5 (red) in the U.S. as of three dates: August 31, 1998 for the Russian debt crisis, November

28, 2008 for the financial crisis, and March 31, 2020 for the Covid-19 recession.
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mistakenly believe that spot rates are going to stay elevated by more and for longer than
what one should rationally expect.

While Figure 1 focuses on the option-based measure, we find consistent evidence of excess
persistence in all three measures of expectations we consider. Moreover, the forward rates
share a common, cyclical component across data sources. As shown in Panel C of Table 1,
forward rates are higher when the earnings yield (measured as the inverse of the CAPE ratio)
is higher, meaning the forward rates are countercyclical. Panel C also shows that the forecasts
errors share cyclical variation across the data sources: forecast errors are more negative when
the ex ante earnings yield is higher. That is, when expected returns appear objectively high,
investors overestimate how high expected returns will be in the future. We similarly find
that forward rates measured in option prices are strong predictors of future realized errors in
the two surveys. This cross-measure predictability alleviates measurement-error concerns.
More generally, the consistency across data sources suggests patterns in expectations that
are shared across a broad range of investors.

1.2 Implications and Mechanisms

Implications. Our results on forward rates and forecast errors for the term structure of
return expectations have implications for four literatures in asset pricing:

A new source of excess volatility in prices. Our results suggest that when crises hit and
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spot rates increase, prices drop by an excessive amount because investors believe expected
returns will stay elevated for an excessively long time. Without such forecast errors, price
fluctuations would be more modest; in our baseline estimation, the forecast errors can account
for most of the stock price declines during crises, although it only accounts for 1/10 of
the unconditional variation in the price-dividend ratio. Our results thus provide a new
interpretation of stock-price variation, and crashes in particular, in recent decades.3

Stylized facts about the equity term structure. The literature on the equity term structure
studies prices and expected returns for dividend claims with different maturities. The
literature finds that the equity term premium — the relative return for long- versus short-
maturity claims — is negative on average (Binsbergen and Koijen 2017, Binsbergen, Brandt,
and Koijen 2012) and countercyclical (Golez and Jackwerth 2023, Gormsen 2021). Our results
on forecast errors directly speak to these results, which are otherwise difficult to reconcile
with standard models. In particular, we study a simple model where the equity term structure
is flat, and show that the forecast errors uncovered in our paper result in a term structure of
realized returns that is downward sloping on average and countercyclical.

Low price elasticity of demand. A recent literature documents that investors’ demand for
equities is relatively inelastic with respect to price changes (Gabaix and Koijen 2022). Given
that a drop in prices tends to predict a significant increase in expected returns over short
horizons, this inelasticity is puzzling. However, our results suggest that investors often
mistakenly attribute a significant share of the decrease in prices to increases in expected
returns at relatively long horizons, and perceive short-term spot returns to increase only
modestly. This structure of expectation errors lowers the elasticity of demand, as a modest
increase in spot returns will not lead to a large increase in desired portfolio weights in equities.

The debate on the cyclicality of subjective risk premia. A recent literature studies the
cyclical dynamics of return expectations. Greenwood and Shleifer (2014) document procylical
variation; Nagel and Xu (2022b) document acyclical variation; and Dahlquist and Ibert (2023)
document countercyclical variation, all using somewhat different measures of expected returns
and aggregate state variables. (Martin 2017 also finds countercyclicality in option-based
estimates.) We find that the degree of cyclicality depends on the horizon. In the surveys
we study, short-run “spot” expectations of returns are on average acyclical but longer-run
forward rates are countercyclical. (One interpretation of this finding is that respondents
understand present value logic — they understand that future long-run returns must be high
during crises when prices are low — but during crises, they believe it will take a while before

3We note that our results account for a portion of excess volatility without necessarily constituting an
explanation of that volatility: while we explore theoretical mechanisms that can generate our results, the
analysis is to a large degree silent on the underlying sources of forecast errors.
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prices start increasing.) As Nagel and Xu (2022b) generally study shorter-run expectations
and Dahlquist and Ibert (2023) study capital market assumptions over longer horizons, our
results help reconcile the apparent disagreement. Our focus on forward rates also eliminates
any apparent disagreement between option-based measures and survey-based measures: in
all cases, longer-run forward rates are robustly and excessively countercyclical. We therefore
provide a unified body of evidence on the dynamics of long-run expected returns, which are
the key object of interest in determining prices.

Mechanisms. We also consider potential drivers of our results. We first address a set of
alternative explanations unrelated to forecast errors in subjective expectations of log returns.
For the survey data, we discuss how measurement of simple as opposed to log-returns may
influence our results. For the options data, we investigate conditions under which our results
can be explained by the behavior of the stochastic discount factor. Our option-based estimates
of spot and forward rates contain a risk premium term that may be large, but importantly for
our analysis, the effect on forecast errors is likely modest. For forecast errors, we show that
the risk premium term on the forward rate largely cancels with the risk premium term on the
spot rate, with the remaining risk correction being an order of magnitude smaller than the
well-known covariance term in Martin (2017). In order for this remaining risk premium term
to rationalize the behavior of forecast errors, the stochastic discount factor must feature a
highly volatile and countercyclical price of risk on shocks to the equity premium. The notion
that the price of risk increases in bad times is consistent with past work (Campbell and
Cochrane 1999), but the pace at which this risk price must change, and the range of values it
must take, appear difficult to reconcile with standard models, and with our survey evidence.

As a positive potential explanation for our results, we end the paper by studying a simple
model of imperfect belief formation that produces excess persistence in expected returns.
The model features investors who put too much weight on the most recent change in the
equity premium when forecasting the future equity premium. We calibrate the model using
estimates from Bordalo, Gennaioli, and Shleifer (2018) of a similar extrapolative model in a
different setting, and we find that the resulting model captures the dynamics of expectations,
and expectation errors, well. But while the agents in this model have excessively persistent
expectations, they understand the cyclicality of the equity premium, and the direction in
which it is likely to evolve in the future. Expected returns accordingly increase when past
returns are low, and vice versa. Our model is thus not an unqualified success for all possible
notions of overreaction.
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1.3 Related Literature

We build on literatures studying the behavior of investor expectations measured both from
derivatives prices and in survey data. For the derivatives-based measures, our paper builds
most closely on Giglio and Kelly (2018), who document excess volatility in long-maturity
relative to short-maturity claim prices across a range of term structures. They focus on
the term structure of at-the-money implied variance when considering equity markets. We
use a different measure of implied volatility, building on Gao and Martin (2021), and we
show how this measure can be connected to the term structure of expected equity returns
and forecast errors.4 Our option-based estimates are also related to Martin (2017), who
studies option-implied spot expected returns under a covariance condition we build on, and
Augenblick and Lazarus (2023), who derive volatility bounds for fixed-maturity index options.
We differ from these papers in our focus on the term structure of expected returns.5 We
also, in contrast with much of this past work, consider option-based measures jointly with
survey-based measures of expectations.

Adam and Nagel (2023) provide a recent review of the literature on survey-based expecta-
tions. This literature often finds that investors exhibit less than fully rational expectations in
their survey responses, though as above, this behavior varies across settings (in addition to
the references in Section 1.2, Couts, Gonçalves, and Loudis 2023, Boutros et al. 2020 and
Gormsen and Huber 2023 provide further recent evidence). We consider how investors expect
future expected returns to evolve, whereas past work has largely focused on contemporaneous
expected returns. We also provide novel evidence of the consistency of expectations dynamics
across settings when considering these forward expectations. Further, to the degree that
there remain differences in the behavior of survey expectations across different groups of in-
vestors, one advantage of our options-based analysis is that we directly study the expectations
expressed in equilibrium behavior.

Finally, in comparing forward and realized spot rates, our analysis appears similar in spirit
to tests of the expectations hypothesis (EH) for the fixed-income term structure (e.g., Fama
and Bliss 1987, Campbell and Shiller 1991). Aside from focusing on equity, our methodology
is geared towards estimating physical expectations (and particularly forecast errors) for future
expected returns; by contrast, the forward and spot rates used in fixed-income EH tests

4Our paper thus connects to other work on the term-structure consistency of implied volatility, including
Stein (1989) and Mixon (2007). Our result that average forecast errors are close to zero echoes the finding of
Dew-Becker, Giglio, Le, and Rodriguez (2017) that it is costless on average to hedge forward variance news.

5This brings us slightly closer to Augenblick et al. (2023), who study how updating differs by horizon. For
other recent work on measuring expectations from options, see, for example, Polkovnichenko and Zhao (2013),
Ross (2015), and Chabi-Yo and Loudis (2020). Aït-Sahalia, Karaman, and Mancini (2020) also consider
option-based term structures of expected returns using a parametric framework, in contrast to our approach.

8



embed risk premia by design, and violations of the EH in that setting are equivalent to
bond-return predictability.6

2 Methodology

We begin with a theoretical analysis of the term structure of log equity risk premia. We
first set up notation for spot rates, forward rates, and forecast errors. We then present our
main theoretical results on forecast-error identification from option prices. We end with a
discussion of identification of forecast errors from surveys.

2.1 Notation

We start by generalizing our notation slightly relative to the introduction. Continue to define
the spot rate as the time-t log equity premium between period t and t+ n:

µ
(n)
t = Et[rt,t+n], (1)

where rt,t+n = ln(Rt,t+n) is the log return on the market portfolio from t to t+ n. For any
horizon n, this expected excess return can be written as the one-period spot rates plus a
series of one-period forward rates:

µ
(n)
t = µ

(1)
t +

n−1∑
i=1

f
(i,1)
t ,

where forward rates are now defined as

f
(n,m)
t = µ

(n+m)
t − µ

(n)
t = Et

[
µ
(m)
t+n

]
. (2)

We refer to f
(n,m)
t as the n×m forward rate.

We define forecast errors as the difference between realized spot rates and ex ante forward
rates,

ε
(m)
t+n = µ

(m)
t+n − f

(n,m)
t . (3)

Under the law of iterated expectations, the time-t conditional expectation of forecast errors

6Bond-return predictability may, however, arise from the dynamics of physical expectations, as in Cieslak
(2018) and Farmer, Nakamura, and Steinsson (2023); our analysis relates more closely to this work. Similarly,
d’Arienzo (2020) uses both prices and surveys to study expectations for the fixed-income term structure.
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is zero:
Et

[
ε
(m)
t+n

]
= 0.

In parts of the analysis, we study expectations about future risk premia (net of the
n-period log risk-free rate rft,t+n), as opposed to expected returns (gross of the risk-free rate,
as above). When considering risk premia, we use the notation µ̃, f̃ , and ε̃ to refer to spot
rates, forward rates, and forecast errors, respectively. More specifically, in place of (1),

µ̃
(n)
t = µ

(n)
t − rft,t+n = Et[rt,t+n − rft,t+n].

Then f̃ and ε̃ are defined as in (2)–(3), with µ̃ in place of µ. For risk premia, the law of
iterated expectations implies Et

[
ε̃
(m)
t+n

]
= θ

(n,m)
t , where θ

(n,m)
t is the term premium on the

n+m–period bond in excess of the n-period bond. The expected value of the forecast errors
for risk premia is therefore zero only when the pure expectations hypothesis for interest
rates holds. Tests for forecast-error predictability, meanwhile, hold under the slightly weaker
expectations hypothesis in which θ

(n,m)
t is constant. This assumption is typical in the literature

on derivatives term structures; see Giglio and Kelly (2018) for a discussion.
Finally, we write Mt,t+n = Mt,t+1Mt+1,t+2 · · ·Mt+n−1,t+n for the n-period stochastic dis-

count factor (SDF).

2.2 Identification from Option Prices

This section describes how to estimate spot rates, forward rates, and forecast errors (all of
which depend on physical expectations) from option prices. As a starting point, using that
Et[Mt,t+nRt,t+n] = 1 under the law of one price, we can write expected log returns as

Et[rt,t+n] = Et[rt,t+n]Et[Mt,t+nRt,t+n]

= Et[Mt,t+nRt,t+nrt,t+n]︸ ︷︷ ︸
L

(n)
t

− covt(Mt,t+nRt,t+n, rt,t+n)︸ ︷︷ ︸
C(n)
t

. (4)

This follows Gao and Martin (2021), and we build on their analysis. They show that the
first term on the right side of (4) is directly observable from option prices, and they label
this term the LVIX.7 We denote this term by L(n)

t , as in (4). The covariance term, C(n)
t , is

an unobserved risk adjustment. The size and sign of this adjustment can be controlled by

7We use a slightly different definition of LVIX from theirs, as ours captures expected returns rather than
excess returns. Separately, one can equivalently write the LVIX in (4) as L

(n)
t = (Rf

t,t+n)
−1 E∗

t [Rt,t+nrt,t+n] ,
where E∗

t denotes the risk-neutral expectation. Note that the relevant risk-free rate is the rate from t to t+n.
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theory, as discussed in detail below.
To build intuition, we first make the simplifying assumption that Mt,t+n = 1/Rt,t+n. This

stochastic discount factor would, for instance, arise if the representative investor is fully
invested in the stock market and has log utility over terminal wealth. In this case, the
covariance term in (4) is equal to zero, and the LVIX directly identifies expected excess
returns at different horizons. Given the identity in (4) and the definitions in Section 2.1, we
can thus calculate spot rates, forward rates, and forecast errors from the data as follows.

Proposition 1 (Log Utility Identification). Assuming that Mt,t+n = 1/Rt,t+n, spots,
forwards, and forecast errors are given, respectively, by:

µ
(n)
t = L(n)

t

f
(n,m)
t = L(n+m)

t − L(n)
t

ε
(m)
t+n = L(m)

t+n − L(n+m)
t + L(n)

t .

Proofs for all theoretical results can be found in Appendix A. Proposition 1 follows
straightforwardly from the fact that Mt,t+nRt,t+n = 1 under log utility. Thus given this
assumption, we can directly identify forecast errors from option prices and thereby test whether
expectations are intertemporally consistent (i.e., whether E[ε(m)

t+n] = 0 and E[Ztε
(m)
t+n] = 0 for

Zt observable as of t). And this result does not in fact require the existence of a representative
agent: the LVIX-based estimates reflect the expectations of any unconstrained log investor
who is content to hold the market portfolio. These expectations can, for instance, be
thought of as those of Mr. Market in the heterogeneous-agent log utility model of Martin and
Papadimitriou (2022).

If we go beyond log utility, estimates of spot and forward rates are contaminated by the
covariance terms in (4). When considering spot rates by themselves, it may be reasonable to
assume that C(n)

t = covt(Mt,t+nRt,t+n, rt,t+n) ≤ 0, so that the LVIX provides a lower bound
for µ

(n)
t ; this is the tack taken by Gao and Martin (2021). But when considering forward

rates, f (n,m)
t = L(n+m)

t − L(n)
t − (C(n+m)

t − C(n)
t ), it is unclear whether C(n+m)

t ≤ C(n)
t or vice

versa.
Our main innovation, however, is to consider forecast errors, for which we show that the

unobserved covariance terms largely cancel in expectation. We present two versions of this
result. First, to continue building intuition, Proposition 2 considers identification in a log-
normal world given general Mt,t+n. Proposition 3 then provides a fully general identification
result, which shows that the main insights from Proposition 2 carry through.
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Before presenting these results, we define our empirical proxy for forecast errors:

ε̂
(m)
t+n = L(m)

t+n − L(n+m)
t + L(n)

t ,

which are the forecast errors one would obtain under the log-utility assumption. To streamline
notation, we also define MRt,t+n = Mt,t+nRt,t+n. We can now show that we can study expected
forecast errors up to a single covariance term.

Proposition 2 (Log-Normal Identification). Assume a general SDF Mt,t+n, and assume
that Mt,t+n and Rt,t+n are jointly log-normal. Then the expected value of the forecast-error
proxy satisfies

Et

[
ε̂
(m)
t+n

]
=Et

[
ε
(m)
t+n

]
− covt(MRt,t+n,Et+n[rt+n,t+n+m]) , (5)

where ε
(m)
t+n is the true forecast error.

Proposition 2 shows that in a log-normal world, our forecast-error estimate is equal in
expectation to the true forecast error minus an unobserved covariance term related to the
pricing of shocks to expected returns (or discount-rate risk). Note that when considering
spot rates, the risk adjustment term C(n)

t = covt(Mt,t+nRt,t+n, rt,t+n) depends on a covariance
with realized returns rt,t+n. By contrast, when considering forecast errors, the relevant risk
adjustment depends on a covariance with expected returns Et+n[rt+n,t+n+m]. By replacing
(highly volatile) realized returns with (much less volatile) expected returns, the covariance in
(5) is likely to be substantially smaller than the covariance in (4). We discuss how one might
quantify this covariance in greater detail in Section 4.1.5.

The following proposition shows that the above intuition carries through to more general
non-log-normal settings, in which case the expected return Et+n[rt+n,t+n+m] is replaced by a
closely related LVIX-based proxy.

Proposition 3 (Generalized Identification). For any SDF Mt,t+n and any data-
generating process for which the relevant expectations exist, the expected value of the forecast-
error proxy satisfies

Et

[
ε̂
(m)
t+n

]
=Et

[
ε
(m)
t+n

]
− covt

(
MRt,t+n,L

(m)
t+n

)
, (6)

where ε
(m)
t+n is the true forecast error.

The appearance of the LVIX L(m)
t+n in the risk adjustment term in (6) has one benefit

relative to (5): the LVIX is directly observable in the data. We can thus quantify the degree
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to which L(m)
t+n is less volatile than the realized return rt,t+n in (4). In particular, under our

main specification (discussed further in Section 3 below), we find that the unconditional
volatility of L(m)

t+n is one-tenth the volatility of the realized market return in our sample. As
such, our empirical estimate of forecast errors is likely to be useful even for SDFs different
from Mt,t+n = 1/Rt,t+n.

The above analysis pertains to expected returns. We also consider expected excess returns
(risk premia) net of the n-period risk-free rate; for this case, as discussed in Section 2.1, we
assume throughout that the expectations hypothesis holds, so that forward rates for risk
premia correspond to expected future risk premia.

We also note in passing that expected log returns Et[rt,t+n] are conceptually distinct from
log expected returns lnEt[Rt,t+n] (with the difference depending on higher moments of the
return distribution). Expectations of the former are more relevant for prices, as prices depend
on geometric-average expected returns (as can be seen in a Campbell-Shiller decomposition).
This motivates our focus on expected log returns, but this distinction should be kept in mind
in interpreting our results. We return to this issue in the subsection just below.

2.3 Identification from Surveys

We can measure spot rates, forward rates, and forecasts errors using surveys that elicit return
expectations at multiple horizons. While measurement of these objects in survey data is more
straightforward than in the options data, the exercise is still not fully model-free. First, at a
basic level, the interpretation of forecast errors as stemming from intertemporally inconsistent
expectations requires that the set of survey respondents stays constant over time (or that the
sample is representative period by period).

Second, and more substantively, the elicited survey expectations allow for measurement
of expected returns Et[Rt,t+n] in non-log terms. As above, our interest is largely in expected
log returns.8 But as we do not observe these expected log returns directly in the survey data,
we measure spot rates here as lnEt[Rt,t+n]. This differs from the true value Et[rt,t+n] by

lnEt[Rt,t+n]− Et[rt,t+n] =
∞∑
n=2

κn

n!
,

where κn is the nth cumulant of the distribution for the log return rt,t+n (so κ2 is the variance,
κ3 is skewness, and so on). By working with lnEt[Rt,t+n] rather than Et[rt,t+n] here, we are
accordingly assuming that these higher-order cumulants are fixed over time when estimating

8This reflects both a conceptual desire to understand variation in prices, and a desire for this analysis to
remain consistent and comparable with the option-based analysis.
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forecast errors. If this is not the case, then our forecast errors can be thought of as being
relevant for expectations of simple returns. These are of separate interest in their own right,
but not exactly equivalent to the values measured using options.

3 Data and Implementation

This section describes the data on options and surveys and discusses practical implementation
issues for the option-based and survey-based measures of expectations.

3.1 Option-Based Measures

3.1.1 Options Data

We use a large dataset of option prices largely from OptionMetrics.9 The dataset contains
data on European (in terms of exercise) put and call options for major stock market indexes
around the world. In our full sample, we have a total of 20 different indexes from at least 15
different countries and three pan-European indexes, as shown in Appendix Table A1. The
sample starts in 1990 for the S&P 500 and runs through 2021. For international indexes, the
respective samples start substantially later. In addition to focusing separately on the S&P
500 and the Euro Stoxx 50, our main panel analysis is conducted in a constrained sample
of the 10 largest, most liquid, and most dense indexes in our sample, as detailed again in
Table A1. Options for these exchanges are available since 2006 at latest, and again run
through 2021. In all cases, we sample monthly and apply standard filters. Details on the
data, sample selection, and filters are relegated to Appendix B.

3.1.2 Measuring LVIX

We measure L(n)
t following Breeden and Litzenberger (1978) and Carr and Madan (2001) (see

Gao and Martin 2021). We make the simplifying assumption that the ex dividend payment
at time t+ n is known ex ante (at time t). We denote the relevant index at time t as Pt, the
time t prices for call and put options on Pt+n with strike K as call(n)t (K) and put

(n)
t (K), and

the time t forward price for the index at t+ n as F
(n)
t . With these definitions,

L(n)
t =

1

Pt

[∫ F
(n)
t

0

put
(n)
t (K)

K
dK +

∫ ∞

F
(n)
t

call
(n)
t (K)

K
dK

]
+ rft,t+n, (7)

9We augment our sample with data from CBOE Market Data Express to cover the period prior to 1996
in the U.S. data. For risk-free rates used as inputs in calculating risk premia for this analysis, we use the
OptionMetrics zero-coupon yield curve for consistency.
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which means that LVIX is a function of put and call prices written on the relevant index (as
well as the current and forward price of the index). As in Section 2.2, we differ slightly from
Gao and Martin (2021) in adding the risk-free rate in our definition of LVIX.

3.1.3 Implementation for Option-Based Measures

We run our baseline analysis at the 6-month horizon (n = 6); when considering forward rates,
our baseline also uses forward maturities of m = 6 months. Our choice of horizon reflects a
tradeoff: longer horizons are more economically meaningful, but long-maturity options are
generally less liquid and have relatively sparse density. Longer-dated options with multi-year
horizons do, however, trade on a relatively liquid basis for the Euro Stoxx 50; we make use of
these options when estimating the magnitude of forecast errors over the entire term structure.
We also provide a robustness analysis for our main empirical results at alternative horizons.
The 6-month horizon also allows for useful comparison with the survey-based measures, as
one of our two surveys (the Livingston Survey) allows us to construct spot and forward rates
only for n = m = 6. We annualize all returns in the empirical analysis.

We do not observe options for all positive strike values, as is needed in (7), and we
therefore truncate the integral after extrapolating well past the range of observable contracts.
We examine this assumption, along with a number of other assumptions with respect to
measurement, in detail in the Appendix.

3.2 Survey-Based Measures

Our analysis uses data from two surveys, the Livingston Survey of professional forecasters
and the Duke CFO survey.

3.2.1 Livingston Survey: Data and Implementation

We obtain data on the Livingston Survey of professional forecasters from the Philadelphia
Fed. Forecasts for the S&P 500 are available twice annually (in June and December), and
the sample runs from June 1992 to December 2022. The survey asks respondents about the
expected level of the S&P 500 in 6 months and 12 months, as well as the value at the end of
the zero month.10 We use median responses in all cases. We calculate the 6-month spot rate
as the annualized log expected price change from month 0 to month 6 (without accounting for
dividends), and we similarly calculate the 6-month, 6-month forward rate as the annualized

10For example, for the December 2018 survey, respondents are asked to provide their forecasts for the
S&P 500 value as of the end of December 2018, the end of June 2019, and the end of December 2019. S&P
forecasts are available beginning in 1990, but the zero-month responses are available only beginning in 1992.
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log expected price change from month 6 to month 12.11 This horizon accordingly aligns
with the main horizon considered for the options data. We compare this forward rate to the
realized spot rate as of the following survey to calculate forecast errors.

We also re-conduct this analysis using forecasts of equity risk premia rather than expected
returns. To do so, we use the median Livingston Survey forecasts of the 3-month T-bill rate,
as forecasts of the 6-month rate are not elicited. For the spot rate, we subtract the annualized
log T-bill rate as of month 0. For the forward rate, we subtract the annualized forecasted log
T-bill rate for the 6-month forecast horizon. We then calculate forecast errors as above.

3.2.2 CFO Survey: Data and Implementation

We obtain data on CFO expectations from the Duke CFO Global Business Outlook survey.
We combine data from the website maintained by Duke, which has data for the early years,
with new data from a website maintained by the Richmond Fed.12 The series is quarterly,
starting in 2004 Q1 and running until 2023 Q1. There are a few missing quarters as the
survey did not appear to ask about expected returns (specifically, Q1 of 2019 and Q1 and Q2
of 2020). We use mean responses as median responses are not available until 2009. The survey
asks respondents about expected returns on the S&P 500 at both the 1-year and 10-year
horizon. These forecasts allows us to estimate the forward rate for the 9-year expected return
as of 1 year from time t, f (1 year, 9 year)

t . We annualize this forward rate and compare it to the
annualized 10-year spot rate 1 year in the future. (We do not observe the realized 9-year
spot rate, but it will likely be very close to the 10-year spot rate in annualized terms.)

We also re-conduct the analysis using equity risk premia. For this analysis, we measure
risk premia relative to the 1-year and 10-year yield on U.S. Treasuries.

4 Empirical Results

Sections 4.1 and 4.2 study spot rates, forward rates, and forecast errors based on our options-
based and survey-based measures of expectations, respectively. Across the data sources, we
find that forward rates embed excess persistence relative to the predictable component of
realized spot rates.

11We ignore dividends in order to align this analysis with the option-based estimates. This is unlikely to
affect our conclusions given the relatively short horizon. Note that we also assume here that using the ratio
of forecasted prices is valid to calculate expectations of the 6-to-12-month return.

12The Duke website is https://cfosurvey.fuqua.duke.edu/release/, and the Richmond Fed site is
https://www.richmondfed.org/cfosurvey/.
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4.1 Empirical Results from Option-Based Measures

After measuring the LVIX, we construct empirical proxies for spot rates, forward rates, and
forecast errors using the expressions provided in Proposition 1. As in that proposition, these
proxies are exact under log utility (Mt,t+n = 1/Rt,t+n), which provides a useful benchmark
for interpreting the following results. We begin by considering the relationship between spot
and forward rates. We then turn to forecast errors; given the results in Propositions 2–3,
these forecast-error estimates are less heavily reliant on the assumption of log utility. We end
with a discussion of the potential role of the risk adjustment term for our results.

Throughout the majority of this subsection, we study both the behavior of forward risk
premia and forward expected returns. As discussed in Section 2, for forward risk premia
to reflect expected spot premia, the expectations hypothesis must hold for the bond term
structure, an assumption we do not need to make for the forward expected returns. However,
the forward risk premia have the advantage that they are stationary in our sample, whereas
the decline in risk-free rates induces a trend in forward expected returns. The forecasting
analyses for risk premia are accordingly better behaved. When presenting time-series plots
of spot and forward rates, we focus largely on risk premia in order to focus on the relevant
cyclical variation rather than the trend in interest rates.

4.1.1 Spot and Forward Rates: Descriptive Statistics and Figures

We begin with an overview of our estimated spot and forward rates. Table A2 in the Appendix
provides summary statistics by exchange. For a brief intuitive description of the dynamics of
spots and forwards, we focus here on descriptive figures for the U.S. (S&P 500) sample. The
top panel of Figure 2 shows contemporaneous time-series estimates for 6-month spot rates
and 6× 6-month forward rates for risk premia. Consistent with Figure 1 in the introduction,
spot and forward rates increase significantly in crises. The slope of the term structure of
expected risk premia is again procyclical, with forward rates increasing less than one-for-one
with contemporaneous spot rates in bad times. The “contemporaneous” qualifier for spot
rates is important here, as will be seen below.

The bottom panel of Figure 2 instead compares forward rates with ex post realized
spot rates. (The 6× 6 forward rate is a predicted value using a shorter-horizon forward as
an instrument, as discussed further below.) The gap between the realized spot rate and
the forward rate represents the forecast error. Again as in Figure 1, forecast errors tend
to be negative after crises, when spot rates decline from their crisis peaks. By contrast,
forecast errors are frequently (though not always) positive outside of crises. So while the
term structure of expected risk premia is procyclical, forecast errors are countercyclical.
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To formalize this visual analysis, we move now to a set of regression analyses.

4.1.2 Forward Rates as Predictors of Future Spot Rates

We first consider Mincer-Zarnowitz (1969) regressions of realized spot rates on forward rates:

µ
(6)
i,t+6 = β0 + β1 f

(6,6)
i,t + ei,t+6, (8)

where i now indexes the exchange. We consider both panel regressions and US-specific time
series regressions, and in both cases we conduct rolling monthly regressions for n = m = 6

months, following Section 3.1. Standard errors are clustered by exchange and date in the
panel case; in the time-series case, we use heteroskedasticity- and autocorrelation-robust
Newey-West standard errors, with lags selected following Lazarus et al. (2018), and fixed-b
critical values (see Lazarus et al. 2021).

Table 2 presents the regression results. The first three columns consider spot and forward
rates for risk premia (i.e., µ̃ and f̃), while the last three columns consider spot and forward
rates for expected returns (i.e., µ and f). The relevant null for forecast predictability features
β0 = 0, β1 = 1. For risk premia, this holds under rational expectations if Mt,t+n = 1/Rt,t+n

and the expectations hypothesis holds for bonds. For expected returns, it holds under rational
expectations if Mt,t+n = 1/Rt,t+n.

Column (1) shows results for risk premia from the main panel, as defined in Section 3.1.3,
without any fixed effects. The slope coefficient is around 0.64, and the intercept is statistically
significant at 1.05 annualized percentage points. We can therefore reject the null of β0 = 0,
β1 = 1 with substantial confidence for this specification. The fact that β̂1 < 1 suggests that
forward rates tend to overshoot future spot rates in the data. Thus, even though forward
rates move less than one-for-one with contemporaneous spot rates as in Figure 2, they move
more than one-for-one with future spot rates. But in spite of this overshooting of forward
rates, the R2 for this regression is around 0.2, so forward rates do predict a substantial
portion (one fifth) of the variation in the equity premium ex ante.

The next columns consider different specifications and samples. Column (2) includes an
exchange fixed effect; this is in fact our preferred specification for estimating slope coefficients
in the main panel, as it cleanly identifies within-country (or within-exchange) time-series
predictability. The slope coefficient in this case is slightly further below 1 than in column (1),
and the within-exchange R2 is slightly below 0.2. Column (3) reports similar results for the
S&P 500 in isolation.

In columns (4)–(6) we report results of similar set of regression for expected returns, as
opposed to risk premia. These regressions suggest a higher degree of predictability in spot
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rates, but this increased predictability is driven by the persistent variation in the risk-free
rate: in the early parts of the sample, risk-free rates are substantially higher than in the later
part of the sample. Since the spot and forward rates embed this variation in the risk-free rate,
the slope coefficients and the R2 go up substantially.13 We note that we cannot reject β0 = 0,
β1 = 1, but this failure to reject does not imply that the expectations do not overreact, as
will be examined in subsequent regressions.

One might be concerned with attenuation bias for the slope coefficients in Table 2 given
possible measurement error in forward rates.14 We now address this concern by instrumenting
variation in the forward rate with another forward rate. This IV specification will account for
measurement error idiosyncratic to a given forward rate, though not for measurement error
in the overall forward curve. We generally use shorter-maturity forward rates as instruments,
as these are likely to be better measured given that options are denser at shorter maturities.
In particular, for regression (8), we use the 2× 1-month forward rate f

(2,1)
i,t as an instrument

for the 6× 6 rate f
(6,6)
i,t .

Table 3 presents the resultant two-stage least squares results.15 For the risk-premium
regressions in column (1) to (3), the estimated slope coefficients increase slightly and are now
quite consistent across specifications at around 0.7–0.8. We continue to reject the null of
β0 = 0, β1 = 1. For the expected-return regressions in column (4) to (6), the results hardly
change; this is again consistent with the dominant impact of the secular trend in interest
rates in the estimation of slope and intercept in these regressions.

Taken together, we find that while forward rates have substantial predictive power over
future spot rates, they tend to overshoot those spot rates. This is particularly true for
forward risk premia: when forward rates for risk premia increase by 1% relative to their
within-exchange mean, this corresponds on average to an increase in future spot rates of only
about 0.7%.

4.1.3 The Insignificance of Average Forecast Errors

We next turn our attention to forecast errors, which can be estimated under softer assumptions
than the forward and spot rates themselves (see Propositions 2 and 3) We first consider
unconditional averages of forecast errors, ε (6)

i,t+6, across different sets of exchanges and sub-
samples. These values are reported in Table 4. For risk premia (column (1) to (3)), we

13In unreported results, we find that splitting the sample in two substantially lowers the R2 and slope values
in each subsample, consistent with the reported results being driven by persistent risk-free rate variation.

14Recall that forwards are estimated from discrete approximations of the integrals in (7), for which
extrapolation past the range of observable strikes is necessary. Again see Appendix B for details.

15The first stage in these regressions (not shown) has an R2 close to 70% when excluding all fixed effects,
suggesting the 2× 1 forward rate is a strong instrument for the 6× 6 rate.
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find average forecast errors that are statistically insignificant and effectively zero: ε
(6)
i,t+6 is

below 20 basis points on an annualized basis. Realized spot rates for risk premia have thus
been very slightly (and insignificantly) higher than forward rates on average.16 This rough
magnitude applies to different exchanges, though the U.S. average in columns (2) and (3) is
even lower, at roughly 2 to 3 basis points.

For expected returns (column (4) to (6)), we find average forecast errors that are slightly
negative and statistically significant. Realized spot rates for expected returns have thus been
slightly lower than forward rates on average. This finding is likely driven by an unexpectedly
large decline in interest rates over the sample. Alternatively, it could be driven by a constant
term premium on interest rates that causes the pure expectations hypothesis to fail. Despite
the statistical significance of these estimates, we note that the averages are still close to zero.

While forecast errors are close to zero unconditionally, this average masks substantial
predictability over time, which we turn to now.

4.1.4 The Predictability of Forecast Errors

Figure 3 plots realized forecast errors along with forward rates and indications of prominent
crises in the U.S. sample. The figure further illustrates the takeaway from Figure 1 in the
introduction: in years following crises, forecast errors tend to be significantly negative, which
is to say future realized spot rates are lower than expected ex ante. To the extent that these
forecast error are systematic — i.e., they occur systematically following crises — the errors
represent what we refer to as excess persistence: investors systematically believe that the
high expected returns observed during crises will persist for longer than is ex post rational.
In this section, we study whether the forecast errors are indeed systematic through a set of
predictive regressions.

For a formal consideration of forecast-error predictability, we begin by testing whether
forward rates predict forecast errors in regressions of the following form:

ε̃
(6)
i,t+6 = β0 + β1 f̃

(2,1)
i,t + ei,t+6. (9)

We use the 2 × 1 forward rate f
(2,1)
i,t here instead of the 6 × 6 rate, as we would otherwise

have the same forward rate on both sides of the regression, leading to a mechanical upward
bias in the slope coefficient in the presence of measurement error.17 All other aspects of the

16In Appendix B, we consider whether the small positive forecast errors might arise due to measurement
noise. As discussed there, our LVIX estimate could be biased downwards and more so at long maturities.
Nonetheless, in all the robustness tests considered there, we find that measurement error is unlikely to be
large enough to generate even the 20 basis points estimated for average errors.

17Moreover, with the same conditioning variable, the difference between the slope in Mincer-Zarnowitz
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regressions are identical to those in Table 2.
The first three columns of Table 5 reports the results of equation (9). In the main panel

without any fixed effects (column (1)), the slope coefficient on the forward rate is -0.13 and
is significant at the 5% level.18 In our preferred panel specification including exchange fixed
effects (column (2)), the slope coefficient is now significant at the 1% level. Results are similar
in the U.S.-only sample, although power is naturally slightly lower.

We next consider the forecast errors for expected returns (ε) on the left-hand side. When
doing so, we continue to use the forward rate for risk premia as the predictor variable; forward
rates for expected returns themselves have a strong downward trend due to the risk-free rate
component, so using these forward rates as predictor variables would amount to saying that
forecast errors are trending over the sample (i.e., positive in the early sample and negative
in the later sample, or vice versa). By instead using the more transitory forward rate for
risk premia (f̃) as the predictor variable, our predictor variable is more directly related to
the state of the economy and better suited for capturing the type of crisis-dependent errors
plotted in Figures 1 and 3. These regressions (column (4) to (6) of Table 5) are in fact
our preferred specifications, because we have transitory components on both the left- and
right-hand side, and the theoretical predictions for the forecast errors on the left-hand side
do not require assumptions about the term structure of interest rates (they require only the
assumptions laid out in Propositions 2 and 3).

As can be seen in Table 5, the forecast errors for expected returns are highly predictable.
The slope coefficients in column (4) to (6) roughly double relative to the regressions in
columns (1) to (3). The R2 increases to around 10% with exchange fixed effects. For the
U.S.-only regressions, the difference between risk premia and expected returns appears more
modest. Overall, the results suggests that the patterns observing in columns (1) through (3)
are not driven by the risk-free rate component (i.e., a failure of the expectations hypothesis
for interest rates). In fact, the risk-free rate slightly masks the true predictability in forecast
errors: when using our preferred specification, predictability is substantially higher. This test
for forecast-error predictability is evidently more powerful against a rational null than the
Mincer-Zarnowitz regressions presented above.

In Appendices B–C, we consider a number of robustness checks with alternative measure-
ment and estimation methodologies and sample cuts. Results are similar in all cases (see
Tables A3–A7). We also expand the sample to all 20 available exchanges and find somewhat
stronger error predictability than in the main sample (Table A4), and we present consistent

and error-predictability regressions would be one by construction.
18The magnitudes presented in the table are not directly comparable to those in Tables 2–3 given the use

of f (2,1)
i,t as the predictor. Instead, regression (9) can be viewed as an analogue to the reduced form of the IV

specification for (8) presented in Table 3.
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evidence from Coibion-Gorodnichenko regressions.
We conclude that the pattern of excess persistence observed in Figure 1 and 3 is systematic

and statistically significant. Forward rates have exhibited excess persistence in this sample,
in the sense that investors have believed that spot rates would stay elevated for longer
following crises than would ex post have been rational. This conclusion does require that the
risk-premium adjustment in Propositions 2 and 3 is small, so that the options provide useful
estimates of physical expectations of future spot rates. Our main source of confirmation for
this interpretation is in our analysis of survey data, considered below. Before turning to the
survey data, though, we consider the behavior of the risk-premium term in more detail.

4.1.5 Risk-Based Explanations for the Option-Based Results

We now ask what would be required in order for option-based forecast errors to be rationalized
by the behavior of the stochastic discount factor alone. Our main conclusion is that we find
the required behavior of the SDF difficult to reconcile with standard models. For readers
more interested in corroboration of the above patterns in our survey data (which cannot be
rationalized through these risk-premium terms), one can skip this self-contained theoretical
discussion and resume the remainder of the paper in Section 4.2 without issue.

Overview. When going beyond log utility, our estimates of spot and forward rates partly
reflect risk premium adjustments. While most of these cancel out in forecast errors, a risk
premium term remains: from Propositions 2–3, expected forecast errors are

Et[ε̂
(m)
t+n] = Et[ε

(m)
t+n]− ςt, where ςt =

covt
(
MRt,t+n,Et+n rt+n+m

)
(log-normal case),

covt
(
MRt,t+n,L

(m)
t+n

)
(general case).

To simplify analysis, we maintain focus on the n = m = 1 case (where one period is 6 months)
and suppress the dependence of ςt on n and m.

As a starting point for the potential role of risk premia, Figure 4 plots the predicted
values of the risk-premium forecast errors from the regressions in Table 5. These are empirical
estimates of Et[ε̂

(1)
t+1], and −ςt must take on these values in order to rationalize our results

through risk premia alone (so that true forecast errors satisfy Et[ε
(1)
t+1] = 0). The main

challenge is that the covariance term −ςt must flip sign over time: the covariance term must
be significantly negative in bad times, which means it must be positive in good times to
remain close to zero on average. We show below that this requires the price of discount rate
risk to be highly volatile — close to zero during good times and high during bad times.19

19As we will show below, it is possible for standard models to generate a ςt that is sufficiently volatile, but
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Examining the Risk Premium Term. To better understand the properties required of ςt
in order to match Figure 4, it is useful to formalize its relation to a discount-rate risk premium.
As in Proposition 2, assume for now that the SDF and returns are jointly log-normal. Then
by Stein’s lemma and the fact that Et[MRt+1] = 1, we have that

covt(MRt,t+1,Et+1 rt+2) = covt(mt+1 + rt+1,Et+1 rt+2). (10)

For ςt to flip sign, the covariance in (10) must thus flip sign. To see how this covariance
is tied to discount-rate risk, define PE,t as the price of the claim that pays −Et+1 rt+2 next
period, and define its ex ante Sharpe ratio (in log-return terms) as SRE,t.20 This Sharpe ratio
captures the price of risk for exposure to increases in expected returns (or discount rates).

Rewriting (10), the sign of ςt is given by

Sign (ςt) = Sign
(
SRE,t + ρt(r,Et+1 r)σt(rt+1)

)
,

where ρt(r,Et+1 r) = Corrt(rt+1,Et+1 rt+2). This correlation is likely negative, as low realized
returns are associated with higher expected returns going forward; for simplicity, start by
assuming that ρt(r,Et+1 r) = −1 ∀ t.21 In this case, the above expression shows that SRE,t

must be higher than σt(r) for ςt to be positive, and lower than σt(r) for ςt to be negative.
Since ςt must be positive in bad times and negative in good times, SRE,t must vary more
than σt(r) between good and bad times.

As a benchmark, Figure 5 plots the time variation in σt(r) at the 6-month horizon from
the standpoint of an investor with log utility.22 The figure shows that volatility varies from
close to 15% in good times to more than 50% in bad times. As such, the price of discount-rate
risk must vary significantly and countercyclically to generate the needed variation in ςt.

Moreover, in the case that ρt(r,Et+1 r) = −1, then the value −ςt is a scaled version of
covt(MRt,t+1, rt+1). Under the modified negative correlation condition (mNCC) used through-
out Gao and Martin (2021), this covariance is always negative, so ςt cannot flip sign. This
illustrates that the degree of countercyclical variation in discount-rate risk prices required
under ρt(r,Et+1 r) = −1 is quite restrictive, and it is ruled out by a range of standard models

if ςt does not change sign, the average of ε̂ will be far from zero, which is inconsistent with the average of ε̂
being close to zero in the data.

20That is, SRE,t = (Et[rE,t+1]− rft,t+1 + σ2
E,t/2)/σE,t, where rE,t+1 is the claim’s log return and σE,t is its

standard deviation.
21This is an extreme case in which all movements in realized returns reflect variation in discount rates

(Campbell and Ammer 1993).
22This is likely to be a conservative benchmark for the degree of variation in conditional volatility if

investors are more risk-averse than implied by log utility.
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considered by Gao and Martin (2021).
In practice, however, we expect ρt(r,Et+1 r) to be higher than −1, as not all changes in

stock returns are driven by discount rates. A ρt(r,Et+1 r) > −1 implies a less volatile price of
discount-rate risk than just discussed. However, it also implies that the price of discount-rate
risk must be even lower during good times than above; for example, in the opposing extreme
in which ρt(r,Et+1 r) = 0 (i.e., with i.i.d. returns), the Sharpe ratio on the discount-rate
claim must be negative in good times in order for ςt to flip sign.

The discussion above can also be generalized beyond the log-normal case. For example,
assume that the SDF can be written as

Mt,t+1 = β
VW (Wt+1, zt+1)

VW (Wt, zt)
,

where VW is an unconstrained investor’s marginal utility of wealth, zt is a vector of state
variables that includes −L(1)

t+1, and VW is weakly decreasing in each entry of zt. If this agent
is fully invested in the market, has relative risk aversion −WVWW/VW of at least 1, and
Rt+1 and the entries of zt+1 are associated random variables,23 then Result 4 of Gao and
Martin (2021) can be applied to obtain that ςt again cannot change sign under the benchmark
ρt(r, µ̂) = −1.

Further Intuition Under Power Utility. The above emphasizes that the price of discount-
rate risk must vary substantially over time to rationalize our results. To better understand this
result, we next reconduct our analysis under various utility functions generating a constant
price of risk, and show how such functions will not be able to explain the data. This analysis
will help provide intuition on the role of risk aversion in our results.

We calculate spot and forward rates using CRRA utility with γ ranging from 0.5 to 3
(see Appendix B.4 for details). As shown in Appendix Table A8, none of the power utility
functions can rationalize the results. The functions with γ > 1 explain the time variation in
the forecast errors, but they cannot explain the average being close to zero. To understand
the intuition, consider the results derived above for log-normally distributed variables. When
γ > 1, the covariance term ςt correctly increases in bad times. However, it is always positive
(covt(mt+1 + rt+1,Et+1 rt+2) > 0 at all times), leading to large average forecast errors. The
opposite mechanics are at play for γ < 1, for which covt(mt+1 + rt+1,Et+1 rt+2) < 0 for all t.

This illustrates the challenge in explaining both the average and time variation in the
covariance term, and thus in explaining the results from options through this term alone.

23Formally, the elements of the vector Xt+1 = (Rt+1, z
′
t+1)

′ are associated random variables if
covt(f(Xt+1, g(Xt+1)) ≥ 0 for all nondecreasing functions f and g for which this covariance exists.
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4.2 Empirical Results from Survey-Based Measures

We now turn our attention to spot rates, forward rates, and forecast errors estimated using
survey expectations. As a preview of the results, Figure 6 plots forward rates along with
predicted forecasts errors for both Livingston survey and the CFO survey. As with the
option-based measures, we find that (i) forward rates are countercyclical, in that they increase
in bad times, and (ii) forecasts errors are predictably negative following crises such as the 2001
recession, the global financial crisis, and the Covid crisis. These results are again consistent
with excess persistence in return expectations: during bad times, investors think expected
returns will stay elevated for much longer than their own beliefs justify ex post. We detail
this analysis below for each of the two surveys in turn.

4.2.1 Spot and Forward Rates from the Livingston Survey

As explained in Section 3.2.1, we use Livingston survey of professional forecasters to estimate
the 6-month spot rate and the 6-month, 6-month forward rate. As with the options-based
measures, we consider spot and forward rates for both risk premia and expected returns.
Since the Livingston survey offers expectations about interest rates, we can measure forward
rates for risk premia without assumptions about the expectations hypothesis for interest
rates. The sample runs from 1990 to 2021.

Column (1) and (2) of Table 6 shows the results of Mincer-Zarnowitz regressions of future
spot rates on past forward rates. We find slope coefficients of 0.81 for risk premia and 0.68
for expected returns. These estimates echo those from the option-based measure, suggesting
that a one-percentage-point increase in forward rates is associated with spot rates that are
about 0.75 percentage points higher in the future. The R2 values are somewhat higher than
those from the option-based regressions for risk premia, though comparable to those for
expected returns; on average, around 50% of the variation in spot rates can be predicted by
the forward rate at the 6 month horizon. Columns (3) and (4) further show that the forecast
errors are close to zero on average, and statistically insignificant.

Columns (5) and (6) of Table 6 report results from the error predictability regressions,
where we predict future realized forecast errors based on ex ante forward rates. As for the
option-based measures, we find significantly negative slope coefficients around -0.2, suggesting
that high forward rates are associated with future spot rates that are lower than expected. The
R2 values are between 6.6% and 7.7%, which is close to those obtained from the option-based
measures. Given the countercyclical nature of the forward rates (see Figure 6, the pattern is
similar to the one obtained from the options: in bad times, investors think future expected
returns will stay elevated for than longer investors’ own subsequent beliefs justify.
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4.2.2 Spot and Forward Rates from the Duke CFO Survey

We next turn our attention to the CFO survey. This survey allows us to extend the forecast
horizon substantially, as the survey elicits return expectations at both the 1-year and 10-year
horizon. The longer horizon is advantageous in that it long-horizon expected returns are more
important for prices, allowing us to more easily speak to impacts on prices. As explained in
Section 3.2.2, we use the survey to calculate 1-year, 9-year forward rates, which are expected
returns over 9 years, starting one year from now. We then compare these to the realized
9-year spot rate, which is approximated from the 10-year spot rate.

Columns (1) and (2) of Table 7 show the results of Mincer-Zarnowitz regressions of
future spot rates on forward rates. The forward rates predict future spot rates with slope
coefficients around 0.5 on average, slightly below the results from options-based measures
and the Livingston measure. The difference in slopes may arise from the fact that the
horizons for spot and forward rates (n,m) are different from the options- and Livingston-
based measures, which both considered 6-month, 6-month forwards. The R2 is around 0.3 on
average. Columns (3) and (4) further show that the average error is negative; that is, forward
rates are systematically higher than future realized spot rates.

Column (5) and (6) of Table 7 report our main results on error predictability. The forecast
errors are again predictable by the ex ante forward rates. When forward rates are high, future
spot rates are lower than expected. For risk premia, this effect is strong, with an R2 of 34%.
For expected returns, the effect is statistically insignificant, and quantitatively closer to the
effects estimated for options and the Livingston survey.

As a final remark on the CFO survey, there is, in this survey, a clear distinction between
the cyclical behavior of spot and forward rates. As shown in Figure 7, spot rates appear
procyclical : short-term expected returns decrease in bad times in a manner that appears
extrapolative with respect to past returns (as highlighted by Greenwood and Shleifer 2014),
in spite of these being times in which expected returns are likely to be objectively high. The
figure, however, also shows that forward rates are strongly countercyclical (and so are 10-year
spot rates): long-term expected returns increase in bad times. One interpretation of these
findings is that the CFO respondents understand present value logic — they understand that
future long-run returns must be high when prices are low — but during crises, they believe
prices will continue to decrease for a while before they start increasing. This finding sheds
light on the debate about whether spot rates are procyclical (Greenwood and Shleifer 2014),
acyclical (Nagel and Xu 2022b) or countercyclical (Dahlquist and Ibert 2023). Interestingly,
there is less disagreement about forward rates: across all option-based and survey-based
measures, longer-run forward rates are robustly and excessively countercyclical. The apparent
disagreement in previous literature is thus related to the cyclical behavior of short-term
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spot rates. While short-term spot rates are important for understanding the expectations-
formation process, long-run expected returns and forward rates are often the key object of
interest in determining prices.

4.3 Cyclical Variation in Forecast Errors

To understand the impact of forecast errors and excess persistence on stock prices, we now
relate the errors back to the valuation ratio of the stock market. For each measure we project
the ex post forecast errors onto the ex ante earnings yield for the market portfolio. We use
two measures of the earnings yield, one base on the cyclically adjusted price-to-earnings ratio
(CAPE) and one based on the excess CAPE, both obtained via Robert Shiller’s website.

Table 8 shows that forecast errors are negatively related to the ex ante earnings yield. As
such, future spot rates are lower than expected when the earnings yield is relatively high.
The slope coefficients are similar in magnitude across sources, varying between -0.3 and
-0.9. The slopes are slightly smaller for the CFO data than for the other sources, but this
difference may be driven by the longer horizon for the forward rates using this measure. The
fact that the earnings yield predicts forward rates and forecast errors for all sources alleviates
measurement error concerns and points at a commonality in the expectations across sources.
Taken together, the results suggest that when expected returns are objectively high, investors
think expected returns in the future will be high, and more so than their own subsequent
beliefs justify. In the upcoming section, we explore additional implications of this excess
persistence for asset pricing.

5 Implications for Asset Pricing

This section studies additional implications of the excess persistence in expected stock returns
documented in the previous sections.

5.1 A New Source of Excess Volatility

If investors think that increases in spot rates are more persistent than their subsequent
realizations, then changes in spot rates lead to excess volatility in prices. To better understand
the relevance of this source of excess volatility, we conduct two illustrative quantifications here.
We first quantify the effect using errors from the option-based measure, and then conduct a
similar exercise using errors from CFO survey. Both sources point to a quantitatively similar
impact of predictable forecast errors on prices.
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Excess volatility from the option-based measure. We focus on the component of
excess volatility coming from expectations about risk premia, as opposed to expected returns,
and note that this leads to smaller estimates. Starting from a Campbell-Shiller (1988)
decomposition for the log price-dividend ratio pt − dt and using the definition of forward
rates as expected equity premia:

pt − dt = k +
∞∑
j=0

ρj Et[∆dt+j+1] −
∞∑
j=0

ρj Et[rt+j,t+j+1]

= k +
∞∑
j=0

ρj Et[∆dt+j+1]︸ ︷︷ ︸
CFt

−
∞∑
j=0

ρj f̃
(j,1)
t︸ ︷︷ ︸

Ft

−
∞∑
j=0

ρj Et[r
f
t+j,t+j+1]︸ ︷︷ ︸

RFt

, (11)

where k is a constant and 0 < ρ < 1. We further split the forward-rate term Ft into

∞∑
j=0

ρj f̃
(j,1)
t︸ ︷︷ ︸

Ft

=
∞∑
j=0

ρj Et[µ̃
(1)
t+j]︸ ︷︷ ︸

Mt

−
∞∑
j=0

ρj Et[ε̃
(1)
t+j]︸ ︷︷ ︸

Et

. (12)

Our interest is in the term Et, which quantifies the component of the log price-dividend ratio
attributable to all future predicted forecast errors. The length of one period in (11)–(12) is
arbitrary, so we set it to 6 months to correspond to our baseline horizon.

In our main sample, we estimate forecast errors for horizons only up to one year. To
obtain estimates for longer horizons, we re-estimate spot and forward rates out to an 8-year
horizon for the Euro Stoxx 50, which is the only exchange in our sample with index options
available at such maturities.24 For each horizon, we predict forecast errors as in (9) by
regressing realized forecast errors on shorter-horizon forward rates. We then estimate a
decay function ϕ(n,m) for forecast errors, such that Et[ε̃

(m)
t+n] = ϕ(n,m) Et[ε̃

(1)
t+1]. Details are in

Appendix C. As reported in Table A9, the decay parameters are very close to 1 at all horizons.
We therefore use the assumption that predictable forecast errors have a flat term structure,
Et[ε̃

(1)
t+j+1] = Et[ε̃

(1)
t+j ] for all j in (12), to obtain a back-of-the-envelope quantification of Et for

the U.S. sample:
Et =

ρ

1− ρ
Et[ε̃

(1)
t+1], (13)

where again one period is 6 months. We then compare variation in Et to variation in
pt − dt. To account for share repurchases and ensure that pt − dt is stationary, we use the
repurchase-adjusted price-dividend series provided by Nagel and Xu (2022a).25

24This is similar to the case for the dividend futures market (Binsbergen and Koijen 2017).
25We estimate ρ for the 6-month (half-yearly) horizon in (13) as ρ = (1 + exp(d− p))−1/2, and we use
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Figure 8 presents the results, with both discounted forecast errors Et (red) and the
repurchase-adjusted price-dividend ratio pt − dt (blue) shown as log differences from their
full-sample means. The two series do not always comove positively. During the Russian debt
crisis in the late 1990s, for example, forward rates were quite elevated (leading to negative
Et), but the stock market’s dot-com boom largely continued apace (leading to high pt − dt).
But during large stock-market declines (low pt− dt), predictable forecast errors generally play
a significant role in the decomposition in (11)–(12). During the depths of the 2008 financial
crisis, for example, when the price-dividend ratio reached more than 70 log points (about
50 percentage points) below its mean, discounted forecast errors accounted for more than
half of this decline. A meaningful component of the stock-price collapse therefore consisted
of elevated expected future equity premia, which, in a predictable manner, declined faster
than suggested by the forward curve. However, the while the forecast errors can explain a
meaningful amount of price variation during crises, they explain a more modest amount of
the overall variation in prices. A regression of forecast errors on the log divide-price ratio
gives a slope coefficient of around 0.1, suggesting that 10% of the unconditional variation in
prices can be tied back to predictable forecast errors.

Excess volatility from the CFO survey. One can use the errors in from the long-
horizon forward rates in the Duke-CFO survey to quantify the impact of forecast errors on
prices more directly. As shown in Figure 6, the predicted errors for the 9-year spot rates
are around -1.5% during the global financial crises and the Covid crises. Since these are
annualized numbers, the finding implies that predictable forecast errors can roughly account
for 1.5% ×

∑9
j=1 ρ

j = 12.21% of the decrease in prices observed during these crises (for
ρ = 0.98). This estimate is arguably a lower bound, as it is plausible that investors make
similar mistakes at horizons beyond 9 years. Overall, the estimate from the survey-based
measures is again consistent with the estimates from the option-based measure.

5.2 The Term Structure of Equity

We have argued above that a large part of the variation in stock prices during crises may come
from excess persistence in return expectations. According to this argument, fluctuations in
prices are driven by revisions in expectations that are unexpected by investors (but predictable
by traditional state variables). If this mechanism helps drive realized returns on equities, we
should expect it to manifest itself in the behavior of the equity term structure, i.e., the prices
and expected returns of dividend claims with different maturities.

predicted forecast errors Et[ε̃
(1)
t+1] expressed on a non-annualized basis.
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In general, expected-return forecast errors should have a larger impact on equity claims
with longer maturity, because these claims have longer duration, making them more sensitive
to changes in expected returns. To illustrate this effect, we calculate the impact of forecast
errors on realized returns to dividend claims with different maturity under two assumptions:
first, we assume that expected returns to all equity claims are the same (i.e., the equity term
structure is flat); second, we assume, as in the previous section, a flat term structure of
forecast errors (in this case, ε(j)t+1 = ε

(j+1)
t+1 for all j). Under these assumptions, log returns on

dividend claims with different maturity (ν) are given by

r
(ν)
t+1 = µ

(1)
t +∆Et,t+1dt+ν − (ν − 1)× εt+1, (14)

where ∆Et,t+1 denotes the change in expectations between period t and t+ 1 (i.e., ex post
forecast errors) and where we have suppressed the superscript from the forecast error because
of the assumption that these errors are the same across all horizons (and claims). Equation (14)
shows that mistakes about forward rates influence realized returns on equity claims, and
more so for longer maturity claims.

Predictability in forecast errors thus influences the slope of the equity term structure. If
forecast errors are predicted to be negative (investors have overly high expectations about
future spot rates), investors will in the future revise their expectations about spot rates
downwards, leading to positive realized returns. This effect will be stronger for longer-maturity
claims, meaning the equity term structure will be upward sloping. Similarly, when forecast
errors are predicted to be positive (investors have incorrectly low expectations about future
spot rates), the equity term structure will be downward sloping.

To visualize the implications of our forecast errors for the equity term structure, we
calculate the impact of forecast errors on realized returns to dividend strips with different
maturities based on equation (14). We focus on forecast errors for risk premia and calculate
both average returns and conditional returns in good and bad times. We follow Gormsen
(2021) and define good and bad times based on the ex ante valuation ratio.26

Figure 9 plots these term structures. The figure shows that the term structure of realized
returns implied by the forecast errors is slightly negative on average and countercyclical. The
estimates happen to be numerically close to the estimates for realized returns on dividend
strips in Gormsen (2021), but we interpret the results qualitatively rather than quantitatively,
given that our estimates reay fairly heavily on modeling assumptions (and represent log
returns as opposed to arithmetic returns). Qualitatively, the figure shows how the estimated
forecast errors can, in principle, produce a term structure that is downward sloping on

26We define bad times as the 20% lowest of values for the CAPE ratio.
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average (Binsbergen, Brandt, and Koijen 2012) and countercyclical (Gormsen 2021, Golez
and Jackwerth 2023).27 As such, our forecast errors help account for the dynamics of the
equity term structure.

5.3 Impact of Forecast Errors on Demand Elasticities

Empirically, there is a strong relation between changes in prices and expected returns over the
next period. Nagel and Xu (2022b), for instance, shows that a 1 percentage point increase in
the dividend yield increases expected returns on the market by 6 percentage points over the
subsequent year. This large impact of prices on future expected returns should lead investors
to allocate substantially towards equities when prices move. But our results suggest that
investors often mistakenly attribute a significant share of the decrease in prices to increases in
expected returns at relatively long horizons, and perceive short-term spot returns to increase
only modestly. This structure of expectation errors lowers the elasticity of demand, as a
modest increase in spot returns will not lead to a large increase in desired portfolio weights
in equities. It can accordingly help make sense of the apparently puzzling inelasticity in
investor demand for equities (Gabaix and Koijen 2022). We leave potential quantification of
this effect to future work.

6 A Model of Expectation Errors

Finally, to provide a more positive potential explanation for our results, this section presents
a simple model of expectations errors in the term structure of option-based spot rates that
results in excess persistence in expected returns. The models builds on the framework
proposed by Bordalo, Gennaioli, and Shleifer (2018), but it is also qualitatively similar to the
natural expectations model proposed by Fuster, Laibson, and Mendel (2010) and adapted
by Giglio and Kelly (2018). We then calibrate the model and compare it to the data under
the assumption that the representative investor has log utility over the market return. The
model is reduced-form in the sense that we directly model investors’ expectations about an
endogenous variable, rather than taking a stand on the underlying foundations for these
expectations.

27If we considered forecast errors for for expected returns instead of risk premia, the term structure would
be slightly upward sloping on average but still countercyclical.
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6.1 Model Setup

We assume that the 3-month spot rate follows an AR(3) process under the objective measure:

µ
(3)
t =

(
1−

3∑
j=1

ϕj

)
µ̄+ ϕ1 µ

(3)
t−1 + ϕ2 µ

(3)
t−2 + ϕ3 µ

(3)
t−3 + et,

where µ̄ = E[µ(3)
t ] and et

i.i.d.∼ N (0, σ2
e).28

If expectations were rational, investors would use the objective AR(3) dynamics to make
iterated forecasts of future 3-month spot rates:

Et

[
µ
(3)
t+n

]
=

(
1−

3∑
j=1

ϕj

)
µ̄+

3∑
j=1

ϕj Et

[
µ
(3)
t+n−j

]
for n > 0. (15)

In such a rational world, these objective forecasts of future 3-month spot rates would define
the current term structure of quarterly option-implied spot rates recursively using (2):

µ
(n)
t =

µ
(3)
t for n = 3

µ
(n−3)
t + Et

[
µ
(3)
t+n−3

]
for n ∈ {6, 9, 12} .

(16)

Rather than assuming rationality as in (15), however, we assume that investors potentially
overreact to objective news about µ(n)

t in forming their subjective forecasts. We use Eθ
t [·] to

refer to these investors’ subjective expectations, as the parameter θ indexes the degree of
excess sensitivity to spot-rate news as follows:

Eθ
t

[
µ
(3)
t+n

]
= Et

[
µ
(3)
t+n

]
+ θ

(
Et

[
µ
(3)
t+n

]
− Et−3

[
µ
(3)
t+n

])
︸ ︷︷ ︸

spot-rate news

. (17)

In the language of Bordalo et al. (2019), θ is the “diagnosticity” parameter. This representation
nests rationality when θ = 0. When θ > 0, investors are excessively sensitive to news.29

After bad news, for example, spot rates increase, the news term is positive, and investors’
subjective expectations overreact by θ times news.

28By focusing on the ex ante equity premium as the stochastic process of interest, our model departs
somewhat from the diagnostic model considered by, e.g., Bordalo et al. (2019), as discussed in Section 6.3.
We also generalize slightly by assuming an AR(3) process.

29While overreaction is defined relative to objective news (which investors do not directly observe), the
news term in (17) is proportional to the objective innovation et (which they do observe). Since news is
defined over a 3-month period in the objective dynamics, we assume that the relevant lagged expectations in
(17) are 3-month lagged expectations. In principle, this could also be estimated from the data as in Bordalo
et al. (2019).
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The actual term structure of quarterly option-implied spot rates µ
(n)
t is defined by (16),

but with the objective expectation Et[µ
(3)
t+n] replaced by the subjective expectation Eθ

t [µ
(3)
t+n].

As a consequence, long-horizon spot rates — and therefore forward rates — increase after
bad news even more than they would under rationality.

6.2 Calibration and Results

To understand whether the model can match our empirical findings, we turn to Monte Carlo
simulations. We first estimate the objective dynamics of the 3-month spot rate by country
under the assumption of log utility. Table A10 reports these parameters. We then simulate
10,000 artificial samples of length equivalent to that in the data. In each artificial dataset,
we run the same regressions as conducted in Section 4 to evaluate how the regression slopes
and average errors vary with deviations from rational expectations.

While we consider a range of values for the key parameter θ, one particular focus is the
value estimated by Bordalo, Gennaioli, and Shleifer (2018) and Bordalo et al. (2019), θ = 0.91.
They estimate this value in different settings than the one considered here, allowing us to test
whether our empirical results are consistent with a fully externally calibrated θ. Given that
this value of θ is close to 1, the magnitude of forecast errors is roughly comparable to news.

Figure 10 plots regression slopes and average errors by the degree of overreaction. The
model is qualitatively consistent with the data. As θ increases, the Mincer-Zarnowitz slope β1

decreases toward zero and the error-predictability and Coibion-Gorodnichenko slopes become
more negative (see the Appendix for the empirical versions of these Coibion-Gorodnichenko
regressions). Given (17), subjective expectations are on average unbiased, so the model
cannot produce any non-zero average error. There is thus no relationship between the average
error and θ. At the calibrated value θ = 0.91, the model and data are roughly in line, as the
empirical estimates are close to the model-implied confidence intervals in all cases; slightly
lower values of θ would align the two even more closely. This simple model of expectation
errors thus appears capable of explaining the excess sensitivity of forward rates we document
empirically.

However, while the model is able to match overreaction reasonably well despite the stylized
setup and few parameters, it does seem to fall short of matching the data on certain additional
dimensions. In particular, it appears to underestimate the degree of rational variation in
forward rates observed in the data: as seen in Figure A7, the model’s regression R2 values are
somewhat below those observed in the data on average. For example, the Mincer-Zarnowitz
R2 is 20% in the data, but only 10% at the calibrated θ = 0.91.30 Nonetheless, the model

30Lower values of θ again improve this aspect of the model’s match to the data, though this is not the
case for the forecast-error predictability R2 values.
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still replicates the same qualitative patterns in R2 values as one would expect.

6.3 Interpretation and Discussion

While the above model of expectation errors is capable of matching our empirical findings, the
cyclicality of expectation errors distinguishes our setting from certain frameworks featuring
return extrapolation, as discussed in Section 4.1.4. In the model, forward rates overreact to
news about spot rates: when the objective equity premium is high, forward rates increase, and
forecast errors are predictably negative. This echoes our empirical findings. Those findings
would not be matched by specifying a model of overreaction of forward rates to realized
returns: the estimated equity premium is high in bad times, when realized returns are low.

If the cyclicality of our model’s expectation errors were to be flipped — if forward rates
were too low in bad times, generating positive errors — then these errors would not be capable
of explaining any of the variation in the price-dividend ratio shown in Figure 8. Forecast errors
instead would exert a dampening force on stock prices, making it more difficult to explain their
observed volatility. We discuss and formalize this idea in more detail in Appendix D, which
introduces a “trilemma” for expectation errors: it is difficult to simultaneously make sense of
(i) volatile expectation errors, (ii) countercyclical expectation errors (e.g., extrapolation of
past returns), and (iii) volatile prices.31 Our framework discards (ii), leaving (i) and (iii) on
the table.

7 Conclusion

This paper provides novel analysis of the term structure of return expectations for equities.
This term structure is a powerful laboratory for understanding how investors form expectations,
and the behavior of this term structure is key for understanding variation in stock prices.

Our empirical analysis suggests that the term structure of investor expectations is well-
behaved along multiple dimensions: forward rates are reasonably good predictors of future
realized spot rates, they embed mean-reversion, and they exhibit countercyclical variation.
However, we find strong evidence that forward rates are, in fact, excessively countercyclical:
in bad times, investors think that expected returns on equities will stay elevated for much
longer than their own subsequent beliefs justify. We label this finding excess persistence in
expected returns.

This excess persistence in expected returns has broad implications for asset pricing. First,

31This discussion builds on Campbell (2017), who introduces related trilemmas for present value and
portfolio choice.
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mistakes about long-run expected returns have a meaningful impact on stock prices, and the
excess persistence in forward rates therefore leads to substantial excess volatility. Across data
sources, we find that the excess persistence can account for half the drop in expected returns
during the global financial crisis and most of the drop during the Covid crises. The crises in
recent time thus appear to have been much more short-lived than investors expected ex ante.

The excess persistence also has implications for other areas in asset pricing. For instance,
the forecast errors induced by excess persistence can account for the dynamics of the equity
term structure studied by Binsbergen, Brandt, and Koijen (2012): the structure of the forecast
errors is such that the equity term structure is slightly downward sloping on average and
countercyclical. The forecast errors also tend to reduce the price-elasticity of demand.

An exciting feature of these empirical results is that they are robust across option-based
and survey-based measures. Whereas the dynamics of short-run expected returns appears
to vary across data sources, we find no disagreement between option-based measures and
survey-based measures when considering forward rates: in all cases, longer-run forward
rates are robustly and excessively countercyclical, with strikingly similar magnitudes across
measures. We therefore provide a unified body of evidence on the dynamics of long-run
expected returns.
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Tables and Figures

Table 2Table 2
Mincer-Zarnowitz Regressions from Option-Based Expectations

This table reports Mincer-Zarnowitz regressions of future realized spot rates on current forward rates for
option-based risk premia (left panel) and expected returns (right panel). For risk premia, the realized spot
rate

µ̃
(6)
i,t+6 = Et+6

[
r
(6)
i,t+6

]
is the future expectation of the 6-month equity premium and the forward rate

f̃
(6,6)
i,t = Et

[
r
(6)
i,t+6

]
is the current expectation of the same risk premium. These expectations are analogously defined for expected
returns. The units are annualized percentage points. Panel regressions, in the main sample, report standard
errors clustered by exchange and date. This sample is the longest available for each exchange. Time-series
regressions, in the United States, report Newey-West standard errors with lags selected following Lazarus
et al. (2018) and fixed-b p-values. This sample is from January 1990 to June 2021.

Risk Premia Expected Returns
µ̃
(6)
i,t+6 = β0 + β1 f̃

(6,6)
i,t + ei,t+6 µ

(6)
i,t+6 = β0 + β1 f

(6,6)
i,t + ei,t+6

Main Main U.S. Only Main Main U.S. Only

f̃
(6,6)
t 0.64*** 0.56*** 0.67***

(0.049) (0.055) (0.096)
f
(6,6)
t 0.92*** 0.91*** 0.88***

(0.053) (0.061) (0.072)
Intercept 1.05*** 0.74*** 0.097 0.27

(0.17) (0.28) (0.22) (0.34)

p-value: β1 = 1 <0.001 <0.001 0.003 0.157 0.178 0.111
Observations 2221 2221 378 2221 2221 378
Fixed Effects None Ex None None Ex None
Standard Errors Cluster Cluster Newey-West Cluster Cluster Newey-West
Cluster Ex/Date Ex/Date - Ex/Date Ex/Date -
Adjusted R2 0.20 0.22 0.22 0.63 0.63 0.71
Within R2 - 0.15 - - 0.59 -
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Table 3Table 3
Instrumented Mincer-Zarnowitz Regressions from Option-Based Expectations

This table reports instrumented Mincer-Zarnowitz regressions of future realized spot rates on current forward
rates for option-based risk premia (left panel) and expected returns (right panel). For risk premia, the
realized spot rate is the future expectation of the 6-month equity premium and the forward rate is the current
expectation of the same risk premium. The instrument is the current expectation of the 1-month equity
premium in 2 months:

f̃
(2,1)
i,t = Et

[
r
(1)
i,t+2

]
These expectations are analogously defined for expected returns. The units are annualized percentage points.
Panel regressions, in the main sample, report standard errors clustered by exchange and date. This sample is
the longest available for each exchange. Time-series regressions, in the United States, report Newey-West
standard errors with lags selected following Lazarus et al. (2018) and fixed-b p-values. This sample is from
January 1990 to June 2021.

Risk Premia Expected Returns
µ̃
(6)
i,t+6 = β0 + β1 f̃

(6,6)
i,t + ei,t+6 µ

(6)
i,t+6 = β0 + β1 f

(6,6)
i,t + ei,t+6

Main Main U.S. Only Main Main U.S. Only

f̃
(6,6)
t 0.77*** 0.70*** 0.73***

(0.071) (0.074) (0.062)
f
(6,6)
t 0.93*** 0.92*** 0.89***

(0.060) (0.072) (0.029)
Intercept 0.73*** 0.59*** 0.024 0.21

(0.19) (0.13) (0.24) (0.15)

p-value: β1 = 1 0.001 0.003 0.018 0.276 0.325 0.225
Observations 2221 2221 378 2221 2221 378
Fixed Effects None Ex None None Ex None
Standard Errors Cluster Cluster Newey-West Cluster Cluster Newey-West
Cluster Ex/Date Ex/Date - Ex/Date Ex/Date -
Adjusted R2 0.19 - 0.22 0.63 - 0.71
Within R2 - 0.14 - - 0.59 -
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Table 4Table 4
Average Forecast Errors from Option-Based Expectations

This table reports average forecast errors for option-based risk premia (left panel) and expected returns (right
panel). For risk premia, the forecast error is the difference between the future realized spot rate and the
current forward rate. The realized spot rate is the future expectation of the 6-month equity premium and the
forward rate is the current expectation of the same risk premium. These expectations are analogously defined
for expected returns.The units are annualized percentage points. Panel regressions, in the main sample,
report standard errors clustered by exchange and date. This sample is the longest available for each exchange.
Time-series regressions, in the United States, report Newey-West standard errors with lags selected following
Lazarus et al. (2018) and fixed-b p-values. This sample is from January 1990 to June 2021.

Risk Premia Expected Returns
ε̃
(6)
i,t+6 = µ̃

(6)
i,t+6 − f̃

(6,6)
i,t ε

(6)
i,t+6 = µ

(6)
i,t+6 − f

(6,6)
i,t

Main U.S. Only U.S. Post-2006 Main U.S. Only U.S. Post-2006

Intercept 0.17 0.021 0.029 -0.27** -0.40** -0.24
(0.11) (0.15) (0.26) (0.10) (0.17) (0.19)

Observations 2221 378 174 2221 378 174
Standard Errors Cluster Newey-West Newey-West Cluster Newey-West Newey-West
Cluster Ex/Date - - Ex/Date - -
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Table 5Table 5
Predictability of Forecast Errors from Option-Based Expectations

This table reports predictability regressions of future realized forecast errors on current forward rates for
option-based risk premia (left panel) and expected returns (right panel). For risk premia, the realized spot
rate is the future expectation of the 6-month equity premium, the forward rate is the current expectation
of the same risk premium, and the forecast error is the realized spot rate minus the forward rate. These
expectations are analogously defined for expected returns. For both risk premia and expected returns, the
predictor is the 2× 1-month forward risk premium, the current expectation of the 1-month equity premium in
2 months. The units are annualized percentage points. Panel regressions, in the main sample, report standard
errors clustered by exchange and date. This sample is the longest available for each exchange. Time-series
regressions, in the United States, report Newey-West standard errors with lags selected following Lazarus
et al. (2018) and fixed-b p-values. This sample is from January 1990 to June 2021.

Risk Premia Expected Returns
ε̃
(6)
i,t+6 = β0 + β1 f̃

(2,1)
i,t + ei,t+6 ε

(6)
i,t+6 = β0 + β1 f̃

(2,1)
i,t + ei,t+6

Main Main U.S. Only Main Main U.S. Only

f̃
(2,1)
t -0.13** -0.16*** -0.17** -0.25*** -0.29*** -0.20**

(0.046) (0.047) (0.066) (0.050) (0.047) (0.090)
Intercept 0.52*** 0.39* 0.39** 0.039

(0.15) (0.23) (0.17) (0.29)

Observations 2221 2221 378 2221 2221 378
Fixed Effects None Ex None None Ex None
Standard Errors Cluster Cluster Newey-West Cluster Cluster Newey-West
Cluster Ex/Date Ex/Date - Ex/Date Ex/Date -
Adjusted R2 0.02 0.03 0.03 0.08 0.11 0.04
Within R2 - 0.03 - - 0.10 -
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Table 6Table 6
Livingston Survey Regressions

This table reports regressions for Livingston survey expectations. See Section 3 for more details. Columns
(1)–(2) are Mincer-Zarnowitz regressions of future realized spot rates on forward rates, as in Table 2. Columns
(3)–(4) are average forecast errors, as in Table 4. Columns (5)–(6) are error-predictability regressions, as in
Table 5. The units are annualized percentage points. Each regression reports Newey-West standard errors
with lags selected following Lazarus et al. (2018) and fixed-b p-values. The sample is half-yearly from June
1992 to June 2021.

Mincer-Zarnowitz Average Error Error Predictability

Risk Premia Expected Returns Risk Premia Expected Returns Risk Premia Expected Returns

µ̃
(6)
t+6 µ

(6)
t+6 ε̃

(6)
t+6 ε

(6)
t+6 ε̃

(6)
t+6 ε

(6)
t+6

f̃
(6,6)
t 0.81*** -0.19** -0.19***

(0.077) (0.077) (0.073)
f
(6,6)
t 0.68***

(0.069)
Intercept 0.97 1.95*** 0.37 0.11 0.97 0.72

(0.64) (0.70) (0.34) (0.30) (0.64) (0.59)

p-value: β1 = 1 0.052 0.002 - - - -
Observations 59 59 59 59 59 59
Adjusted R2 0.56 0.38 - - 0.05 0.06
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Table 7Table 7
CFO Survey Regressions

This table reports regressions for CFO survey expectations. See Section 3 for more details. Columns (1)–(2)
are Mincer-Zarnowitz regressions of future realized spot rates on forward rates, as in Table 2. Columns
(3)–(4) are average forecast errors, as in Table 4. Columns (5)–(6) are error-predictability regressions, as in
Table 5. The units are annualized percentage points. Each regression reports Newey-West standard errors
with lags selected following Lazarus et al. (2018) and fixed-b p-values. The sample is quarterly from March
2004 to March 2022.

Mincer-Zarnowitz Average Error Error Predictability

Risk Premia Expected Returns Risk Premia Expected Returns Risk Premia Expected Returns

µ̃
(9y)
t+1y µ

(9y)
t+1y ε̃

(9y)
t+1y ε

(9y)
t+1y ε̃

(9y)
t+1y ε

(9y)
t+1y

f̃
(1y,9y)
t 0.42*** -0.58*** -0.15

(0.15) (0.15) (0.11)
f
(1y,9y)
t 0.63***

(0.11)
Intercept 2.26*** 2.39*** -0.021 -0.21* 2.26*** 0.37

(0.58) (0.71) (0.14) (0.12) (0.58) (0.39)

p-value: β1 = 1 0.004 0.012 - - - -
Observations 68 68 68 68 68 68
Adjusted R2 0.20 0.46 - - 0.34 0.03
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Table 8Table 8
Cyclical Variation in Forecast Errors

This table reports cyclicality regressions for option-based (left panel) and survey-based (middle and right
panels) expectations. Each panel reports predictability regressions of future realized forecast errors on the
cyclically adjusted price-earnings yield and the excess yield (ExCAPE). The units are annualized percentage
points. Each regression reports Newey-West standard errors with lags selected following Lazarus et al. (2018)
and fixed-b p-values. The sample is monthly from January 1990 to June 2021 for option-based expectations,
half-yearly from June 1992 to June 2021 for Livingston survey expectations, and quarterly from March 2004
to March 2022 for CFO survey expectations.

Expected Returns

Option-Based Livingston Survey CFO Survey

ε
(6)
t+6 ε

(6)
t+6 ε

(6)
t+6 ε

(6)
t+6 ε

(9y)
t+1y ε

(9y)
t+1y

1/CAPEt -0.51*** -0.74** -0.27***
(0.18) (0.32) (0.097)

1/ExCAPEt -0.58*** -0.87** -0.30***
(0.22) (0.36) (0.10)

Intercept 1.68** 1.71** 3.01** 3.17** 0.87** 0.88**
(0.81) (0.85) (1.27) (1.29) (0.35) (0.34)

Observations 378 378 59 59 68 68
Adjusted R2 0.14 0.12 0.02 0.02 0.13 0.13
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Figure 2Figure 2
Option-Based Spot and Forward Rates

This top panel plots contemporaneous 6-month spot rates µ̃
(6)
t (light blue) and 6× 6-month forward rates

f̃
(6,6)
t (dark blue). The bottom panel plots instrumented 6× 6-month forward rates f̃

(6,6)
t (dark blue) and

the corresponding realized 6-month spot rates µ̃
(6)
t+6 (red). The instrument is the 2× 1-month forward rate:

see Table 3 for more details. Spot and forward rates are for equity risk premia and are from option-based
expectations. Gray bands are NBER recessions. The sample is from January 1990 to June 2021 in the United
States.
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Figure 3Figure 3
Option-Based Forecast Errors and Lagged Forward Rates

This figure plots forecast errors ε̃
(6)
t+6 (orange bars) and lagged 6× 6-month forward rates f̃

(6,6)
t (dark blue

line). Forecast errors and forward rates are for equity risk premia and are from option-based expectations.
The sample is from January 1990 to June 2021 in the United States.

19
98

Q
3:

 R
us

si
an

 D
eb

t C
ris

is

20
02

Q
4:

 S
to

ck
 M

ar
ke

t D
ow

nt
ur

n

20
08

Q
4:

 G
lo

ba
l F

in
an

ci
al

 C
ris

is

20
10

Q
2:

 D
ou

bl
e−

D
ip

 R
ec

es
si

on
 F

ea
rs

20
11

Q
3:

 D
eb

t−
C

ei
lin

g 
C

ris
is

20
20

Q
2:

 C
ov

id
−

19
 R

ec
es

si
on

0

4

8

1990 2000 2010 2020

A
nn

ua
liz

ed
 P

er
ce

nt

Forecast Errors Lagged Forward Rates (Demeaned)

44



Figure 4Figure 4
Option-Based Forward Rates and Predicted Forecast Errors

This figure plots instrumented 6× 6-month forward rates f̃
(6,6)
t (top panel) and the corresponding predicted

forecast errors ε
(6)
t+6 (bottom panel). The instrument is the 2× 1-month forward rate: see Table 3 for more

details. The predicted forecast error is from a time-series regression of future realized forecast errors on
current forward rates: see Table 5 for more details. Forward rates and forecast errors and are for equity
risk premia and are from option-based expectations. Gray bands are NBER recessions. The sample is from
January 1990 to June 2021 in the United States.
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Figure 5Figure 5
Option-Based Conditional Volatility of the Market Return

This figure plots the conditional volatility of the 6-month market return σt (lnRt,t+6) from the standpoint of
an unconstrained log utility investor fully invested in the market. See Appendix B.4 for more details. Gray
bands are NBER recessions. The sample is from January 1990 to June 2021 in the United States.
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Figure 6Figure 6
Survey-Based Forward Rates and Predicted Forecast Errors

This figure plots forward rates (top) and the corresponding predicted forecast errors (bottom) for Livingston
(left) and CFO (right) survey expectations. See Section 3 for more details. The predicted forecast error
is from a time-series regression of future realized forecast errors on current forward rates, as in Figure 4.
Forward rates and forecast errors and are for equity risk premia. Gray bands are NBER recessions. The
sample is half-yearly from June 1992 to June 2021 for the Livingston survey and quarterly from March 2004
to March 2022 for the CFO survey.
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Figure 7Figure 7
Spot and Forward Rates in the CFO Survey

This figure plots the spot rate and forward rate based on data from the CFO Survey. The spot and forward
rates are for expected returns; see text for details on definitions and estimation. Gray bands are NBER
recessions. The sample is quarterly from March 2004 to March 2022.
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Figure 8Figure 8
Discounted Forecast Errors and the Price-Dividend Ratio

This figure plots discounted predicted forecast errors over all future horizons Et (red) and the log repurchase-
adjusted price-dividend ratio pt − dt (blue) in the United States. Discounted forecast errors Et are calculated
as in (13) using the 6× 6 predicted forecast error (non-annualized), with ρ calculated using the full-sample
average price-dividend ratio. The monthly repurchase-adjusted pt − dt for the CRSP value-weighted stock
index is obtained from Nagel and Xu (2022a) via Zhengyang Xu’s website. Both series are plotted as log
differences from their full-sample means. Gray bands are NBER recessions. The sample is from January 1990
to June 2021.
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Figure 9Figure 9
The Effect of Forecast Errors on Realized Returns for the Equity Term Structure

This figure shows the impact of predicable variation in forecast errors on realized returns to dividend claims
with different maturity. We calculate realized returns for each equity claim based on the assumption that
spot rates are the same for all dividend claims and given by the spot rates from Proposition 1. Difference in
realized returns arise from differences in exposure to forecast errors (duration) across claims. We divide the
sample into good and bad times based on the ex ante CAPE ratio, with good times being the 80% of the
months where the CAPE ratio is highest. See text for additional details.
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Figure 10Figure 10
Model Calibration: Regression Slopes and Average Forecast Errors

This figure reports regression slopes and average forecast errors in the calibrated model of expectation errors.
The model is calibrated from the standpoint of an unconstrained log utility investor fully invested in the
market. Table A10 reports the objective parameters. The solid lines are model-implied population moments
in a single long sample. The shaded regions are model-implied 95% confidence bands in 10,000 short samples.
The blue circles are model-implied moments under rational expectations with θ = 0. The red squares are
model-implied moments under diagnostic expectations with θ = 0.91 from Bordalo, Gennaioli, and Shleifer
(2018). The green triangles are moments in the data. The sample is the longest available for each exchange
in the main sample.
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A Proofs

Proof of Proposition 1. Given that Mt,t+nRt,t+n = 1 by assumption, C(n)
t = 0 in (4). The stated

results then follow immediately.

Proof of Proposition 2. First consider n = m = 1, and write

ε
(1)
t+1 = µ

(1)
t+1 − f

(1)
t = L

(1)
t+1 − L

(2)
t + L

(1)
t + covt(MRt,t+2, rt,t+2)

− covt(MRt,t+1, rt,t+1)− covt+1(MRt+1,t+2, rt+1,t+2). (A1)

Consider the first covariance term. Given the joint log-normality of the SDF and returns (and the
normality of rt,t+n), Stein’s lemma gives that

covt(MRt,t+2, rt,t+2) = covt(MRt,t+1MRt+1,t+2, rt,t+2)

= covt(mrt,t+1 +mrt+1,t+2, rt,t+2)Et[MRt,t+2]

= covt(mrt,t+1 +mrt+1,t+2, rt,t+1 + rt+1,t+2) ,

where mrt,t+n = ln(MRt,t+n), and where the last line uses that Et[MRt,t+2] = 1. Having separated
the two MR terms, apply Stein’s lemma again to obtain

covt(MRt,t+2, rt,t+2) = covt(mrt,t+2, rt,t+1) + covt(mrt,t+1, rt+1,t+2) + covt(mrt+1,t+2, rt,t+2)

= covt(MRt,t+2, rt,t+1) + covt(MRt,t+1, rt+1,t+2)

+ covt(MRt+1,t+2, rt+1,t+2) . (A2)

For the first two terms in (A2), by the law of total covariance and using that Et+1[MRt+1,t+2] = 1,

covt(MRt,t+2, rt,t+1) = Et

[
MRt,t+1rt,t+1 covt+1(MRt+1,t+2, 1)

]
+ covt(MRt,t+1 Et+1[MRt+1,t+2], rt,t+1)

= covt(MRt,t+1, rt,t+1) , (A3)
covt(MRt,t+1, rt+1,t+2) = Et[MRt,t+1 covt+1(1, rt+1,t+2)] + covt(MRt,t+1,Et+1[rt+1,t+2])

= covt(MRt,t+1,Et+1[rt+1,t+2]) . (A4)

Turning now to the last term in (A1), the law of total covariance can similarly be applied to obtain
that as of time t,

Et[covt+1(MRt+1,t+2, rt+1,t+2)] = covt(MRt+1,t+2, rt+1,t+2). (A5)

Taking expectations in (A1), substituting in results (A2)–(A5), and applying the definition of ε̂ (1)
t+1,

we obtain:

Et

[
ε
(1)
t+1

]
= Et

[
ε̂
(1)
t+1

]
+ covt(MRt,t+1,Et+1[rt+1,t+2]) . (A6)

Rearranging to solve for Et[ε̂
(1)
t+1] yields the stated result for the n = m = 1 case. While this case is

convenient for straightforward derivations, note that all the above steps apply when using t+ n in
place of t+ 1 and using t+ n+m in place of t+ 2, so the stated result holds for general n,m.
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Proof of Proposition 3. Starting again with (A1) and expanding the first covariance term,

covt(MRt,t+2, rt,t+2) = covt(MRt,t+1MRt+1,t+2, rt,t+1) + covt(MRt,t+1MRt+1,t+2, rt+1,t+2). (A7)

We consider each of the two terms on the right side of (A7) in turn, and in both cases apply the law
of total covariance. For the first term, as in (A3),

covt(MRt,t+1MRt+1,t+2, rt,t+1) = covt(MRt,t+1, rt,t+1) . (A8)

For the second term,

covt(MRt,t+1MRt+1,t+2, rt,t+2) = Et

[
MRt,t+1 covt+1(MRt+1,t+2, rt+1,t+2)

]
+ covt(MRt,t+1,Et+1[rt+1,t+2]) . (A9)

Using (A8) and (A9) in (A1), applying the definition of ε̂ (1)
t+1, and taking expectations,

Et

[
ε
(1)
t+1

]
= Et

[
ε̂
(1)
t+1

]
+ Et[(MRt,t+1 − 1) covt+1(MRt+1,t+2, rt+1,t+2)]

+ covt(MRt,t+1,Et+1[rt+1,t+2])

= Et

[
ε̂
(1)
t+1

]
+ covt(MRt,t+1,Et+1[rt+1,t+2] + covt+1(MRt+1,t+2, rt+1,t+2)) . (A10)

Note from (4) that L
(1)
t+1 = Et+1[rt+1,t+2] + covt+1(MRt+1,t+2, rt+1,t+2). Using this in (A10),

Et

[
ε̂
(1)
t+1

]
= Et

[
ε
(1)
t+1

]
− covt

(
MRt,t+1,L

(1)
t+1

)
.

The above steps again apply when using t+ n in place of t+ 1 and using t+ n+m in place of t+ 2,
completing the proof.

Proof of Lemma A1. To compute the risk-neutral expectation of H [PT ] = Rα (lnR)β , we apply
standard spanning theorems (Bakshi and Madan 2000, Carr and Madan 2001). We have

1

Rf
E∗
t

[
Rα (lnR)β

]
=
(
H

[
P̄
]
− P̄HP

[
P̄
]) 1

Rf
+HP

[
P̄
]
Pt

+

∫ P̄

0
HPP [K] put

(n)
t (K)dK +

∫ ∞

P̄
HPP [K] call

(n)
t (K)dK.

The result follows by setting P̄ = F
(n)
t and simplifying.

Proof of Proposition A1. (A13) is immediate from Martin (2017) Result 8. (A14) and (A15)
follow from Lemma A1 by setting the appropriate α and β and simplifying.

B Measurement Details

B.1 Data

United States Data. For the 1996 to 2021 period, we obtain end-of-day option prices, index prices,
projected dividend yields, and risk-free rates from OptionMetrics. To maximize the sample size, we
use options with both AM and PM settlement. We use the bid/ask midpoint as the option price in
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the main analysis. We linearly interpolate the risk-free rate curve to match option maturities. If
either the dividend yield or risk-free rate is missing, we use the last non-missing observation.

For the 1990 to 1995 period, we obtain intraday option quotes from CBOE Market Data Express,
as in Kelly, Pástor, and Veronesi (2016) and Culp, Nozawa, and Veronesi (2018). We obtain
end-of-day index prices/returns from CRSP and estimate dividend yields from lagged one-year
cum/ex-dividend index returns. We obtain Treasury bill rates and constant maturity Treasury yields
from FRED to construct risk-free rates, as in Culp, Nozawa, and Veronesi.

Unlike OptionMetrics, CBOE provides intraday quotes. To construct end-of-day prices, we first
apply filters to the intraday data and then use the last available quote. We drop quotes with the
missing codes of 998 or 999. We drop quotes with negative bid-ask spreads. We correct erroneously
recorded quotes – quotes with strike price less than 100 – by multiplying the strike/option price by
10. We drop end-of-day quotes that increase and then decrease fourfold (or vice versa), following
similar filters in Andersen, Bondarenko, and Gonzalez-Perez (2015) and Duarte, Jones, and Wang
(2022). We interpret these large reversals as probable data errors. To validate these filters, we
compare data from CBOE and OptionMetrics in 1996. We match approximately 99.3% of option
prices in OptionMetrics, suggesting these filters are not unreasonable.

We apply standard filters to the end-of-day data (Constantinides, Jackwerth, and Savov 2013).
(1) We drop options with special settlement. (2) To eliminate duplicate quotes, we select the quote
with highest open interest. (3) We drop options with fewer than seven days-to-maturity. (4) We
drop options with price less than 0.01. (5) We drop options with zero bid prices or negative bid-ask
spreads. (6) We drop options that violate static no-arbitrage bounds:

put
(n)
t (K) ≤ Ke−rτ call

(n)
t (K) ≤ Pt.

(7) We drop options for which the Black-Scholes implied volatility computation does not converge
and options with implied volatility less than 5% or greater than 100%.

International Data. We again obtain end-of-day option prices, index prices, projected dividend
yields, and risk-free rates from OptionMetrics. Unlike the United States, most option prices are
either end-of-day settlement prices or last traded prices. Only a small fraction are from either bid/ask
prices. The index price is time synchronized to the option price. If the index price is missing, we
obtain the end-of-day price from Compustat Global. Risk-free rates are from currency-matched
LIBOR curves. Dividend yields are from put-call parity and so are maturity-specific. As before
with risk-free rates, we linearly interpolate the dividend yield curve to match option maturities. We
apply the same filters to the end-of-day data as with the United States, except for filters that require
bid/ask prices.

Table A1 describes the international sample. The European sample begins in January 2002 and
ends in September 2021. The Asian sample begins in January 2004 and ends in April 2021. Our
international sample closely follows Kelly, Pástor, and Veronesi (2016) and Dew-Becker and Giglio
(2021), but we also use pan-European Stoxx indexes. These indexes represent a substantive addition
to the sample. At long maturities, the Euro Stoxx 50 is arguably the most liquid options market in
the world, as is the case with the dividend futures market (Binsbergen and Koijen 2017, Binsbergen
et al. 2013).

Main Sample. As the international data is not equally robust across exchanges, we select the
most reliable exchanges for the main analysis. We select the main sample by elimination. We drop
Netherlands and Japan because they do not have sufficiently dense options, as seen in Panel A of
Figure A1. We drop Finland, the Stoxx Europe 50, and the Stoxx Europe 600 because they do not
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have reliable open interest data, as seen in Panel B of Figure A1. We drop Belgium, Korea, and
Taiwan because they do not consistently have long-maturity options, as seen in Panel D of Figure A2.
We drop China and Sweden because they do not have sufficiently deep out-of-the-money options, as
seen in Figure A2. This leaves the 10 exchanges in the last column of Table A1 for the main sample.
As a robustness check, we examine the full sample of 20 exchanges in Table A4 and Table A5.

B.2 Baseline Measures

Methodology. On each date and separately for puts/calls,

1. We convert option prices to implied volatilities via Black-Scholes. Here we follow an extensive
literature on option-implied risk-neutral densities that finds interpolation more conducive in
the space of implied volatilities, not option prices (Figlewski 2010, Malz 2014).

2. We fit a Delaunay triangulation to implied volatilities. The grid consists of strike prices
between K = 0.10× Pt and K = 2.00× Pt with ∆K = 0.001× Pt and maturities τ = 30, 60,
91, 122, 152, 182, 273, 365 days. The triangulation extrapolates as necessary with the nearest
implied volatility in moneyness and time-to-maturity space.

3. We convert the triangulation of implied volatilities back to option prices via Black-Scholes.
We then use the implied triangulation of option prices to evaluate the LVIX integral in (7) via
Gaussian quadrature.

4. With the LVIX in hand, we can immediately compute spot rates, forward rates, and forecast
errors under log utility via Proposition 1, as shown in Figure A3. Figure A4 plots contempo-
raneous 6-month spot rates and 6× 6-month forward rates in the full sample, analogous to
Figure 2 in the United States.

5. We occasionally find negative forward rates. Gao and Martin (2021) argue that negative
forward rates are unlikely theoretically and likely represent data errors. We follow Gao and
Martin and drop such observations, but our results are not quantitatively sensitive to this
choice.

Discussion. Three empirical challenges in the computation of option-implied moments – discretiza-
tion, truncation, and interpolation bias – motivate our baseline methodology (Carr and Wu 2009,
Jiang and Tian 2007). We discuss each in turn. First, discretization bias arises because (7) requires
numerical integration. To minimize this bias, we integrate on a fine grid of interpolated option prices
in step 3. Second, truncation bias arises because (7) requires integration over an infinite range of
strike prices in theory. In practice, we truncate the integral. To minimize this bias, we extrapolate
and integrate over strike prices well beyond the range of observable option prices in step 2. Finally,
interpolation bias arises because (7) usually requires options with unavailable maturities. To address
this bias, we interpolate the option surface at target maturities in step 2.

B.3 Alternative Measures

Table A3 reports robustness checks where we use alternative choices to measure spot rates, forward
rates, and forecast errors. As we discuss below, the main results are largely robust to these choices.

Integration Bounds. Panel A repeats the analysis with alternative integration bounds. The first
four rows consider static bounds without extrapolation. As an example, the first row evaluates the
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integral in (7) between strike prices K = 0.65× Pt and K = 1.35× Pt at each maturity. The fifth
row uses observable option prices between strike prices K = 0.10 × Pt and K = 2.00 × Pt, again
without extrapolation. The bounds in the first five rows naturally vary both by time and maturity
with the availability of option prices. The sixth row considers static bounds with extrapolation,
following a similar robustness check in Gormsen and Jensen (2022):

[
K(n),K

(n)
]
=


[0.75, 1, 25]× Pt n ∈ {1, 2}
[0.55, 1.45]× Pt n ∈ {3, 4, 5}
[0.35, 1.65]× Pt n ∈ {6, 9}
[0.20, 1.80]× Pt n ∈ {12} .

These bounds vary by maturity, but not by time. The seventh row considers dynamic bounds with
extrapolation, again following a similar robustness check in Gormsen and Jensen:

K(n) = max
{
0.10, 1.00− 5σ

(n)
t

√
τ
}
× Pt K

(n)
= min

{
2.00, 1.00 + 5σ

(n)
t

√
τ
}
× Pt,

where σ
(n)
t , the price of the volatility contract in Bakshi, Kapadia, and Madan (2003), proxies for

the risk-neutral volatility of the market return:(
σ
(n)
t

√
τ
)2

=
1

Rf
t,t+n

E∗
t

[
(lnRt,t+n)

2
]

=

∫ Pt

0

2
(
1 + ln

[
Pt
K

])
K2

put
(n)
t (K)dK +

∫ ∞

Pt

2
(
1 + ln

[
Pt
K

])
K2

call
(n)
t (K)dK. (A11)

These bounds vary by both time and maturity with volatility. The eighth row considers the baseline
integration bounds, as discussed in the main text and Appendix B.2.

In sum, this exercise illustrates the significant effect truncation/extrapolation have on the re-
gression estimates. With shallow bounds, forecast errors are relatively large on average but less
predictable. With deep bounds, forecast errors are relatively small on average but more predictable.

Liquidity Filters. Panel B repeats the analysis with alternative liquidity filters. The first row
considers an outlier filter, following similar filters in Constantinides, Jackwerth, and Savov (2013) and
Beason and Schreindorfer (2022). On each date and separately for puts/calls, we first fit a quadratic
function to implied volatilities in terms of moneyness K/P and time-to-maturity. To minimize the
effect of deep out-of-the-money, short/long-maturity options, we only use options with maturity
14 ≤ τ ≤ 365 days and moneyness 0.65 ≤ K/P ≤ 1.35. We then drop influential observations via
Cook’s Distance. The second row considers an open interest filter. We drop options with zero open
interest. We do not have open interest data before 1996. The third row combines the outlier and
open interest filters. In all, this exercise is consistent with the baseline results, suggesting that option
illiquidity does not explain our findings.

Volatility Surface. The first row in Panel C repeats the analysis with the interpolated volatility
surface from OptionMetrics. OptionMetrics provides interpolated Black-Scholes implied volatilities
on a constant moneyness/maturity grid. The literature often uses this surface for options with
American exercise because OptionMetrics reports an equivalent, European exercise, implied volatility
(Kelly, Lustig, and Van Nieuwerburgh 2016, Martin and Wagner 2019). We instead simply use it
as a robustness check on our own Delaunay triangulation of the volatility surface. In short, this
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exercise is consistent with the baseline results, although the average forecast error is somewhat smaller.

SVI Surface. The second row in Panel C repeats the analysis with the stochastic volatility inspired
(SVI) surface from Jim Gatheral at Merrill Lynch (Gatheral 2011, Gatheral and Jacquier 2011, 2014).
Our implementation of the SVI surface closely follows Berger, Dew-Becker, and Giglio (2020) and
Beason and Schreindorfer (2022). We parameterize squared Black-Scholes implied volatilities with
the function

σ2
BS (t, κ, τ) = a+ b

(
ρ (κ−m) +

√
(κ−m)2 + σ2

)
, (A12)

where κ is standardized forward moneyness

κ =
lnK − lnF

(n)
t

σ
(n)
t

√
τ

,

σ
(n)
t proxies for the risk-neutral volatility of the market return as in (A11), and each parameter

is a linear function of time-to-maturity (e.g., a = a0 + a1τ). On each date, we estimate param-
eters θ = (a0, a1, b0, b1, ρ0, ρ1,m0,m1, σ0, σ1) that minimize the implied volatility RMSE between
the surface (A12) and the data, subject to standard no-arbitrage constraints: option prices are
nonnegative and monotonic/convex in K (Aït-Sahalia and Duarte 2003). We check these constraints
on a grid with moneyness between −20 ≤ κ ≤ 0.50 for puts, between −0.50 ≤ κ ≤ 10 for calls, and
maturities τ = 30, 60, 91, 122, 152, 182, 273, 365 days. We estimate the surface with outlier-filtered,
as discussed in Appendix B.3, out-of-the-money puts/calls: puts with κ ≤ 0 and calls with κ ≥ 0.
We estimate the surface separately for puts/calls and separately for short/long-maturity options:
14 ≤ τ ≤ 122 days and 122 < τ ≤ 365 days, respectively.

Bid/Ask Prices. Panel D repeats the analysis with bid/ask prices, following similar robustness
checks in Martin (2017) and Gao and Martin (2021). We only have bid/ask prices in the United
States. The first row reports the baseline results with the bid-ask midpoint. The second row repeats
the analysis with bid prices, the third ask prices. In sum, this exercise is consistent with the baseline
results, although the Coibion-Gorodnichenko regression slope is somewhat smaller with ask prices.

B.4 Power Utility Measures

This section derives the power utility analogue to the LVIX. To do so, we apply results from Martin
(2017) and Gao and Martin (2021). We omit time subscripts throughout to minimize clutter.

Lemma A1 (Spanning Rα (lnR)β). For any α and β,

1

Rf
E∗
t

[
Rα (lnR)β

]
= Rα

f (lnRf )
β +

∫ F
(n)
t

0
ω (α, β) put

(n)
t (K)dK +

∫ ∞

F
(n)
t

ω (α, β) call
(n)
t (K)dK,

where

ω (α, β) = −α (1− α)mβ + β (1− 2α)mβ−1 + β (1− β)mβ−2

P 2
t

(
K

Pt

)α−2

and m = lnK − lnPt.

As is well-known, under certain regularity conditions, we can compute the price of any function
of the index price via a replicating portfolio of bonds, stocks, and options. We simply apply this
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result to the function Rα (lnR)β , which is useful for expectations under power utility below.

Proposition A1 (Expected Equity Premium with Power Utility). From the standpoint of
an unconstrained power utility investor fully invested in the market,

Et [lnR]− lnRf =
E∗
t [R

γ lnR]

E∗
t [R

γ ]
− lnRf , (A13)

where

1

Rf
E∗
t [R

γ lnR] = Rγ
f lnRf +

∫ F
(n)
t

0
ω (γ, 1) put

(n)
t (K)dK +

∫ ∞

F
(n)
t

ω (γ, 1) call
(n)
t (K)dK (A14)

and
1

Rf
E∗
t [R

γ ] = Rγ
f +

∫ F
(n)
t

0
ω (γ, 0) put

(n)
t (K)dK +

∫ ∞

F
(n)
t

ω (γ, 0) call
(n)
t (K)dK (A15)

and γ is the investor’s risk aversion.

The LVIX uses a special case of (A13) with γ = 1, and so the mechanics under power utility are
similar, if only messier, to that under log utility. However, there is one caveat: as risk aversion γ
increases, the weights ω (γ, 0) and ω (γ, 1) on deep out-of-the-money call options become untenably
large. Unfortunately, these options are largely unobservable. As such, we can only realistically
measure expectations for a γ ≤ 3 investor in practice.

Armed with the expected equity premium from the standpoint of a power utility investor, we
can compute spot rates, forward rates, and forecast errors in the usual way. Table A8 reports results
analogous to those under log utility for 0.5 ≤ γ ≤ 3. Figure 5 plots the conditional volatility of the
market return from the standpoint of a power utility investor. The mechanics are again a direct
application of Martin (2017) and standard spanning theorems, as with the expected equity premium
above.

B.5 Measurement Error

Spot/Forward Rates. To better understand the role of measurement error, Figure A5 examines
spot/forward rates in simulations. We first compute option prices from a parametric model. Since
we know the true data generating process, we then quantify how varying integration bounds affects
the integral relative to the true value. The thought experiment follows a similar exercise in Jiang
and Tian (2007) for the VIX.

We first truncate the integral (7) without extrapolation, as in Table A3. In Panel A, we consider
a Black-Scholes model. We find a large truncation bias in bad times. In bad times, volatility is
high, deep out-of-the-money options are expensive, and so the bias is large. In contrast, in good
times, volatility is low, deep out-of-the-money options are cheap, and so the bias is small. The bias
is especially large for 12-month spot rates and forward rates because longer-maturity option prices
have more time value. In Panel B, we consider a stochastic volatility model with jumps (SVJ). We
again find an uncomfortably large truncation bias. Relative to Black-Scholes, the bias is larger when
volatility is low, but smaller when volatility is high because volatility mean-reverts in SVJ.

We next truncate the integral after extrapolating beyond the range of observable strikes, as in
the baseline analysis. We continue with a SVJ model in Panel C. Relative to Panel B, we find that
extrapolation reduces truncation bias across the board.
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We emphasize, however, that this exercise only motivates extrapolation in our baseline integration
scheme and our use of shorter-maturity forward rate as instruments/predictors, as in Table 3 and
Table 5. We make no claim that measurement error is unconditionally small. By construction, these
simulations address only truncation bias. There is no scope for either discretization or interpolation
bias, as we simulate option prices on a counterfactually dense grid. We think these biases may be
non-trivial at times and especially so when options are less dense.

Coibion-Gorodnichenko Regressions. In Coibion-Gorodnichenko regressions, we use forecast
revisions to predict forecast errors. Since forecast revisions/errors involve the same forward rate,
measurement error may produce spurious evidence of predictability. To better understand the role
of measurement error, we again turn to simulations. We quantify how much correlated measurement
error would be necessary to produce the Coibion-Gorodnichenko regression slopes in the data.

We assume we observe forecast revisions and forecast errors with noise: x̃ = xσx + vσv and
ỹ = yσy − vσv, respectively, with σxy = σxv = σyv = 0 and x, y, v

i.i.d.∼ N (0, 1). We vary σ2
v

exogenously. In each simulation draw, we set the variance of the truth (σ2
x and σ2

y) such that the
observed variance (σ2

x̃ and σ2
ỹ) equals that in the data. As σ2

v varies, these weights ensure all variation
in slopes comes from variation in noise and none from variation in observed variances. Any evidence
of predictability – any non-zero slope – is spurious because σxy = 0.

Figure A6 reports the results from this simulations. To produce the Coibion-Gorodnichenko
regression slopes in the data, we require σv be about 40 basis points or more than one-quarter
the volatility of forecast errors in the data. This, at least to us, seems implausibly large. We
conclude that correlated measurement error cannot fully explain forecast-error predictability in
Coibion-Gorodnichenko regressions, although we cannot fully rule out some bias due to measurement
error.

C Additional Empirical Results and Robustness Checks

Full Sample. Table A4 considers how our results extend to the full sample with all 20 available
exchanges, as opposed to the 10 developed-market exchanges used in our main panel. The table
presents results from a concise set of key regressions from Tables 2–5 in the main text. The main
results hold here. The Mincer-Zarnowitz regression coefficients are similar to (in fact slightly below)
the results in the main sample; the average forecast error is nearly identical to that in the main
sample; and the error-predictability and Coibion-Gorodnichenko results are slightly stronger in the
extended sample than in the main sample.

Additional Robustness Checks. Table A5 examines additional robustness checks. Panel A
reports the baseline results. Panel B winsorizes spot rates, forward rates, forecast errors, and forecast
revisions at the 2.5% level by exchange. Panel C is the trimming analogue to Panel B. Panel D
repeats the analysis in balanced panels. Panel E repeats the analysis in subsamples. This exercise is
generally consistent with the baseline results, although the Coibion-Gorodnichenko regression slopes
are sensitive to winsorization/trimming and the forecast errors are somewhat less predictable in the
later subsample.

Alternative Horizons. Table A6 examines alternative horizons for Mincer-Zarnowitz, average
error, and error-predictability regressions. The baseline analysis in Section 4 considers the 6-month
spot rate in 6 months (n = m = 6 in Panel E). This exercise illustrates the effect of the horizon on
the regression estimates. Holding n+m fixed, forecast errors are relatively small on average and
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less predictable with small n; forecast errors are relatively large on average and more predictable
with large n.

Table A7 examines monthly forecast revisions for Coibion-Gorodnichenko regressions. The
baseline analysis considers quarterly forecast revisions. The Coibion-Gorodnichenko regression slopes
are generally similar between horizons, although the slope in the United States is substantially
smaller with monthly revisions.

Power Utility Regressions. Table A8 presents results for option-based risk-premium forecast
errors when re-estimated under the assumption of an unconstrained investor with power utility,
rather than log utility, for different values of constant relative riska version. See Appendix B.4 above
and Section 4.1.5 in the text for details and discussion.

Long-Horizon Predicted Forecast Errors. For the forecast-error quantification in Section 5.1,
we re-estimate spot rates, forward rates, and forecast errors at longer horizons (up to m+ n = 8
years) for the Euro Stoxx 50. The sample runs from September 2005 through September 2014
(beyond which we cannot yet observe realized forecast errors). The combinations of m and n (in
months) can be seen in Table A9. For each such combination, we predict forecast errors as in (9)
using a regression of realized forecast errors on shorter-horizon forward rates; we use the n− 12× 12
forward rate (with horizons again now in months) for n ≥ 24, and for n = 12 we use the 6 × 6
rate. After obtaining these predicted forecast errors, we calculate a decay parameter for each date’s
forecast errors, ϕ(n,m)

t , as the ratio of estimated Et[ε
(m)
t+n] to Et[ε

(12)
t+12] for each available m,n > 12.

This decay specification builds on the one used by De la O and Myers (2021, eq. (13)). The entries
of Table A9 report the median decay parameter over all t for each combination of m and n. In all
cases the estimates are very close to 1. Assuming that predictable forecast errors are permanent at
all horizons might be thought of as providing an estimate of their maximal possible effect. That
said, when we estimate the decay parameter in the U.S. (at shorter horizons, unreported), we in fact
generally obtain estimates greater than 1, suggesting that setting ϕ(n,m) = 1 may, if anything, be
slightly conservative in the U.S. sample.

D Additional Model Discussion: A Trilemma for Expectation Errors

This appendix continues the discussion in Section 6.3 on how different moments of the data are tied
together by the cyclicality of forecast errors. We begin with the Campbell-Shiller price-dividend
decomposition in (11). Assume that the expectations Et[·] in that decomposition refer to agents’
subjective beliefs, and pt − dt is the observed log price-dividend ratio. Now consider an alternative
economy in which all agents have rational expectations. For arbitrary equilibrium variable xt in the
observed data, denote the corresponding variable in the alternative RE economy by xRE

t . Define the
wedge between these two variables to be x̃t = xt − xRE

t . For example, p̃t − dt is the wedge between
the observed price-dividend ratio and the one that would be observed in the alternative economy
with RE. Up to a constant, it satisfies

p̃t − dt = C̃F t − F̃t − R̃F t. (A16)
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Assume for simplicity that R̃F t = 0. The following variance decomposition for the price-dividend
wedge therefore holds:

var
(
p̃t − dt

)
= var

(
C̃F t

)
+ var

(
F̃t

)
− 2 cov

(
C̃F t, F̃t

)
. (A17)

Alternatively, one can also use the following decomposition given (A16):

var
(
p̃t − dt

)
= cov

(
p̃t − dt, C̃F t

)
− cov

(
p̃t − dt, F̃t

)
. (A18)

The wedges C̃F t and F̃t can be understood as expectation errors along the lines considered in
Section 6: if subjective expectations are too high relative to RE, then the wedge will be positive
(and forecast errors, defined as realized − forecast, are likely to be negative). According to either of
the decompositions in (A17)–(A18), therefore, one must choose from at most two of the following
three features of any model of expectation errors:

1. Volatile expectation errors for returns (and/or fundamentals)
2. Volatile price-dividend ratio relative to a rational benchmark
3. Countercyclical return expectation errors (positive return expectation errors in bad times)

For example, if excessively positive cash-flow and return forecast revisions occur in good times (after
positive news), then cov

(
C̃F t, F̃t

)
> 0 in (A17). Alternatively, in the version expressed in (A18),

positive comovement between price-dividend and forward-rate wedges similarly detracts from a
model’s ability to generate volatile p̃t − dt. This form of overreaction to realized outcomes (cash flows
and/or returns) may be intuitively appealing, but it limits a model’s ability to speak to variation in
the price-dividend ratio through expectation errors alone.1

Our empirical results, and our model of expectation errors, instead suggest overreaction of
forward rates to spot rates, rather than realized returns. Unlike realized returns, we find that spot
and forward rates increase in bad times. The negative covariance between fundamental news and
return expectation errors in principle allows for a volatile price-dividend ratio.

1For example, Nagel and Xu (2022) obtain a price-dividend ratio volatility about 50% lower than that
observed in the data (see their Table 5). Similarly, De la O and Myers (2021) report that in the model
of Barberis et al. (2015), “movements in dividend change expectations are almost completely negated by
movements in price change expectations. This leads to low variation in the price-dividend difference” (p. 1370);
Campbell (2017) provides a related discussion of the Barberis et al. (2015) results.
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Appendix Tables and Figures

Table A1Table A1
Option Sample

This table reports the region, the abbreviation, the underlying index, the sample period, and the sample
length in months for each exchange. The last column indicates whether the exchange is in the main sample.
See Appendix B.1 for more details.

Region Abbrv Index Start End Length Main

Panel A. North America
United States USA S&P 500 199001 202112 384 Y

Panel B. Europe
Belgium BEL BEL 20 200201 202109 228
Switzerland CHE SMI 200201 202109 237 Y
Germany DEU DAX 200201 202109 237 Y
Spain ESP IBEX 35 200610 202109 180 Y
Finland FIN OMXH25 200201 202109 237
France FRA CAC 40 200304 202109 222 Y
United Kingdom GBR FTSE 100 200201 202109 237 Y
Italy ITA FTSE MIB 200610 202109 180 Y
Netherlands NLD AEX 200201 202109 219
Sweden SWE OMXS30 200705 202109 173

Panel C. Pan-Europe
Euro Stoxx 50 SX5E SX5E 200201 202109 237 Y
Stoxx Europe 50 SX5P SX5P 200201 202109 237
Stoxx Europe 600 SXXP SXXP 200509 202109 193

Panel D. Asia
Australia AUS ASX 200 200401 202104 208 Y
China CHN HSCEI 200601 202104 184
Hong Kong HKG Hang Seng 200601 202104 184 Y
Japan JPN Nikkei 225 200405 202104 204
Korea KOR KOSPI 200 200407 202104 202
Taiwan TWN TAIEX 200510 202104 187
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Table A2Table A2
Summary Statistics

This table reports summary statistics for the 6-month spot rate µ
(6)
t+6 (left panel) and the 6× 6-month forward

rate f
(6,6)
t (right panel). The units are annualized percentage points. The sample is the longest available for

each exchange in the full sample.

6-Month Spot Rate µ
(6)
t+6 6× 6-Month Forward Rate f

(6,6)
t

Mean St. Dev. p10 p90 Mean St. Dev. p10 p90

Panel A. North America
USA 2.17 1.40 0.97 3.81 2.15 0.99 1.11 3.45

Panel B. Europe
BEL 2.42 2.07 0.95 3.83 2.56 2.22 1.07 4.24
CHE 1.96 1.34 0.98 3.25 1.88 0.80 1.19 2.71
DEU 2.85 1.86 1.38 4.75 2.63 1.07 1.57 3.97
ESP 3.37 1.83 1.50 5.92 2.89 1.17 1.60 4.45
FIN 2.79 2.21 0.91 6.00 2.38 1.85 0.82 4.42
FRA 2.57 1.56 1.23 4.36 2.44 1.04 1.43 3.87
GBR 2.21 1.51 0.97 3.95 2.12 1.00 1.19 3.42
ITA 3.60 1.67 2.03 5.86 3.17 1.35 1.85 5.21
NLD 2.85 2.18 1.10 5.11 2.43 1.26 1.24 4.07
SWE 2.79 1.80 1.36 4.58 2.44 1.41 1.41 3.77

Panel C. Pan-Europe
SX5E 2.89 1.83 1.31 5.15 2.65 1.08 1.52 4.12
SX5P 2.23 1.62 1.04 3.86 2.11 1.48 1.12 3.40
SXXP 2.14 1.63 0.73 4.17 2.05 1.53 0.74 4.03

Panel D. Asia
AUS 1.97 1.39 0.86 3.52 1.84 1.20 0.87 3.18
CHN 4.24 4.01 2.06 7.42 3.90 3.29 2.20 6.37
HKG 2.98 2.56 1.33 5.63 2.85 1.93 1.63 4.53
JPN 2.93 2.20 1.49 4.15 2.60 1.57 1.55 3.48
KOR 2.23 2.16 0.85 3.91 2.14 1.85 0.88 3.77
TWN 2.39 1.90 0.98 4.50 2.36 1.45 1.17 4.22
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Table A3Table A3
Alternative Measures

See Appendix B.3 for more details. Panels A to C report estimates from panel regressions in the main sample. The sample is the longest available
for each exchange. Panel D reports estimates from time-series regressions in the United States. The sample is from January 1990 to June 2021.
Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average forecast error tests H0 : ε̄t = 0, as in Table 4. Error-predictability regressions
test H0 : β1 = 0, as in Table 5. Coibion-Gorodnichenko regressions test H0 : β1 = 0. The risk premium is the 6-month spot rate in 6 months for
Mincer-Zarnowitz, average error, and error-predictability regressions. The risk premium is the 3-month spot rate in 6 months for Coibion-Gorodnichenko
regressions. The units are annualized percentage points. All regressions include exchange fixed effects and report a within R2. Panel regressions, in the
main sample, report standard errors clustered by exchange and date. Time-series regressions, in the United States, report Newey-West standard errors
with lags selected following Lazarus et al. (2018) and fixed-b p-values.

µ
(6)
t+6 µ

(3)
t+6

Mincer-Zarnowitz Average Error Error Predictability Coibion-Gorodnichenko

β1 se(β1) p-val R2 ε̄t se(ε̄t) p-val β1 se(β1) p-val R2 N β1 se(β1) p-val R2 N

Panel A. Alternative Integration Bounds
Truncation: 35 Moneyness 0.78 0.091 ** 0.18 0.34 0.094 *** -0.019 0.039 0.00 2139 -0.16 0.16 0.00 2104
Truncation: 45 Moneyness 0.68 0.074 *** 0.17 0.26 0.097 ** -0.082 0.041 * 0.01 2137 -0.22 0.15 0.01 2103
Truncation: 55 Moneyness 0.63 0.065 *** 0.16 0.22 0.099 * -0.12 0.042 ** 0.02 2140 -0.24 0.14 0.01 2106
Truncation: 65 Moneyness 0.59 0.059 *** 0.15 0.20 0.10 * -0.15 0.044 *** 0.03 2138 -0.24 0.13 * 0.01 2104
Truncation: Observable Moneyness 0.56 0.053 *** 0.15 0.19 0.10 * -0.17 0.043 *** 0.04 2140 -0.22 0.10 * 0.01 2106
Extrapolation: Static Moneyness 0.56 0.056 *** 0.15 0.14 0.10 -0.15 0.041 *** 0.04 2244 -0.16 0.12 0.01 2204
Extrapolation: Dynamic Moneyness 0.56 0.055 *** 0.15 0.16 0.11 -0.17 0.046 *** 0.03 2241 -0.25 0.12 * 0.01 2199
Extrapolation: Baseline 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.047 *** 0.03 2227 -0.24 0.12 * 0.01 2186

Panel B. Alternative Liquidity Filters
Outliers 0.60 0.055 *** 0.17 0.18 0.098 -0.20 0.050 *** 0.05 2241 -0.26 0.16 0.01 2208
Open Interest: After 01/1996 0.52 0.057 *** 0.14 0.16 0.11 -0.18 0.045 *** 0.04 2033 -0.26 0.13 * 0.02 1966
Outliers and Open Interest: After 01/1996 0.56 0.051 *** 0.16 0.19 0.097 * -0.21 0.050 *** 0.06 2040 -0.27 0.17 0.01 1975

Panel C. Alternative Surfaces
Volatility Surface: After 01/1996 0.57 0.051 *** 0.17 0.087 0.095 -0.21 0.053 *** 0.06 2163 -0.22 0.16 0.01 2131
SVI Surface: USA and SX5E 0.59 0.047 * 0.17 0.051 0.11 -0.19 0.039 0.04 609 -0.077 0.14 0.00 597

Panel D. Alternative Prices
Bid-Ask Midpoint: USA 0.67 0.096 *** 0.22 0.021 0.15 -0.17 0.066 ** 0.03 378 -0.29 0.12 ** 0.01 375
Bid Prices: USA 0.64 0.099 *** 0.21 0.034 0.14 -0.15 0.077 ** 0.03 378 -0.34 0.12 *** 0.02 374
Ask Prices: USA 0.66 0.089 *** 0.23 0.0051 0.15 -0.18 0.060 *** 0.04 378 -0.15 0.12 0.00 375
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Table A4Table A4
Full Sample Regressions

This table reports estimates from panel regressions in the full sample. Columns (1)–(2) are Mincer-Zarnowitz regressions of future realized spot rates
on forward rates, as in Table 2. Columns (3)–(4) are instrumented Mincer-Zarnowitz regressions, as in Table 3. Column (5) is the average forecast
error, as in Table 4. Columns (6)–(7) are error-predictability regressions, as in Table 5. Columns (8)–(9) are Coibion-Gorodnichenko regressions. The
risk premium is the 6-month spot rate in 6 months for Mincer-Zarnowitz, average error, and error-predictability regressions. The risk premium is the
3-month spot rate in 6 months for Coibion-Gorodnichenko regressions. The units are annualized percentage points. Standard errors are clustered by
exchange and date. The sample is the longest available for each exchange in the full sample.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

µ
(6)
t+6 µ

(3)
t+6

Mincer-Zarnowitz Mincer-Zarnowitz (IV) Average Error Error Predictability Coibion-Gorodnichenko

µ
(6)
t+6 µ

(6)
t+6 µ

(6)
t+6 µ

(6)
t+6 ε

(6)
t+6 ε

(6)
t+6 ε

(6)
t+6 ε

(3)
t+6 ε

(3)
t+6

f
(6,6)
t 0.53*** 0.48*** 0.63*** 0.58***

(0.058) (0.053) (0.062) (0.061)
f
(2,1)
t -0.23*** -0.26***

(0.049) (0.049)
f
(6,3)
t − f

(9,3)
t−3 -0.35*** -0.36***

(0.11) (0.11)
Intercept 1.33*** 1.09*** 0.19 0.81*** 0.28*

(0.16) (0.17) (0.12) (0.16) (0.14)

p-value: β1 = 1 0.0000 0.0000 0.0000 0.0000 - - - - -
Observations 4199 4199 4199 4199 4199 4199 4199 4111 4111
Fixed Effects None Ex None Ex None None Ex None Ex
Adjusted R2 0.17 0.19 0.17 - - 0.06 0.08 0.05 0.05
Within R2 - 0.14 - 0.13 - - 0.08 - 0.05
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Table A5Table A5
Additional Robustness Checks

See Appendix C for more details. Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average forecast error tests H0 : ε̄t = 0, as in
Table 4. Error-predictability regressions test H0 : β1 = 0, as in Table 5. Coibion-Gorodnichenko regressions test H0 : β1 = 0. The risk premium is the
6-month spot rate in 6 months for Mincer-Zarnowitz, average error, and error-predictability regressions. The risk premium is the 3-month spot rate in
6 months for Coibion-Gorodnichenko regressions. The units are annualized percentage points. All regressions include exchange fixed effects and report
a within R2. Standard errors are clustered by exchange and date.

µ
(6)
t+6 µ

(3)
t+6

Mincer-Zarnowitz Average Error Error Predictability Coibion-Gorodnichenko

β1 se(β1) p-val R2 ε̄t se(ε̄t) p-val β1 se(β1) p-val R2 N β1 se(β1) p-val R2 N

Panel A. Baseline
Main Sample: 01/1990 to 06/2021 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.047 *** 0.03 2227 -0.24 0.12 * 0.01 2186
Full Sample: 01/1990 to 06/2021 0.48 0.053 *** 0.14 0.19 0.12 -0.26 0.049 *** 0.08 4199 -0.36 0.11 *** 0.05 4111

Panel B. Winsorization
Main Sample: 01/1990 to 06/2021 0.60 0.059 *** 0.19 0.15 0.093 -0.15 0.048 ** 0.03 2227 -0.16 0.10 0.01 2186
Full Sample: 01/1990 to 06/2021 0.56 0.073 *** 0.20 0.16 0.095 -0.21 0.051 *** 0.05 4199 -0.15 0.084 * 0.01 4111

Panel C. Trimming
Main Sample: 01/1990 to 06/2021 0.57 0.056 *** 0.18 0.091 0.078 -0.10 0.049 * 0.01 2029 0.066 0.087 0.00 2008
Full Sample: 01/1990 to 06/2021 0.55 0.061 *** 0.20 0.11 0.074 -0.15 0.047 *** 0.03 3828 0.029 0.079 0.00 3791

Panel D. Balanced Panel
Main Sample: 10/2006 to 06/2019 0.49 0.058 *** 0.12 0.22 0.13 -0.20 0.050 *** 0.05 1674 -0.29 0.12 ** 0.02 1658
Full Sample: 05/2007 to 06/2019 0.43 0.052 *** 0.12 0.19 0.15 -0.31 0.041 *** 0.10 3214 -0.39 0.11 *** 0.06 3194

Panel E. Subsamples
Main Sample: 01/1990 to 10/2011 0.49 0.078 *** 0.11 0.37 0.19 * -0.25 0.064 *** 0.07 1113 -0.41 0.14 ** 0.03 1076
Main Sample: 11/2011 to 06/2021 0.30 0.12 *** 0.06 -0.024 0.099 -0.11 0.081 0.01 1114 0.016 0.077 0.00 1110
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Table A6Table A6
Alternative Horizons

See Appendix C for more details. Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average forecast error tests H0 : ε̄t = 0, as in
Table 4. Error-predictability regressions test H0 : β1 = 0, as in Table 5. The risk premium is the m-month spot rate in n months. The units are
annualized percentage points. All regressions include exchange fixed effects and report a within R2. Standard errors are clustered by exchange and
date. The sample is the longest available for each exchange in the main sample.

µ
(m)
t+n

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 ε̄t se(ε̄t) p-val β1 se(β1) p-val R2 N

Panel A. 4-Month Equity Premium
1-Month Ahead: n = 1, m = 3 0.90 0.048 * 0.62 0.044 0.073 -0.12 0.040 ** 0.03 2269
2-Months Ahead: n = 2, m = 2 0.77 0.058 *** 0.35 0.055 0.11 -0.20 0.053 *** 0.04 2268
3-Months Ahead: n = 3, m = 1 0.68 0.065 *** 0.20 0.094 0.14 -0.24 0.055 *** 0.04 2235

Panel B. 5-Month Equity Premium
1-Month Ahead: n = 1, m = 4 0.94 0.043 0.67 0.067 0.064 -0.075 0.033 * 0.02 2269
2-Months Ahead: n = 2, m = 3 0.83 0.053 ** 0.42 0.12 0.10 -0.13 0.043 ** 0.02 2268
3-Months Ahead: n = 3, m = 2 0.74 0.063 *** 0.25 0.16 0.13 -0.15 0.049 ** 0.02 2241
4-Months Ahead: n = 4, m = 1 0.62 0.078 *** 0.13 0.27 0.15 -0.19 0.053 *** 0.02 2236

Panel C. 6-Month Equity Premium
1-Month Ahead: n = 1, m = 5 0.95 0.037 0.70 0.067 0.058 -0.054 0.029 * 0.01 2269
2-Months Ahead: n = 2, m = 4 0.86 0.047 ** 0.46 0.14 0.091 -0.094 0.036 ** 0.01 2268
3-Months Ahead: n = 3, m = 3 0.78 0.058 *** 0.30 0.21 0.12 -0.11 0.044 ** 0.01 2249
4-Months Ahead: n = 4, m = 2 0.67 0.072 *** 0.17 0.27 0.14 * -0.15 0.050 ** 0.02 2238
5-Months Ahead: n = 5, m = 1 0.57 0.076 *** 0.09 0.32 0.17 * -0.20 0.057 *** 0.02 2228

Panel D. 9-Month Equity Premium
3-Months Ahead: n = 3, m = 6 0.81 0.055 *** 0.39 0.15 0.087 -0.065 0.036 0.01 2257
4-Months Ahead: n = 4, m = 5 0.73 0.066 *** 0.26 0.21 0.10 * -0.10 0.044 ** 0.01 2242
5-Months Ahead: n = 5, m = 4 0.65 0.071 *** 0.17 0.26 0.12 * -0.14 0.049 ** 0.02 2232
6-Months Ahead: n = 6, m = 3 0.55 0.071 *** 0.10 0.28 0.14 * -0.17 0.051 *** 0.02 2224

Panel E. 12-Month Equity Premium
3-Months Ahead: n = 3, m = 9 0.81 0.049 *** 0.44 0.094 0.070 -0.059 0.036 0.01 2258
6-Months Ahead: n = 6, m = 6 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.047 *** 0.03 2227
9-Months Ahead: n = 9, m = 3 0.39 0.097 *** 0.06 0.25 0.15 -0.24 0.052 *** 0.04 2191
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Table A7Table A7
Alternative Horizons: Coibion-Gorodnichenko Regressions

This table reports Coibion-Gorodnichenko regressions of future realized forecast errors on current 1-month
forecast revisions:

ε
(1)
i,t+4 = β0 + β1

(
f
(4,1)
i,t − f

(5,1)
i,t−1

)
+ ei,t+4

The realized spot rate is the future expectation of the 1-month equity premium, the forward rate is the current
expectation of the same risk premium, and the forecast error is the realized spot rate minus the forward rate.
The units are annualized percentage points. Panel regressions, in columns (1)–(4), report standard errors
clustered by exchange and date. Time-series regressions, in columns (5)–(6), report Newey-West standard
errors with lags selected following Lazarus et al. (2018). The sample is the longest available for each exchange
in the main sample.

(1) (2) (3) (4) (5) (6)
Main Main Main Main excl U.S. U.S. Only SX5E Only

f
(4,1)
t − f

(5,1)
t−1 -0.26** -0.27** -0.36*** -0.30** -0.0063 -0.24*

(0.11) (0.11) (0.065) (0.11) (0.21) (0.14)
Intercept 0.28 -0.051 0.42

(0.16) (0.16) (0.32)

Observations 2217 2217 2070 1838 379 232
Fixed Effects None Ex Ex/Date Ex None None
Standard Errors Cluster Cluster Cluster Cluster Newey-West Newey-West
Cluster Ex/Date Ex/Date Ex/Date Ex/Date - -
Adjusted R2 0.01 0.01 0.83 0.01 -0.00 -0.00
Within R2 - 0.01 0.03 0.01 - -
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Table A8Table A8
Option-Based Power Utility Regressions

This table reports regression estimates from the standpoint of an unconstrained power utility investor fully invested in the market. See Section 4.1.5
and Appendix B.4 for more details. Panel A reports estimates from panel regressions in the main sample. Panel B reports estimates from time-series
regressions in the United States. Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average forecast error tests H0 : ε̄t = 0, as in
Table 4. Error-predictability regressions test H0 : β1 = 0, as in Table 5. Coibion-Gorodnichenko regressions test H0 : β1 = 0. The risk premium is the
6-month spot rate in 6 months for Mincer-Zarnowitz, average error, and error-predictability regressions. The risk premium is the 3-month spot rate in
6 months for Coibion-Gorodnichenko regressions. The units are annualized percentage points. All regressions include exchange fixed effects and report
a within R2. Panel regressions, in the main sample, report standard errors clustered by exchange and date. This sample is the longest available for
each exchange. Time-series regressions, in the United States, report Newey-West standard errors with lags selected following Lazarus et al. (2018) and
fixed-b p-values. This sample is from January 1990 to June 2021.

µ
(6)
t+6 µ

(3)
t+6

Mincer-Zarnowitz Average Error Error Predictability Coibion-Gorodnichenko

β1 se(β1) p-val R2 ε̄t se(ε̄t) p-val β1 se(β1) p-val R2 N β1 se(β1) p-val R2 N

Panel A. Main Sample
γ = 0.50 0.18 0.041 *** 0.05 -0.047 0.010 *** -0.40 0.10 *** 0.11 2094 -0.30 0.11 ** 0.08 1999
γ = 0.75 0.51 0.059 *** 0.14 0.046 0.057 -0.19 0.045 *** 0.04 2202 -0.29 0.11 ** 0.02 2149
γ → 1.00 0.57 0.054 *** 0.15 0.17 0.11 -0.17 0.046 *** 0.03 2195 -0.26 0.12 * 0.01 2140
γ = 1.25 0.60 0.056 *** 0.16 0.36 0.15 ** -0.14 0.049 ** 0.02 2181 -0.23 0.13 0.01 2122
γ = 1.50 0.62 0.061 *** 0.16 0.58 0.19 ** -0.10 0.054 * 0.01 2164 -0.20 0.13 0.01 2097
γ = 2.00 0.64 0.075 *** 0.16 1.12 0.28 *** -0.054 0.059 0.00 2114 -0.16 0.16 0.00 2016

Panel B. United States
γ = 0.50 0.31 0.059 *** 0.17 -0.041 0.015 *** -0.63 0.12 *** 0.28 378 -0.26 0.11 ** 0.03 375
γ = 0.75 0.61 0.094 *** 0.21 -0.022 0.083 -0.20 0.069 *** 0.05 378 -0.30 0.12 *** 0.01 375
γ → 1.00 0.67 0.096 *** 0.22 0.021 0.15 -0.17 0.066 ** 0.03 378 -0.29 0.12 ** 0.01 375
γ = 1.25 0.72 0.098 ** 0.23 0.12 0.20 -0.13 0.064 ** 0.02 378 -0.27 0.13 ** 0.01 375
γ = 1.50 0.76 0.100 ** 0.24 0.25 0.26 -0.099 0.062 0.01 378 -0.24 0.14 * 0.00 375
γ = 2.00 0.85 0.10 0.26 0.57 0.35 -0.048 0.059 0.00 378 -0.18 0.15 0.00 375
γ = 2.50 0.91 0.10 0.27 0.94 0.44 ** -0.0087 0.057 -0.00 378 -0.12 0.17 -0.00 375
γ = 3.00 0.97 0.10 0.28 1.32 0.52 ** 0.022 0.056 -0.00 378 -0.075 0.18 -0.00 375
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Table A9Table A9
Long-Horizon Forecast Error Decay

This table reports estimates of the predicted forecast error decay for the Euro Stoxx 50. The decay ϕ
(n,m)
t

parameter follows the expected decay specification from De la O and Myers (2021):

Et

[
ε
(m)
t+n

]
= ϕ

(n,m)
t Et

[
ε
(12)
t+12

]
The estimate is the median by horizon:

ϕ(n,m) = median
{∣∣∣ϕ(n,m)

t

∣∣∣}
The predicted forecast error is from a time-series regression of future realized forecast errors on current
forward rates: the predictor is the n− 12× 12-month forward rate for n ≥ 24 and the 6× 6-month forward
rate for n = 12. The sample is from September 2005 to September 2014.

n-months

m-months 12 24 36 48 60 72 84

12 1.00 1.05 1.13 1.08 1.04 0.99 0.99
24 1.00 1.06 1.04 1.10 1.05 0.97
36 1.00 1.04 1.06 1.01 0.90
48 1.00 0.96 0.95 1.07
60 1.00 1.01 0.97
72 1.00 1.02
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Table A10Table A10
Model Calibration: Objective Parameters

This table reports AR(3) time-series regressions for 3-month spot rates:

µ
(3)
t =

1−
3∑

j=1

ϕj

 µ̄+ ϕ1 µ
(3)
t−1 + ϕ2 µ

(3)
t−2 + ϕ3 µ

(3)
t−3 + et

The units are annualized percentage points. Standard errors are from 10,000 Monte Carlo simulations of
length T months. The sample is the longest available for each exchange in the main sample.

AUS CHE DEU ESP FRA GBR HKG ITA SX5E USA

ϕ1 0.59 0.78 0.79 0.76 0.87 0.90 0.74 0.66 0.77 0.94
(0.07) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.08) (0.07) (0.05)

ϕ2 0.02 -0.01 -0.06 -0.07 -0.14 -0.19 0.16 -0.02 -0.03 -0.26
(0.08) (0.08) (0.08) (0.09) (0.09) (0.08) (0.09) (0.09) (0.08) (0.07)

ϕ3 0.22 0.05 0.11 0.09 0.12 0.14 -0.05 0.11 0.11 0.18
(0.07) (0.06) (0.06) (0.08) (0.07) (0.06) (0.07) (0.07) (0.06) (0.05)

µ̄ 6.19 6.13 8.89 10.49 7.69 6.73 9.30 11.63 8.99 6.40
(1.36) (1.00) (1.62) (1.48) (1.23) (1.21) (2.44) (1.27) (1.59) (0.89)

σe 3.23 2.86 3.82 4.41 2.89 2.89 5.04 4.31 3.69 2.56
(0.16) (0.13) (0.18) (0.23) (0.14) (0.13) (0.27) (0.23) (0.17) (0.09)

T 208 237 237 180 222 237 184 180 237 384
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Figure A1Figure A1
Filtered Option Prices

Panel A plots the number of options after filters. Panel B plots the share of filtered options with positive
open interest. Each bar is the annual median from daily data. The black line is the full sample median from
daily data. The sample is the longest available for each exchange. Option prices have maturity 30 ≤ τ ≤ 365
days. See Appendix B.1 for more details.
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Panel B. Positive Open Interest
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Figure A2Figure A2
Minimum/Maximum Strike Price by Maturity

This figure plots the minimum/maximum strike price by maturity bin. The minimum/maximum is the annual
median from daily data. The black line is the full sample minimum/maximum from daily data. The units are
risk-neutral standard deviations from the index price. The sample is the longest available for each exchange.
See Appendix B.1 for more details.

Panel A. 92 to 182 Days-to-Maturity
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Panel B. 274 to 365 Days-to-Maturity
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Figure A3Figure A3
Timeline: Current/Realized Spot Rates and Forward Rates

See Section 3 for more details.

t t+ n t+ n+m

µ
(n)
t

µ
(n+m)
t

f
(n,m)
t

µ
(m)
t+n

• µ
(n)
t = L

(n)
t is the n-month spot rate at time = t

• µ
(n+m)
t = L

(n+m)
t is the n+m-month spot rate at time = t

• f
(n,m)
t = µ

(n+m)
t − µ

(n)
t is the m-month forward rate n months from time = t

• µ
(m)
t+n = L

(m)
t+n is the m-month spot rate at time = t+ n
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Figure A4Figure A4
Current Spot and Forward Rates in the Full Sample

This figure plots the current 6-month spot rate µ
(6)
t (blue) and the 6× 6-month forward rate f

(6,6)
t (red) in

the full sample. The sample is the longest available for each exchange.
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Figure A5Figure A5
Measurement Error: Spot and Forward Rates

This figure describes truncation bias in the Black-Scholes model (left panel) and the stochastic volatility jump
(SVJ) model (right panel). Integration bounds are in moneyness K/P units from the index price. Bar labels
are in volatility standard deviations from the index price. Black-Scholes parameters: Pt = 100, r = 0.05,
q = 0.02. SVJ parameters under the risk-neutral measure are from Bakshi, Cao, and Chen (1997):

θv κv σv ρ µJ σJ λ
0.040 2.030 0.380 -0.570 -0.050 0.070 0.590

Under Black-Scholes (SVJ), low volatility is IV = 10% (
√
vt = 10%) and high volatility is IV = 60%

(
√
vt = 60%). The units are non-annualized basis points. See Appendix B.5 for more details.

Panel A. Black-Scholes: Truncation Bias Panel B. SVJ: Truncation Bias
without Extrapolation without Extrapolation

Panel C. SVJ: Truncation Bias
with Extrapolation
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Figure A6Figure A6
Measurement Error: Coibion-Gorodnichenko Regressions

This figure quantifies how much correlated measurement error is necessary to produce the Coibion-
Gorodnichenko regression slopes in the data with monthly forecast revisions (left panel) and quarterly
forecast revisions (right panel). The solid lines are the slopes in simulations. The shaded regions are 95%
confidence bands in 50,000 samples. The blue circles are slopes in the data. The sample is the longest
available for each exchange in the main sample. See Appendix B.5 for more details.
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Figure A7Figure A7
Model Calibration: Regression R2s

This figure reports regression R2s in the calibrated model of expectation errors. The model is calibrated from
the standpoint of an unconstrained log utility investor fully invested in the market. Table A10 reports the
objective parameters. The solid lines are model-implied population R2s in a single long sample. The shaded
regions are model-implied 95% confidence bands in 10,000 short samples. The blue circles are model-implied
R2s under rational expectations with θ = 0. The red squares are model-implied R2s under diagnostic
expectations with θ = 0.91 from Bordalo, Gennaioli, and Shleifer (2018). The green triangles are R2s in the
data. The sample is the longest available for each exchange in the main sample.
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