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Abstract

We derive new bounds on the rational variation in asset prices over time. We focus
specifically on risk-neutral beliefs implied by option prices. While risk preferences
distort prices away from physical beliefs, one can nonetheless bound risk-neutral belief
movement under a general assumption on the stochastic discount factor. The resulting
test requires no knowledge of the objective distribution, and it allows significantly
more flexibility in preferences and discount rates than in standard volatility tests.
Implementing our test empirically using index options, we find that there is so much
movement in risk-neutral beliefs that the bounds are routinely violated.
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1. Introduction

Are market-implied beliefs about future stock returns excessively volatile? This important question
is challenging to answer for at least two reasons. First, asset prices reflect both unobservable
physical beliefs and unobservable risk and time preferences. Second, even if one could observe
beliefs perfectly, the objectively correct beliefs are unknown period by period.

In this paper, we show that it is nonetheless possible to place bounds on the rational variation
in option prices, even without knowledge of the correct beliefs and with significant flexibility in
preferences and discount rates. Implementing our bounds empirically, we find that there is so
much price variation that the bounds are routinely violated. This implies that there must either be
excess volatility in beliefs relative to rationality, or very large, high-frequency variation in the price
of risk over small changes in the market index. In additional analysis, we find little evidence that
rational variation in the price of risk is a key driver of our results, indicating that excess volatility
in beliefs likely plays a role.

We focus our analysis on index option prices, as they provide detailed information about market-
implied beliefs over future returns. Specifically, we use standard techniques to transform option
prices into so-called risk-neutral (RN) beliefs, which are a function of (i) the relative likelihood of
different return states and (ii) the relative value of a marginal dollar in each state (which depends on
risk preferences). Importantly, as RN beliefs are constructed using the relative prices of options with
different strike prices but the same maturity, they strip out variation arising from time discounting
and common unobservable shocks (e.g., to marginal utility or the quantity of risk) that have the
same effect on options with different strikes. We can accordingly make informative statements
about rational price variation with significantly weaker assumptions than in past volatility tests for
the price of the underlying index.1

To introduce the logic of our test, we begin in a stripped-down setting and build up to an
empirically realistic environment piece by piece. In order to isolate the first component of RN
beliefs, assume for now that we can directly observe a person’s physical beliefs πt(θ = 1) over
some binary outcome θ ∈ {0, 1}. Suppose we observe πt repeatedly oscillating from 0.90 to 0.10
and back as t progresses. While it is of course possible to rationalize this movement ex post
by constructing a particular set of signal realizations from some data-generating process (DGP),
this amount of movement appears intuitively “rare” for someone with rational expectations (RE).
Formalizing this idea, Augenblick and Rabin (2021) note that, when uncertainty is resolved by some
period T, the expectation of the sum of squared changes in beliefs across all periods (belief movement,
E ∑T−1

t=0 (πt+1 − πt)2) must equal initial uncertainty (π0(1− π0)) under RE, regardless of the DGP.
Equivalently, expected excess movement — belief movement minus initial uncertainty, which we
denote by E[X] — must always be zero. Intuitively, belief movements imply learning, and rational
learning implies a concomitant reduction of uncertainty (from the initial level π0(1− π0) to 0) on

1For example, Shiller (1981) famously documented excess volatility in stock prices relative to a measure of funda-
mental value, but his measure requires that discount rates over future cash flows remain constant over time. As discount
rates appear to vary significantly, what to make of his results remains contested (Fama, 1991).
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average. Therefore, if one observes a set of empirical belief streams for which excess movement is
far from zero on average, the null of rationality can be statistically rejected at some confidence level.
In other words, one can make statements about excess volatility in belief streams even without
knowledge of the correct beliefs period by period.

The main theoretical contribution of this paper is to show how this logic — that movement in
beliefs must correspond on average to reduction in uncertainty — can be used to restrict excess
movement in risk-neutral beliefs, E[X∗], in the general case in which only risk-neutral rather than
physical beliefs are observable. Our task becomes considerably more difficult in this case because
risk-preference distortions allow E[X∗] to be non-zero, and its sign and magnitude depend on the
degree of risk aversion and the precise form of the DGP. Put differently, non-zero excess movement
in risk-neutral beliefs may in fact be consistent with rational updating. But even while allowing
meaningful degrees of freedom in risk preferences and the form of the DGP, we show that the
admissible E[X∗] can be bounded as a simple function of risk aversion over the terminal states (or,
more generally, the slope of the stochastic discount factor across states).

The broad intuition carries over from the previous case. Suppose, for illustration, that a person’s
valuation for a binary option that pays $1 in state θ = 1 at time T oscillates between $0.90 and
$0.10, while her valuation for an option that pays $1 in state θ = 0 oscillates between $0.10 and
$0.90. Risk-neutral beliefs here are also moving back and forth between 0.90 and 0.10. But physical
beliefs are not pinned down, as the relative marginal utility of a dollar in the two states is unknown.
For example, the person might initially see the states as equally likely (π0 = 0.50), but value the
first option nine times higher because she values $1 in state θ = 1 nine times more. But if this
marginal-utility ratio — which we call ϕ — is not changing over time, then a movement in the RN
belief from 0.90 to 0.10 means that the physical belief must have shifted to very unlikely (π1 ≈ 0.01).
Physical beliefs are therefore oscillating between 0.50 and 0.01, which is still rare for a Bayesian.
The same logic applies for any given value of ϕ as long as this parameter is relatively stable within
a belief stream, an assumption we make to begin with and return to below.2 Intuitively, extreme
fluctuations in RN beliefs imply physical belief movements that must be rare regardless of the exact
degree of risk aversion.

Our bounds for risk-neutral excess movement E[X∗] formalize this idea. The first bound we
derive is highly conservative: it holds under a particular “worst case” DGP that produces the
highest possible movement for a given ϕ. This bound therefore requires no knowledge of the
true DGP for option prices, as it applies uniformly over the space of all possible DGPs. We then
provide a set of tighter bounds that hold given additional information about the DGP. In both cases,
the bounds are simple formulas that depend on the observable RN prior and are increasing in ϕ.
Consequently, any observed average excess movement in the data is informative as to the minimal
risk-aversion value ϕ required in order for the bound to be satisfied.

How does this seemingly abstract setting apply concretely to real-world financial markets?

2Note that if ϕ can move arbitrarily, it becomes difficult to make statements about rational price variation. In the
above example, physical beliefs could be stable at πt = 0.50, with all variation in option prices caused by swings in ϕ
from 9 to 1

9 . But as will be discussed further, such variation in ϕ is also difficult to make sense of under RE.
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In our empirical setting, the states indexed by θ correspond to the value of the market index as
of fixed option expiration date T (or equivalently, the return on the market over the life of the
option). Specializing the above example further, assume that state θ = 1 is realized if the index
return from t = 0 to T is equal to (or within a neighborhood of) 0%, and the other state is realized if
the index return is 5%. In this context, the marginal-utility ratio ϕ is equal to E[MT | RT=0%]

E[MT | RT=5%]
, where

MT is the stochastic discount factor (SDF) and RT is the market return. This ratio of expected
SDF realizations can be thought of as the market’s local relative risk aversion, or price of risk,
in a neighborhood around a 0% return realized at T. The assumption that ϕ is stable within a
belief stream is therefore equivalent to assuming that the local price of risk in this neighborhood
is constant. This is significantly weaker than the assumption of constant discount rates used, for
example, by Shiller (1981): it allows for time-varying discount rates arising from multiple sources,
including general changes in interest rates or the quantity of risk.3 It is also met either exactly or
approximately under many standard modeling frameworks.

That said, the assumption that the local price of risk ϕ is constant within a belief stream is a
knife-edge restriction that is unlikely to hold exactly in reality. We therefore also consider how
our bounds change given variation in ϕ. We find, both theoretically and in a set of simulations,
that rational variation in ϕ has very limited impact on RN belief movement. This may seem
counterintuitive: one might imagine that if ϕ oscillates between 3.1 and 2.9, for example, then RN
belief movement can be unbounded even with no movement in physical beliefs. While this is true,
it overlooks that these oscillations in ϕ are also inconsistent with rational updating: they imply
predictable mean reversion in the expected marginal value of $1 in a fixed terminal state. So while
it is possible for variation in the local price of risk to generate significant excess movement in RN
beliefs, our results indicate that this variation must likely be non-rational in order for the effect to
be large. A bounds violation thus suggests that either physical beliefs or risk prices are excessively
volatile. We return to the question of their relative importance in our empirical analysis.

After providing our theoretical results and discussing their interpretation and robustness, we
then take our bounds to the data. We obtain S&P 500 index option prices from OptionMetrics, and
we use standard methods to infer the risk-neutral distribution over index returns for each option
expiration date in the sample. To map to our two-state theoretical setting, we then translate each
full distribution into a set of binary RN beliefs π∗t (RT = θj | RT ∈ {θj, θj+1}); these correspond to
the RN probability that the index return will be equal to (or in a range close to) θj, conditional on
being either θj or θj+1. (We set our return states to correspond to five-percentage-point ranges for
the S&P return, matching the example above in which the return states were 0% and 5%.) We then
implement our theoretical bounds, which allow us to infer the minimal local risk-aversion value ϕ

(at each point in the return distribution) needed to rationalize the observed variation in RN beliefs
over the index return.

3For example, suppose that the second-period option prices in the example above were $0.05 and $0.45 (for states
1 and 0) rather than $0.10 and $0.90, due to a shift in the time-t value of money. This shift induces no change in
risk-neutral beliefs relative to the example, because the relative prices are unchanged. Meanwhile, such a change would
be problematic for any single-asset volatility test assuming constant discount rates.
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Our main empirical finding is that there is so much excess movement in RN beliefs that
extremely high risk aversion is needed in order to rationalize the data under our maintained
assumptions. In many cases, there is in fact no value of ϕ under which the tight version of the
bound is met, and the conservative version of the bound generally implies implausibly large values
for ϕ. This suggests that many leading rational frameworks capable of explaining medium-to-
low-frequency variation in asset prices have difficulty rationalizing the large degree of observed
medium-to-high-frequency variation in RN beliefs.

We are of course not the first to provide evidence that well-known models are inconsistent with
various empirical moments. But our results offer progress in understanding specifically what can
be deduced from the observed volatility in asset prices, a longstanding question of fundamental
interest. In particular, because our bounds are derived under the joint null of RE and a constant
local price of risk ϕ, our results suggest that at least one of these two must be violated in order to
match the data. Further, because we find excessively positive movement, these violations must take
the form of significant, predictable mean reversion in either physical beliefs or the price of risk.

We conduct additional tests to try to disentangle these possible explanations for our results. We
regress observed excess movement on a set of proxies for both (i) overreaction in expectations and
(ii) volatility in the price of risk. In all such regressions, we find a strong relationship between excess
movement and the first set of proxies, and no detectable relationship between excess movement
and volatility in the price of risk. These results suggest that overreaction to information by the
marginal investor is likely necessary to match the data.4

Given that we conduct our estimation using variation in index option prices, we must also
account for the effect of non-fundamental or microstructure noise. To do so, we estimate the
variance of the noise component of observed RN beliefs. We use a sample of intraday option
prices and apply the microstructure noise variance estimator proposed by Li and Linton (2022),
which consistently estimates this variance under quite general dependence in the noise process.
We can then construct an empirical noise correction, removing the effect of noise from X∗ before
we conduct our estimation. All of our statistics are noise-corrected in this way, and our tests are
therefore constructed to be robust to idiosyncrasies specific to the option market.

Relation to previous literature. In addition to Shiller (1981), we follow, among others, LeRoy
and Porter (1981), West (1988), and Stein (1989) in testing for excess volatility in asset prices
relative to measures of fundamental value. Marsh and Merton (1986) emphasize non-stationarity
in accounting for apparent excess volatility; much of the literature since then has emphasized time
variation in discount rates (Cochrane, 2011). By contrast, our test allows for variation in discount
rates and does not require any measure of fundamental value.

While our framework requires significantly weaker theoretical assumptions than classic volatil-
ity tests, one cost of this generality is that we rely on option prices rather than the behavior of the
underlying index directly. In doing so, we follow a long line of work using options for information

4In follow-up work (Augenblick, Lazarus, and Thaler, 2023), we provide a positive explanation for our results using
a model of non-Bayesian updating for which we find consistent support in a variety of settings.
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about more general expectations or quantities of interest.5 Our work particularly complements
Giglio and Kelly (2018), who document excess volatility in long-maturity claims on volatility,
inflation, commodities, and interest rates. They achieve identification by parameterizing the DGP
for cash flows on the underlying, whereas we restrict the SDF. Their parameterization — an affine
model under the RN measure — applies well to the term-structure-like claims they consider, but
not to claims on the equity index itself, to which our framework does apply.6

Our results also complement evidence obtained from survey data, as, for example, in Green-
wood and Shleifer (2014) and De la O and Myers (2021), as well as the results of Augenblick and
Rabin (2021) for settings with directly observable beliefs. Another set of related literature endeav-
ors to measure physical probabilities indirectly from asset prices. Aït-Sahalia, Wang, and Yared
(2001) test whether option-implied return distributions are well-calibrated; Ross (2015) provides
assumptions under which physical beliefs can be recovered from options; Polkovnichenko and
Zhao (2013) consider the probability weighting functions consistent with option-price data given an
assumption on the form of the weighting function. Our approach differs from this and related work
in that we need not measure physical beliefs at all or know the true DGP for returns to conduct
our tests. This semi-parametric approach loosely ties our theoretical contribution to a line of work
including, among many others, Hansen and Jagannathan (1991) and Alvarez and Jermann (2005),
which consider the identification of structural parameters from different moments of the observable
data than the ones we consider here.

Organization. Section 2 introduces our theory in a two-state setting, which allows for clear
derivations and intuition for our main results. Section 3 extends these results to a general asset-
pricing setting. Section 4 discusses our main identifying assumption; Section 5 provides additional
robustness results. We implement our bounds in Section 6, which describes our data and presents
our empirical results. Section 7 concludes. Proofs of our main results are provided in Appendix A,
and an Internet Appendix contains the remaining proofs and additional technical material.

2. Theoretical Framework: Introduction in a Simple Setting

To introduce our framework, we first examine risk-neutral (RN) belief movement in a simple setting
with a single individual and two terminal states. This setting helps clarify three issues: (i) the
economics underlying restrictions on belief movement under RE when the individual is risk-neutral;
(ii) how risk aversion complicates this analysis; and (iii) how we can nonetheless bound RN belief
movement. This step-by-step discussion sets the stage for our generalized framework in Section 3.

5A non-representative recent sample includes Backus, Chernov, and Martin (2011) regarding disaster risk, Martin
(2017) and Chabi-Yo and Loudis (2020) on the equity premium, Beason and Schreindorfer (2022) on how to decompose
the equity premium, and Haddad, Moreira, and Muir (2023) on the impact of policy promises.

6See also Gandhi, Gormsen, and Lazarus (2023) for recent evidence on the term structure of the equity premium.
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2.1 Setup and Initial Results

Time is discrete and indexed by t = 0, 1, 2, . . . , T. At the beginning of each period, a person
observes a signal st ∈ S regarding two mutually exclusive and exhaustive states θ ∈ {0, 1}. The
data-generating process (DGP) is general: signals are drawn from the discrete signal distribution
DGP(st | θ, Ht−1), where Ht is the history of signal realizations through t. Define P(HT) to be the
probability of observing history HT induced by the DGP, and write E[·] ≡ EP[·] for the expectation
under P. The person’s (physical or subjective) belief in state 1 (vs. state 0) at time t given the DGP
and history Ht is denoted by πt(Ht). The belief stream π(Ht) = [π0, π1(s1), π2({s1, s2}), . . .] is the
collection of beliefs given Ht. We often suppress the dependence of these objects on Ht to simplify
notation. Given our empirical setting, we focus on resolving streams in which the person achieves
certainty about the true state by period T with probability 1: πT(HT) = θ ∈ {0, 1} for all HT.

Throughout the paper, we maintain the assumption that the person’s beliefs over the terminal
state satisfy rational expectations (RE).

ASSUMPTION 1 (RE). Beliefs satisfy πt(Ht) = E[θ |Ht] for any Ht.

This assumption states that the agent’s beliefs coincide period by period with the true condi-
tional probability of realizing state θ = 1, and the assumption will be satisfied by a person with
a correct prior who updates using Bayes’ rule according to the true DGP. The assumption is in
fact stronger than necessary for our main results: we could instead assume the weaker martingale
restriction that πt = E[πt+1 |πt], which is implied by Assumption 1. (Under this weaker condition,
the person could, for example, ignore some periods’ signals.) Assuming RE directly, though, helps
streamline our exposition.

Given our asset-pricing setting, we assume that the DGP and the person’s physical beliefs
cannot be observed directly. Instead, we assume that the econometrician can observe, period by
period, the person’s willingness to pay for an Arrow-Debreu security that pays $1 (one unit of the
numeraire consumption good) in period T if state θ is realized. Denote this valuation by qt(θ|Ht)

for each θ ∈ {0, 1}. An object analogous to qt(θ|Ht) will be empirically observable using options
data for suitably defined states, but we postpone this additional formalism to Section 3.

We start by considering the simple case in which the person values consumption at all periods
and in all states equally (i.e., she is risk-neutral and does not discount future consumption). In
this risk-neutral case, beliefs are in fact directly inferable from asset values: qt(1|Ht) = π(Ht)

and qt(0|Ht) = 1− π(Ht). Testable restrictions on asset values are thus equivalent in this case to
restrictions on physical beliefs.

We keep track of the following objects related to the physical belief stream, and we discuss
shortly how these objects are restricted under RE. First, total belief movement of π is defined as the
sum of squared changes (or quadratic variation) in beliefs across all periods:

m(π) ≡∑ T−1
t=0 (πt+1 − πt)

2. (1)
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Second, initial uncertainty of π is defined as the variance of the Bernoulli random variable 1{θ = 1}
as of t = 0:

u0(π) ≡ (1− π0)π0. (2)

Given that we focus on resolving belief streams for which πT ∈ {0, 1}, final uncertainty is always
zero (uT = (1 − πT)πT = 0). Initial uncertainty u0 is therefore equal to the total amount of
uncertainty reduction for π, u0 − uT, which is helpful in interpreting some of the following results.

Our main variable of interest will be the difference between movement and initial uncertainty,
which — for reasons that will become clear — we call excess movement:

X(π) ≡ m(π)− u0(π). (3)

Belief movement and initial uncertainty are related under RE according to the following result,
which restates a main result in Augenblick and Rabin (2021).

LEMMA 1 (Augenblick and Rabin, 2021). Under Assumption 1, for any DGP, expected total belief
movement must equal initial uncertainty. Expected excess movement in beliefs must therefore be zero:

E[X] = 0.

Lemma 1 is a straightforward implication of the assumption of martingale beliefs.7 The result
formalizes a notion of the “correct” amount of belief volatility under RE, and it motivates referring to
X as excess movement. Given a set of observed belief streams, one can straightforwardly calculate the
sample average of the empirical excess movement statistic and statistically test if it differs from zero.
The restriction reflects the intuition that if the person’s beliefs are moving, this movement must on
average correspond to learning about the true terminal state (in the sense that uncertainty is resolved
from its initial value to 0). Rewriting E[X] = 0 as E[∑T−1

t=0 (1− 2πt)(πt+1−πt)] = 0 (see footnote 7),
it is apparent that expected belief movements toward 0.5 (the point of highest uncertainty) lead to a
positive E[X] statistic, and vice versa. So it could be the case that E[πt+1 − πt] = 0 unconditionally,
but a test based on the lemma would still reject the null of RE if, for instance, low values of πt

(πt < 0.5) tend to be revised upward (πt+1−πt > 0), and high values tend to be revised downward.

To clarify our setting and the above lemma, Figure 1 plots belief streams under a two-period
DGP. Two fair coins are flipped sequentially at t = 1 and 2, generating two possible signals (H or T)
at each of these dates. If two heads occur (HH), then state θ = 1 is realized; otherwise, θ = 0 is
realized. As the figure shows, the person’s prior π0 is equal to 0.25 under RE (equal to the probability
of two heads). If the first coin flip is tails (shown in the red path), then π1 = π2 = 0; if heads then
tails are flipped, then π1 = 0.5, π2 = 0 (light blue); if two heads are flipped, then π1 = 0.5, π2 = 1
(dark blue). The accompanying table shows belief movement m = (π1 − π0)2 + (π2 − π1)

2 for
each possible stream. Weighting the paths by their relative frequencies, expected belief movement

7To see this, rewrite X as ∑T−1
t=0 (2πt − 1)(πt − πt+1). Using the law of iterated expectations on each term in the sum,

E[(2πt − 1)(πt − πt+1)] = E[(2πt − 1)(πt −E[πt+1|πt])], which must be zero under the martingale assumption. This
result has appeared in other forms in past literature; for one example, see Barndorff-Nielsen and Shephard (2001).
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Figure 1: Physical Beliefs and Excess Movement: Two-Period Example
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(H, H), labeled HH; otherwise θ = 0. Each path in the figure corresponds to a possible belief stream over θ = 1 for a
person with RE. In the table, m, u0, and X are as defined in (1)–(3), and E[m] = 0.25× 0.3125× 2 + 0.5× 0.0625.

is E[m] = 0.1875. This is exactly equal to initial uncertainty u0 = (1− 0.25) × 0.25 = 0.1875,
illustrating the restriction that E[X] = 0. This applies beyond this two-period example: the lemma
implies that any DGP for which π0 = 0.25 would generate expected movement of 0.1875 under RE.

2.2 Risk-Neutral Beliefs: Setup and Identification Challenge

Lemma 1 shows that one can make statements about excess belief movement under RE when
beliefs are directly observable or inferrable from asset prices. But identifying excess movement
in asset valuations becomes significantly more complicated when the person is risk averse, as
valuations no longer correspond directly to beliefs in this more general case. To see this, assume
now that the agent has time-separable utility, with concave period utility function U(Ct), and that
she exponentially discounts future consumption with discount factor β. Assume that the state θ

determines period-T consumption CT,θ . Valuations for the two Arrow-Debreu securities at time t
are now

qt(1|Ht) =
βT−tU′(CT,1)

U′(Ct)
πt, qt(0|Ht) =

βT−tU′(CT,0)

U′(Ct)
(1− πt). (4)

Valuations thus no longer directly reveal beliefs. Instead, they are distorted by the relative
value of a marginal dollar in state θ in period T versus one in period t. As qt(1|Ht) and qt(0|Ht) are
similarly distorted by βT−t and U′(Ct), it is useful to focus on their relative valuations. This logic
leads to the consideration of risk-neutral (RN) beliefs,

π∗t (Ht) ≡
qt(1|Ht)

qt(0|Ht) + qt(1|Ht)
=

U′(CT,1)

Et[U′(CT)]
πt(Ht) =

ϕπt(Ht)

1 + (ϕ− 1)πt(Ht)
, (5)

where ϕ ≡ U′(CT,1)

U′(CT,0)
. (6)
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The definition in (5) follows the usual convention for RN beliefs, and the remaining expressions
follow from (4). Like πt, the RN belief π∗t corresponds to state θ = 1. The RN belief for θ = 0 can be
similarly defined as qt(0|Ht)

qt(0|Ht)+qt(1|Ht)
= 1− π∗t , so the two states’ RN beliefs are positive and sum to 1

by construction. We define the RN belief stream π∗(Ht), RN belief movement m∗(π∗), RN initial
uncertainty u∗0(π

∗), and RN excess movement X∗(π∗) as in Section 2.1, but with RN beliefs π∗t in
the place of physical beliefs πt.

Risk-neutral beliefs are so named because they can be interpreted as the subjective beliefs for
a fictitious risk-neutral agent. In general, they represent a pseudo-belief distribution, reflecting a
combination of the person’s physical beliefs πt and risk preferences as indexed by ϕ. This object ϕ

will be particularly important in our environment. It represents the (constant) marginal rate of
substitution across primitive states, as can be seen in (6). Up to a scaling constant, it also serves
as an index of relative risk aversion: conducting a Taylor expansion of U′(CT,0) around CT,1 gives
U′(CT,0) = U′(CT,1) + U′′(CT,1)(CT,0 − CT,1) +O

(
(CT,0 − CT,1)

2), and thus, to first order,

γ(CT,1) ≡ −
CT,1U′′(CT,1)

U′(CT,1)
=

ϕ− 1
(CT,0 − CT,1)/CT,1

. (7)

Relative risk aversion γ thus depends on the ratio of marginal utilities across states ϕ relative to the
percent consumption gap across states. Finally, in asset-pricing terms, ϕ is equivalent to the ratio of
stochastic discount factor (SDF) realizations Mt,T(θ) across the two states:

ϕ =
Mt,T(1)
Mt,T(0)

, where Mt,T(1) ≡
qt(1|Ht)

πt(Ht)
, Mt,T(0) ≡

qt(0|Ht)

1− πt(Ht)
.

This SDF-based representation of ϕ will be discussed in detail in the general setting in Section 3.

To complete the setup for the current consumption-based setting, we assume that consumption
in state 1 is weakly less than in state 0, CT,1 ⩽ CT,0. This is without loss of generality for now,
as the states can be relabeled arbitrarily. With concave utility, this labeling of state 1 as the low-
consumption state implies that U′(CT,1) ⩾ U′(CT,0) and thus ϕ ⩾ 1. Given ϕ ⩾ 1, the RN belief
π∗t in general exceeds the subjective belief πt: the person is willing to pay relatively more for a
bad-state consumption claim given her high marginal utility in that state, upwardly biasing the
bad-state RN belief relative to πt.

We wish to make statements similar to Lemma 1, but applicable to observable RN beliefs
rather than physical beliefs. Under a risk-neutral expectation E∗[·] defined such that π∗t (Ht) =

E∗[πt+1(Ht+1) |Ht], one could in fact apply Lemma 1 directly, as E∗[X∗] = 0. But the frequency of
observed RN belief streams is determined by the physical measure rather than the RN measure;
that is, we can only observe an empirical counterpart to E[X∗] rather than E∗[X∗]. And even under
the maintained assumption that physical beliefs πt satisfy RE, the distortion in π∗t relative to πt

can cause RN movement to differ from RN initial uncertainty on average, so E[X∗] ̸= 0. This is the
fundamental identification challenge.

For an illustration of this issue, Figure 2 returns to the coin-flip example from Figure 1. In
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Figure 2: RN Beliefs and Excess Movement: Two-Period Example
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STATISTICS

Signals Frequency RN Movement
(s1, s2) P(s1, s2) m∗

HH 0.25 0.125
HT 0.25 0.625

TT or TH 0.5 0.25

E[m∗] = 0.3125 > 0.25 = u∗0
=⇒ E[X∗] = 0.0625 > 0

Notes: See Figure 1 for description of signals and physical beliefs. Observed RN beliefs are calculated using (5), with the
assumption that ϕ = 3. In the table, m∗, u∗0 , and X∗ are calculated as in (1)–(3), with RN beliefs π∗t in place of πt.

addition to physical beliefs, this figure now shows RN belief streams with ϕ = 3.8 From (5), the
physical prior π0 = 0.25 corresponds to an RN prior of π∗0 = 0.5. Intuitively, the person perceives
state θ = 0 as three times as likely as θ = 1 (HH), but values a marginal dollar in θ = 1 three times
more than in θ = 0, so q0(0) = q0(1) and π∗0 = 0.5. The same calculations are then applied to obtain
π∗1 and π∗2 for each stream shown in the figure. The accompanying table shows RN movement m∗

for each stream. Comparing this to the table in Figure 1, it is apparent that m∗ > m for streams in
which the RN belief has large downward revisions (HT, TT, and TH): π∗t is biased upward relative
to πt, so these large downward revisions generate more RN movement than physical movement.
These streams cause RN excess movement to be positive on average: E[X∗] = 0.0625 > 0.

As this example illustrates, even with rational physical beliefs, one can observe what appears
to be excess movement in RN beliefs implied by valuations. So if we naively test for RE using
Lemma 1 on observed RN (rather than actual) beliefs, we may spuriously conclude that beliefs are
excessively volatile.

2.3 Risk-Neutral Beliefs: Results

The fact that there can be excess movement in RN beliefs even under RE would seem to pose an
intractable challenge. But this turns out not to be the end of the story. RN beliefs are not arbitrarily
distorted relative to physical beliefs: as in (5), they are linked through the single unobserved
parameter ϕ. And regardless of the value of ϕ, RN beliefs must lie between 0 and 1 by definition.
These insights will allow us to bound E[X∗] over all possible DGPs for a given value of ϕ, and over
all possible values of ϕ. Because our main results are most straightforwardly stated in the current
section’s two-state setting, we state them here before discussing how they generalize in Section 3.

8Under risk neutrality, ϕ = 1. This was implicitly assumed to be the case for Figure 1.
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Main Results

Before turning to the results, it will be useful to define two additional objects. First, we invert (5) to
solve for πt as a function of π∗t and ϕ, the solution to which we denote by πt(π∗t , ϕ):

πt(π
∗
t , ϕ) =

π∗t
ϕ + (1− ϕ)π∗t

. (8)

Second, it will be helpful to define the difference in conditional expected X∗ across states as

△ ≡ E[X∗|θ = 0]−E[X∗|θ = 1]. (9)

Given these definitions, we can now provide a number of expressions and bounds for E[X∗].
We assume throughout that Assumption 1 holds.

PROPOSITION 1. For any DGP,

E[X∗] = (π∗0 − π0)△

=

(
π∗0 −

π∗0
ϕ + (1− ϕ)π∗0

)
(E[X∗|θ = 0]−E[X∗|θ = 1]) .

PROPOSITION 2. For any DGP and any value for△,

E[X∗] ⩽ (π∗0 − π0)π
∗
0

⩽
(

1− 1
ϕ + (1− ϕ)π∗0

)
π∗0

2. (10)

Proofs for this section’s main results are provided in Appendix A. Proposition 1 starts from the
fact that E∗[X∗] = 0. We then connect E∗[X∗] to E[X∗]. The key step is to show that conditional
expectations of X∗ under both measures are equal, E∗[X∗|θ] = E[X∗|θ] for θ = 0, 1, which leads
to the stated result. Note that if ϕ = 1, then π∗0 = π0 and therefore E[X∗] = 0, as in Lemma 1.
As ϕ rises, π0 drops further below π∗0 , and E[X∗] departs from 0: the greater is risk aversion, the
more one can observe excess RN movement differ from zero on average under RE. The sign and
magnitude of this deviation depend on△, as explored in more detail later in this section.

Across all DGPs,△ is bounded above by π∗0 , from which Proposition 2 follows. The version of
the bound in (10) is one of our main results. It gives a bound for E[X∗] as a function of π∗0 and ϕ,
regardless of △. Under risk neutrality (ϕ = 1), this upper bound again becomes zero. But the
bound is otherwise positive, and the admissible excess movement in RN beliefs given by the right side
of the inequality increases monotonically in ϕ. This result thus formalizes a more general notion of
the admissible amount of belief volatility under rationality, this time as an increasing function of
risk aversion across the two states.

Intuitively, movement in RN beliefs must still correspond on average to the agent learning
something about the true terminal state, but the bias in RN relative to subjective beliefs induced
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by risk aversion allows for positive excess movement in those observed beliefs under RE. This is
reflected in the first term in the bound, (π∗0 − π0), as this difference increases in ϕ. For the second
term (π∗0), higher RN priors yield more “room” for downward RN belief movement. This increases
admissible excess movement along the lines of the example considered in Figure 2. The bound in
Proposition 2 is conservative, as it holds under a “worst-case” DGP with an extreme value for△.

Because of the monotonicity of the bound in ϕ, the inequality can equivalently be read as
providing a lower bound for the unobserved structural parameter ϕ as a function of observables.
The observed excess movement in RN belief streams thus provides information on the minimal
value of risk aversion necessary for the data to be consistent with RE. But more still can be said:
taking ϕ → ∞ in (10) generates the following maximally conservative bound for E[X∗], which
applies for any ϕ.

COROLLARY 1. For any DGP and any values△ and ϕ,

E[X∗] ⩽ π∗0
2.

Corollary 1 exploits that RN beliefs are bounded between 0 and 1 by construction: there is only
so far that RN beliefs can be distorted relative to subjective beliefs, so the bound is well-defined
even for arbitrarily high risk aversion.9 It states that price movements for which E[X∗] > π∗0

2

simply cannot be rationalized under RE given constant ϕ. Despite its maximal conservatism, this
bound still imposes a meaningful limit on admissible RN excess movement, especially for low π∗0 .
For example, with π∗0 = 0.2, RN excess movement is at most 0.04, regardless of ϕ or the DGP.

Taken together, Proposition 2 and Corollary 1 characterize the maximal admissible excess
movement in RN beliefs as a function of ϕ for any RN prior. Figure 3 provides a graphical
illustration of these bounds. Starting from the bottom of the chart, the thick purple line corresponds
to the bound for ϕ = 1: in this case, E[X∗] = E[X] = 0 regardless of the prior or DGP, from
Lemma 1. The thin dashed gray lines correspond to arbitrarily selected DGPs in the case of ϕ = 3.
While there can be positive RN excess movement, this is not necessarily the case for all possible
DGPs. Taking the envelope over all of these processes for ϕ = 3 yields the bound from Proposition 2,
which is shown in the thick blue line. It is asymmetric around 0.5 as well as non-monotonic in π∗0 .10

Finally, the thick red line shows the bound for the limiting case ϕ → ∞, which is equal to the
squared RN prior from Corollary 1.

When should we expect to see negative RN excess movement — as observed in the lowest dashed
gray line in Figure 3 — even with risk aversion? If one is willing to make an assumption on the
sign of△ (discussed shortly), the following stronger bound applies as a corollary of Proposition 1.

9In the limit as ϕ→ ∞, π0 → 0 for any π∗0 , so π∗0 − π0 → π∗0 .
10The second term in the bound (π∗0 ) of course increases monotonically, generating asymmetry in the bound around

π∗0 = 0.5 for ϕ > 1. But the first term in the bound (π∗0 − π0) does not increase monotonically for 1 < ϕ < ∞, exerting a
countervailing force that generates the observed non-monotonicity.
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Figure 3: RN Excess Belief Movement vs. Prior by ϕ Under RE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

π∗0

E
[X
∗ ]

ϕ→ ∞, Bound
ϕ = 3, Bound
ϕ = 3, Arbitrary Processes
ϕ = 1

Note: Theoretical bounds are obtained from the formulas in Proposition 2 and Corollary 1.

COROLLARY 2. If E[X∗|θ = 0] ⩽ E[X∗|θ = 1], for any DGP and any value for ϕ,

E[X∗] ⩽ 0.

When△ < 0, E[X∗] is decreasing in ϕ and therefore E[X∗] < 0 for any ϕ > 1. Consequently,
as formalized in Corollary 2, the highest excess movement is E[X∗] = 0. While most of our focus
is on the conservative positive upper bounds for E[X∗], this corollary shows that asset-pricing
settings with risk aversion do not necessarily entail positive excess movement in observed beliefs.
We now further explore the statistical features of the DGP that are informative about the degree of
RN excess movement to be expected under RE.

How the DGP Determines E[X∗]

Proposition 1 says that the deviation of E[X∗] from 0 depends on the product of π∗0 − π0 and
△ ≡ E[X∗|θ = 0]−E[X∗|θ = 1]. The difference π∗0 − π0 is always positive and increases in ϕ. But
how are the sign and magnitude of △ related to the DGP? To answer this question, we provide
two theoretical results and briefly summarize a set of simulations discussed in detail in Internet
Appendix C.1. These results will then be useful in interpreting the empirical results to come.

First, given the arbitrary labeling of the two states, there is no reason to expect under RE that△
should take a particular sign:

PROPOSITION 3. Fixing ϕ, for every RN prior and DGP that leads to a given△, there exists a different
RN prior and DGP that leads to −△.
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For any RN prior π∗0 and DGP with some△, the RN prior 1− π∗0 with the “reversed” DGP will
necessarily lead to −△. Consequently, there is no reason to assume that E[X∗] is more likely to be
positive than negative given ϕ > 1.

Next, we summarize numerical simulations for a large set of DGPs as described in Internet
Appendix C.1. First, when the DGP is symmetric (with equal movements up or down, as is likely
to roughly apply for option prices),△ < 0 if π∗0 < .5,△ = 0 if π∗0 = .5, and△ > 0 if π∗0 > .5. This
suggests, for example, that low π∗0 should lead to a negative△ unless the DGP is asymmetric. As
we show later, the empirical DGPs in our setting appear largely symmetric, so that we estimate
△ < 0 for π∗0 < .5. Second, the numerical results also suggest that extreme values of△ only occur
in highly asymmetric DGPs where movements in one direction are large and movements in the
other direction are tiny. In fact, our upper bound in (10) is attainable asymptotically given the most
asymmetric DGP possible:

PROPOSITION 4. There exists a sequence of DGPs, indexed by T, for which E[X∗] approaches the bound in
Proposition 2 as T → ∞. For each DGP in this sequence, downward movements (π∗t+1 < π∗t ) are resolving
(π∗t+1 = 0) and thus as large as possible, while upward movements are small (π∗t+1 − π∗t → 0 as T → ∞).
Meanwhile, the bound holds with strict inequality for any T < ∞ as long as ϕ > 1 and π∗0 ∈ (0, 1).

One implication of this result is that the bound in Proposition 2 is approximately tight, as one
can construct a DGP for which E[X∗] is close to the bound for large T. Perhaps more important,
though, is that it points to the bound’s conservatism: it holds under a somewhat perverse DGP that
can be thought of as a “rare bonanzas” process, where with small probability the person receives
news that the bad state (θ = 1) will not be realized (so π∗t+1 = 0), and otherwise there is mostly
uninformative bad news that increases π∗t+1 slightly. More reasonable DGPs, or T ≪ ∞, will give
lower E[X∗]. That said, the conservative bound has the advantage of being very simple and not
requiring any estimation of △. And as we show below, empirical excess movement is in fact so
high that even these conservative bounds are often violated for reasonable values of ϕ.

3. Generalized Theoretical Results for Equilibrium Asset Prices

While the binary-state setting considered in the previous section is useful for exposition, it is also
artificial: one cannot obtain a single person’s valuation of Arrow-Debreu claims in observational
data alone; there are more than two possible states; and the realized state determines more than
just consumption. We thus now consider a general many-state framework for equilibrium asset
prices and show how our results extend to this empirically relevant case.
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3.1 Setup and Notation

Preliminaries: Probability Space, Prices, and Risk-Neutral Probabilities

Time is again indexed by t ∈ {0, 1, 2, . . .}, and we consider a discrete probability space (Ω,F , P)

with filtration {Ht}.11 A realization of the elementary state is denoted by ω ∈ Ω. To make our
results empirically implementable, we will be concerned with the ex-dividend value of the market
index, Vm

t : Ω→ R+, on some option expiration date T. (We will later extend the notation to allow
for multiple option expiration dates.) A European call option on the index with strike price K has
date-T payoff (Vm

T − K)+ = max(Vm
T − K, 0), and its time-t price is qm

t,K. These option prices are
observable for some set of strike prices K ⊆ R+ beginning at date 0. Assuming the absence of
arbitrage, there exists a strictly positive stochastic discount factor (SDF) Mt,T such that option prices
satisfy qm

t,K = Et[Mt,T(Vm
T − K)+], where Et[·] ≡ EP[ · |Ht]. The SDF can equivalently be written

as Mt,T = MT/Mt for strictly positive {Mt}, with M0 = 1.

Option prices will be of interest for inferring a distribution over the change in value of the
market index from 0 to T (rather than consumption, for which options are not directly traded). We
say that return state θ ∈ Θ ⊂ R+ is realized for the market as of date T if Rm

T ≡ Vm
T /Vm

0 = θ. The
measure P : F → [0, 1] governs the objective or physical probabilities of these return states. In this
general case, the risk-neutral (RN) measure is defined by the change of measure

dP∗

dP

∣∣∣∣
Ht

=
Mt,T

Et[Mt,T]
=

MT

Et[MT]
, (11)

and expectations under P∗ are denoted by E∗[·].12 Using this definition of P∗, the RN probability
of return state θ is

P∗t (Rm
T = θ) =

Et[MT | Rm
T = θ]

Et[MT]
Pt(Rm

T = θ). (12)

The RN pricing equation qm
t,K = E∗t [(V

m
T − K)+]/R f

t,T can be used to show that the date-t option
prices {qm

t,K}K∈K reveal the set of RN probabilities {P∗t (Rm
T = θ)}θ∈Θ. Assume that the set of return

states Θ is ordered such that θ1 < θ2 < · · · < θJ , and assume for notational simplicity that the set
of traded option strikes K coincides with the set of possible date-T index values (i.e., K = {Kj}J

j=1,
with Kj = Vm

0 θj). We can then back out RN probabilities from option prices as follows:

P∗t (Rm
T = θj) = R f

t,T

[
qm

t,Kj+1
− qm

t,Kj

Kj+1 − Kj
−

qm
t,Kj
− qm

t,Kj−1

Kj − Kj−1

]
. (13)

11We could consider continuous states with additional technicalities, but do not do so as empirical implementation
requires discretization. We note as well that objects analogous to those in Section 2 are given the same denotation here.

12As Pricet = Et[Mt,TPayoffT ] for any asset, we have R f
t,T = Et[Mt,T ]

−1, where R f
t,T is the gross risk-free rate from t

to T, and Pricet = E∗t [PayoffT ]/R f
t,T . Thus P∗ incorporates the risk adjustment needed to discount T-payoffs at R f

t,T .
This P∗ is sometimes referred to as the T-forward measure (e.g., Geman, El Karoui, and Rochet, 1995).
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See Internet Appendix B.1 for a derivation of this result, which follows from a discrete-state
application of the classic result of Breeden and Litzenberger (1978). As in Section 2.2, the above RN
probabilities are a more convenient object of analysis than raw option prices.

Beliefs

Aside from assuming no arbitrage, we have not yet taken a stance on the market structure or
subjective beliefs underlying prices and RN probabilities. We could in principle pursue a strict
mapping from Section 2 to the current case, by assuming a setting in which all individual traders
have common beliefs satisfying RE. The assumptions required to generate such an equilibrium are
well studied in the literature on information and asset prices following Radner (1979) and Milgrom
and Stokey (1982).13 But rather than strictly focusing on the rationality of individual beliefs, we
prefer an interpretation in which the “agent” in question is the market as a whole (or alternatively,
the marginal trader); this interpretation requires no auxiliary assumptions, and our resultant tests
are informative about the efficiency of market valuations.14

We therefore assume prices correspond to valuations for an agent (“the market”) who, at
the beginning of each period, observes a signal vector st ∈ S drawn from the distribution
DGP(st | θ, Ht−1) = Pt−1(st|θ), where θ is the return state realized at T and Ht = σ(sτ, 0 ⩽ τ ⩽ t) is
the Borel σ-algebra representing the history of signal realizations. The agent’s subjective belief dis-
tribution over return states is denoted by Πt,T = {πt(Rm

T = θ)}θ∈Θ, where πt(Rm
T = θ) ⩾ 0 ∀θ ∈ Θ

and ∑θ∈Θ πt(Rm
T = θ) = 1. More generally, for any random variable Y(ω), the agent attaches

subjective probability πt(Y = y) to the outcome Y = y. We generalize Assumption 1 as:

ASSUMPTION 2 (RE). For any random variable Y, beliefs satisfy πt(Y = y) = Pt(Y = y) with
probability 1 for all t.

This assumption again implies that beliefs satisfy πt(Rm
T = θ) = E[πt+1(Rm

T = θ) |πt(Rm
T = θ)]

for all θ ∈ Θ. As in Section 2, this martingale condition for beliefs over returns is all that is
required for our main results to carry through. The full-RE generalization stated in Assumption 2
is useful for streamlining some of the remaining discussion, as it further implies that all conditional
expectations — including over the SDF — are martingales with respect to Ht.

Given Assumption 2, we can define the RN belief distribution without explicitly restricting the
agent’s utility or constraint set by applying the same change of measure as in (11). This yields the
RN belief-distribution Π∗t,T = {π∗t (Rm

T = θ)}θ∈Θ such that π∗t (Rm
T = θ) =

Et[MT | Rm
T =θ]

Et[MT ]
πt(Rm

T = θ)

as in (12), and thus (13) tells us that option prices reveal the agent’s RN beliefs as given here.

13Complete markets and a common-prior assumption, for example, are sufficient: prices in general reveal information
(including private signals) in a rational expectations equilibrium, giving common posteriors. Results under alternative
conditions have also been studied extensively (to take one example, see Blume, Coury, and Easley, 2006).

14Belief heterogeneity, for example, is one plausible channel underlying our results, at least in part.
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Localization: Conditional Beliefs, SDF Ratio, and Excess Movement

To align with the analysis in Section 2, we consider the behavior of conditional RN beliefs over
adjacent pairs of return states. That is, rather than directly considering the full distribution Π∗t,T,
we instead consider restrictions on the behavior of the individual entries in {π̃∗t,j}

J−1
j=1 , defined by

π̃∗t,j ≡ π∗t (Rm
T = θj | Rm

T ∈ {θj, θj+1}) =
π∗t (Rm

T = θj)

π∗t (Rm
T = θj) + π∗t (Rm

T = θj+1)
,

for π∗t (Rm
T = θj) + π∗t (Rm

T = θj+1) > 0. In words, π̃∗t,j is the RN belief that return state θj will be
realized, conditional on either θj or θj+1. This binary localization will be useful for two reasons: (i) it
will allow us to apply results from the two-state setting of Section 2, and (ii) the main identifying
assumption used to derive our tests is less restrictive than it would be without such a transformation
(as discussed in Section 4.1 below). Conditional physical beliefs π̃t,j are defined analogously, and
the expectation under the conditional physical measure P̃t is Ẽt[ · ] ≡ Et[ · | Rm

T ∈ {θj, θj+1}].
In this context, the analogue to ϕ as defined in Section 2 is

ϕt,j ≡
Et[MT | Rm

T = θj]

Et[MT | Rm
T = θj+1]

, (14)

which encodes the slope of the SDF across the adjacent return states θj, θj+1. In a representative-

agent economy with SDF Mt,T = βT−t U′(CT)
U′(Ct)

, the above definition implies ϕt,j =
Et[U′(CT) | Rm

T =θj]

Et[U′(CT) | Rm
T =θj+1]

,
akin to (6). But (14) is general and does not require a representative-agent structure (though we
make periodic reference to such an economy for interpretation). This SDF slope can also be thought
of loosely as the local price of risk around index return state θj.

Using this definition of ϕt,j, RN beliefs satisfy
π̃∗t,j

1−π̃∗t,j
= ϕt,j

π̃t,j
1−π̃t,j

and thus π̃∗t,j =
ϕt,jπ̃t,j

1+(ϕt,j−1)π̃t,j
, as

in (5). Given a resolving RN belief stream π∗j = [π̃∗0,j, . . . , π̃∗T,j], RN belief movement m∗j , RN initial
uncertainty u∗0,j, and RN excess movement X∗j are as defined in (1)–(3), with π̃∗t,j in place of πt. We
often suppress the dependence on j (writing, e.g., X∗) when considering an arbitrary state pair.

3.2 Identifying Assumptions on ϕ

The analysis in Section 2 considered Arrow-Debreu claims on primitive states (in that case, con-
sumption states). This section’s analysis instead considers claims on index-return states, with an
eye toward empirical implementation. We must thus confront the joint hypothesis problem. The
additional identifying assumptions to be tested jointly with Assumption 2 take the form of two
restrictions on ϕt,j. We introduce these assumptions here, and we discuss them in much greater
detail in the following sections after presenting our main results below.

We first impose an ordering assumption on the states. Return state θj here corresponds to state 1
in Section 2 (vs. state 0 for θj+1). We thus maintain the convention of labeling θj as the “bad” state,
so that ϕt,j ⩾ 1. While this is an innocuous labeling convention in theory, empirical implementation
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requires taking a stand on how to distinguish θj from θj+1. We make the intuitive assumption that
the bad state θj corresponds to the lower return:

ASSUMPTION 3 (Positive Risk Aversion in Index Return). ϕt,j ⩾ 1 with probability 1 for all t, j, where
the set of return states Θ is ordered such that θ1 < θ2 < · · · < θJ .

We discuss the empirical plausibility of this assumption, and how our results can be modified if
it is violated (as might be a concern given the so-called pricing kernel puzzle), in Section 5.

Second, and more substantively, we must impose an assumption on the evolution of the
unobserved parameter ϕt,j. In Section 2’s setting, ϕ is naturally constant over t: the terminal states
index consumption and thus marginal utility, so the marginal rate of substitution across these
primitive states is fixed. For our main analysis, we impose an analogous assumption on ϕt,j:

ASSUMPTION 4 (Constant SDF Ratio, or Conditional Transition Independence). We say the SDF
satisfies conditional transition independence (CTI) for return-state pair (θj, θj+1) if ϕt,j is constant with
probability 1 for all t. We assume CTI is satisfied for all interior state pairs, j = 2, 3, . . . , J − 2, and
we write ϕt,j = ϕj for these states.

This assumption imposes that the relative expected “severity” of the adjacent return states
is constant over a contract, so that the expected SDF (or marginal utility) realization in the low
return state θj is a constant multiple of that of θj+1. This is akin to assuming a constant local price
of risk, as discussed further in the following section. It corresponds to a notion of transition or
path independence because it implies that the expected relative SDF realizations depend only on
the return state pair and not on the path of variables realized between t and T.15 Note that we
exclude the extreme state pairs (θ1, θ2) and (θJ−1, θJ ) from the constant-ϕ requirement: thinking of
θ1 and θJ as tail return states, we are allowing for time-varying disaster (or positive jump) risk.

As discussed below in Section 4, this assumption is weaker than the joint assumptions imposed
in past volatility tests, and we view it as a reasonable starting point for our analysis. But it is
unlikely to hold perfectly in reality, so that section also provides results characterizing RN excess
movement when the assumption is violated.

3.3 Main Results in the General Setting

Having completed the formal setup and description of our main assumptions, we turn now to our
main results in this more general asset-pricing setting. The bulk of the work in this case is, it turns
out, in the setup and notation, as all our main results apply with appropriate relabeling.

PROPOSITION 5. Under no arbitrage and Assumptions 2–4, for j = 2, 3, . . . , J− 2, Lemma 1, Proposi-
tions 1–4, and Corollaries 1–2 continue to hold, with π̃∗t,j replacing π∗t , π̃t,j replacing πt, X∗j replacing X∗,
ϕj replacing ϕ, Ẽ0[·] replacing E[·], and with△j ≡ Ẽ0[X∗j | Rm

T = θj+1]− Ẽ0[X∗j | Rm
T = θj] replacing△.

15This is formalized in Lemma A.3 in Appendix A.2.
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The main theoretical complication in applying the results in Section 2 to this setting is in
proving that Ẽ∗[X∗j | Rm

T = θj] = Ẽ[X∗j | Rm
T = θj]. The economic intuition for these results is largely

identical to the intuition discussed in Section 2. And while the results above are convenient to
express in terms of the SDF slope ϕj given that this allows for closed-form solutions that can be
applied regardless of the origin of the SDF, the results also admit an interpretation in terms of the
approximate required risk aversion for a fictitious representative agent who consumes the market
index (analogous to (7)). To avoid repetition, for the remaining results we will continue to assume
no arbitrage and that Assumptions 2–4 hold for j = 2, 3, . . . , J − 2, unless stated otherwise.

PROPOSITION 6. Assume additionally that there is a representative agent with (indirect) utility over
time-T wealth, with wealth equal to the market index value, and denote Vm

j ≡ Vm
0 θj. Then local relative risk

aversion γj ≡ −Vm
j U′′(Vm

j )/U′(Vm
j ) is given to a first order around return state θj by

γj =
ϕj − 1

(Vm
j+1 −Vm

j )/Vm
j

.

This result formalizes the sense in which ϕj reflects the local price of risk, as it corresponds to
the market’s effective relative risk aversion in a neighborhood around return θj. As in Section 2,
γj is proportional to ϕj − 1, as this gives the percent decrease in marginal utility in moving from
low-return state θj to high-return state θj+1. To calculate relative risk aversion, this change in
marginal utility must be normalized by the percent wealth increase (Vm

j+1 −Vm
j )/Vm

j in moving
from θj to θj+1, which is also equal to the percent return deviation (θj+1 − θj)/θj between the two
states. If, for example, θj = 1, θj+1 = 1.05, then a value ϕj = 1.5 implies γj = 10.

4. Interpreting and Relaxing the CTI Assumption

The analysis thus far has proceeded under the joint null implied by Assumptions 2–4. We now
discuss these assumptions in more detail. What do they entail specifically? If the joint null is
rejected in the data, how informative is such a rejection, and how should it be interpreted? We
begin by considering CTI, which we consider the most important assumption imposed alongside
RE. We first discuss settings in which it does (and doesn’t) hold, and how it relates to assumptions
imposed in past work. We then provide a set of robustness results when the assumption is relaxed,
before turning to the other assumptions in the following section.

4.1 CTI Generates an Informative Test

We note first that the constant-ϕ assumption is significantly weaker than the assumption of constant
discount rates. Our framework allows for any variation in the physical distribution of Rm

T , which
can be thought of as changes in the quantity of risk. Further, by considering RN beliefs implied by
options, we allow arbitrary variation in risk-free discount rates (since risk-free discounting affects
all option prices proportionally). Both sources of variation are ruled out in tests with constant
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discount rates. We formalize these statements and discuss the relationship between RN beliefs and
discount rates further in Internet Appendix C.2.

That said, the assumption of constant ϕ is substantively restrictive in one way: the price of
risk is assumed to be locally constant over the life of a given option contract. We are assuming,
for example, that the market’s effective risk aversion over whether the return will be 0% or 5%
is fixed over a span of weeks or months. Thus a violation of our bounds can be interpreted as
reflecting either excessive volatility in the marginal investor’s beliefs, or variation in this local price
of risk. Assuming a constant local price of risk, though, does not require that the aggregate price
of risk is constant. For example, if risk aversion is decreasing with Rm

T , then bad news about the
return distribution can increase aggregate risk aversion without affecting local risk aversion in a
neighborhood of a 0% return.

More generally, CTI is satisfied in a range of theoretical settings, with a few notable exceptions.
We make this point not to assert that CTI must hold in reality, but instead to demonstrate that a
violation of our bounds is informative in ruling out a range of well-studied frameworks:16

1. Any shocks that affect the expectation of MT proportionally in all return states (e.g., multiplying
Et[MT | Rm

T = θj] by 1.2 for all j) are trivially ruled in by the definition of CTI. For example, if a
shock to Mt is permanent in the sense that it increases the expectation of MT proportionally in all
return states, then such a shock is admissible. As Alvarez and Jermann (2005) show, permanent
shocks appear to be important empirically for SDF variation.17

2. If a representative agent’s utility depends only on the maturity value of the market index, then
CTI holds. Similarly, if there is some agent whose indirect utility can be written as a function
only of the terminal index value — for example, an unconstrained investor with horizon T (i.e.,
Utility = f (WealthT)) who is fully invested in the market — then CTI holds. This encompasses
a setting in which an unconstrained log investor holds the market, which is the leading case
considered by Martin (2017) for measuring the equity premium, and by Gandhi, Gormsen, and
Lazarus (2023) for studying the term structure of return expectations.

3. In the variable rare disasters model of Gabaix (2012), CTI holds for all market return-state
pairs (θj, θj+1) for which there is negligible probability of having realized a disaster conditional
on reaching θj.18 This illustrates the usefulness of the localization provided by considering
conditional beliefs: if we are concerned that time-varying disaster risk may affect ϕt,j for states
in the tail of the return distribution, we can ignore these states and confine attention to the center
of the return distribution, where ϕt,j can be expected to be approximately constant.

4. If a representative agent has Epstein–Zin (1989) recursive utility and holds the market, then
CTI holds if any of the following apply: (i) relative risk aversion is γ = 1, and the elasticity of

16Derivations for statements 3–6 are in Internet Appendix B.2; statements 1–2 are immediate.
17Meanwhile, Borovička, Hansen, and Scheinkman (2016) show that permanent SDF shocks are ruled out in the

framework proposed by Ross (2015) for recovering physical probabilities from state prices.
18Formally, for any δ, there exists a θ such that ∀ θj ⩾ θ, P0

(
∑T

t=1 1{disastert} > 0
∣∣ Rm

T ⩾ θ
)
< δ, so the conditional

probability of having realized a disaster before T is negligible. For all θj ⩾ θ, CTI holds for the state pair (θj, θj+1) up to
a negligible error, as ϕt,j = ϕj + ηt for ϕj constant and ηt = op(1) as δ→ 0. Again see Internet Appendix B.2 for detail.
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intertemporal substitution (EIS) ψ and DGP are arbitrary; (ii) γ is arbitrary, the EIS is ψ = 1, and
log consumption growth follows an AR(1) process; or (iii) γ and ψ are arbitrary, and consumption
growth is i.i.d. (a less interesting case). As Martin (2017, Example 4b) notes, case (i) is “considered
(and not rejected) by Epstein and Zin (1991) and Hansen and Jagannathan (1991).” Case (ii) is an
approximation to the Bansal and Yaron (2004) long-run risks model, with ψ = 1 and common
shocks to current and expected future consumption (as in Bansal and Yaron, 2000). While ψ = 1
often allows for a reasonable approximation to the full model with ψ ̸= 1 (Dew-Becker and
Giglio, 2016), the approximation degrades given highly persistent growth or volatility processes,
and CTI will not hold in this case. Finally, case (iii) is considered by Martin (2013).

These examples illustrate further that the assumption of CTI is significantly weaker than the
assumption of constant discount rates. This should again not be taken as evidence in favor of CTI in
fact holding; instead, it allows for an informative joint test whose null includes a range of models
that have been advanced as rationalizations of the excess-volatility puzzle.

That said, there are also well-known models under which CTI does not hold. Such models are
also useful for illustrating the content of the assumption:

5. In the habit-formation model of Campbell and Cochrane (1999), CTI fails to hold: the path of
consumption matters in a manner not fully accounted for by conditioning on the return state.

6. In the Basak (2000) model with heterogeneous beliefs and extraneous (non-fundamental) risk,
CTI fails to hold as long as extraneous risk is priced.

Habit-like models, in other words, feature a time-varying local price of risk. We view the fact that
CTI rules out these models to be a downside of the current framework, which we address below by
means of robustness results and simulations. The fact that we rule out models of belief volatility
induced by dynamic belief heterogeneity, though, is by design: if ϕ is time-varying due to changing
weights being assigned to different individual agents — and therefore the as-if representative agent
has excessively volatile beliefs — then this represents a meaningful alternative to our null.

4.2 Relaxing CTI Theoretically

While CTI allows for an informative null in our main analysis, it is also a knife-edge restriction
that is unlikely to hold exactly. We thus now investigate how such a violation affects RN excess
movement. One might worry that even small fluctuations in ϕ could generate dramatic violations
of our bounds. For example, suppose that πt is constant at 0.5 and ϕt changes back and forth from
1 to 1.5 repeatedly. Without any movement in physical beliefs, π∗t will vary repeatedly between
0.5 and 0.6, leading to unbounded movement as T → ∞. But this argument overlooks a core
insight: this repeated oscillation is also inconsistent with RE as long as the variance of ϕt is bounded,
because it implies predictable mean reversion in the expected marginal value of $1. That is, the fact
that ϕt is itself a function of martingale conditional expectations restricts its evolution under RE.
We pursue this logic more formally here and in the following subsection.

Dropping the constant-ϕt assumption comes at the cost of much of the parsimony in our
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previous analysis: SDF expectations non-linearly map to ϕt, which then non-linearly combines with
πt to determine π∗t , which is then non-linearly mapped into X. Perhaps surprisingly, though, we
can still make theoretical statements for a meaningful subset of DGPs. Consider ϕt as defined in (14)
(continuing to suppress j subscripts). The agent now also receives signals sϕt ∈ Sϕt to learn about
ϕt over time. For simplicity, assume that uncertainty over ϕt evolves on a binomial tree (|Sϕt | = 2),
though this is not necessary for the following statements. We also assume that πt and ϕt do not
change (relative to their t− 1 values) together in the same period.19 Then the following holds.

PROPOSITION 7. If ϕt evolves as a martingale or supermartingale (Et[ϕt+1] ⩽ ϕt) and Var(ϕt) < ∞,
then the bounds in Proposition 2 and Corollary 1 (and their counterparts in Proposition 5) continue to apply,
with ϕ0 replacing ϕ.

The proof of Proposition 7 demonstrates that the variation in π∗0 arising when ϕt is a non-
degenerate (super)martingale always strictly lowers excess RN belief movement, rendering the
main bound in (10) even more conservative. Changes in ϕt do cause π∗t to change, which adds
movement. But when ϕt is a supermartingale, this movement works against the upward bias in
RN beliefs themselves and decreasing π∗t − πt in expectation. This reduces potential future excess
movement more than enough to offset the increase in period t.

As for the interpretation of the supermartingale restriction, from the definition of covariance, ϕt,j

is a supermartingale if and only if Covt(ϕt+1,j, Et[MT | Rm
T = θj+1]) ⩾ 0. Interpreting the SDF MT as

proportional to U′(CT), this requires that risk aversion (encoded in ϕt+1,j) be positively correlated
with expected marginal utility (MU) in the high-consumption state. This is an intuitively reasonable
restriction, as it implies bad news (higher expected MU) generally arrives at the same time for
both states, with the expected low-consumption MU increasing more than its high-consumption
counterpart.20 The converse (Covt(ϕt+1,j, Et[Mt,T | Rm

T = θj+1]) < 0), by contrast, requires risk
aversion to increase in general in response to good news about MU in the good state.

4.3 Relaxing CTI in Numerical Simulations

Given the complexity of the setting, it is difficult to make analytical statements when the local
price of risk ϕt does not satisfy the assumptions of Proposition 7. Instead, we numerically simulate
DGPs in which ϕt can vary with more freedom. The agent learns about the terminal state, and
the SDF realization in both the j and j + 1 states, over time, under binary DGPs with different
combinations of signal strengths and uncertainty for all three objects. We describe the setting more
fully in Internet Appendix C.3, and we outline the results of these simulations here.

Figure 4 plots distributions for the estimated E[m∗] (rather than E[X∗], as E[m∗] is what
changes with the DGP here) across these simulations. Each DGP is simulated repeatedly to obtain
an estimated E[m∗] for that DGP. Each line represents a different E[m∗] distribution given variation

19In a previous version of this manuscript (Augenblick and Lazarus, 2022), we prove the result for arbitrary |Sϕt |. For
the second assumption, one can split each period into two sub-periods, with ϕt changing in the first half and πt in the
second. The proof becomes intractable without this assumption, but we provide simulation evidence relaxing it below.

20For further discussion of such a restriction in a different context, see Lazarus (2022).
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Figure 4: RN Belief Movement Distributions with Time-Varying ϕt
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Notes: This figure shows the results of simulations studying the impact of time-varying ϕt on the distribution of E[m∗]
given different DGPs with possibly asymmetric signal strengths about θ and ϕT over time. The dark black line (“No ϕ

Uncertainty”) shows the distribution when there is no uncertainty about ϕ. Each line in the slightly lighter dark gray set
(“Low ϕ Uncertainty”) represents the equivalent distribution for a DGP that also contains uncertainty about the SDF in
both states. In this case, ϕ0 = 3, but ϕT can vary from 2.14 to 4.2. The set of gray lines (“Medium ϕ Uncertainty”) allow
ϕT to vary from 1.5 to 6, and the set of light-colored lines (“High ϕ Uncertainty”) allow ϕT to vary from 1 to 9.

in the signal strengths for θ, with the different lines showing different signal strengths for learning
about the conditional values of MT (and thus ϕ). In all cases, π∗0 = 0.5 and ϕ0 = 3.

The black line (“No ϕ Uncertainty”) shows a baseline with ϕt = ϕ = 3 for all t. As in Section 2.3,
when signals are symmetric, E[m∗] = u∗0 = 0.25, and very asymmetric DGPs produce the tails. Up
to smoothing noise, E[m∗] never crosses the theoretical upper bound of 0.375 from (10). In the dark
gray lines (“Low ϕ Uncertainty”), ϕ0 = 3 as before, but ϕt now varies such that the ex ante standard
deviation of ϕT is σϕ ≡ SD0(ϕT) = 0.36. Using Proposition 6, if return states θj and θj+1 differ by
5% (as in our empirical setting), this corresponds to relative risk aversion of γ0 = 40 and standard
deviation for γT of σγ = 7.2. Changing ϕ has virtually no effect regardless of the signal structure:
average E[m∗] rises by 0.0012, and the number of DGPs for which E[m∗] exceeds the bound rises by
just 0.00007 percentage points (pp). In the medium gray lines (“Medium ϕ Uncertainty”), σϕ = 1.62
(or σγ = 32.4). Even with such sizable variation, average E[m∗] rises by 0.006, and DGPs above the
bound by 0.0003 pp. In the light gray lines (“High ϕ Uncertainty”), σϕ = 3.0 (σγ = 60). Average
E[m∗] still only increases by 0.015, and DGPs above the bound by 0.0012 pp. In all cases, the bound
in Corollary 1 for ϕ→ ∞ holds for 100 percent of the simulations.

We conclude, somewhat surprisingly, that even significant uncertainty in the local price of risk
ϕT has limited impact on our bounds in these DGPs. When the agent updates her SDF expectations,
these updates must still respect RE. Thus even large values for σϕ do not allow for arbitrary
oscillations of ϕt, as information about ϕT is revealed gradually over time. While there may exist
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DGPs in which time-varying ϕt generates large effects in an otherwise standard rational setting, we
suspect given our results that they would require rather perverse time-varying structures. Instead,
for variation in the price of risk to explain our results, such variation is likely to require departures
from RE for expected terminal marginal utility.

Finally, to test the effects of variation in ϕt in a less abstract environment, we proceed to solve
and simulate the Campbell and Cochrane (1999) habit formation model using that paper’s baseline
calibration. We find in this case that for the interior state pairs, ϕt is closely approximated by a
martingale and therefore does not generate additional E[X∗]. Our bounds thus continue to hold
and continue to be conservative. See Internet Appendix C.4 for details.21

4.4 Aggregating Over Belief Streams

The previous subsection considers the effect of time variation in ϕj within a given RN belief stream
(i.e., within a single option contract, lasting weeks or months). But even if the effects of such
higher-frequency variation are small, it may be less palatable to assume that ϕj is constant across
belief streams, given the possibility of lower-frequency variation over the span of years. We now
ask how such variation affects our bounds when considering multiple belief streams.

Answering this question is also important for empirical implementation. The bounds in
Proposition 5 are stated as date-0 expectations conditional on the RN prior, but we observe only one
draw X∗j per expiration date rather than the expectation of this statistic for a given π̃∗0,j. Estimation
thus requires aggregating over multiple streams with different π̃∗0,j and, as above, potentially
different ϕj. Thus, generalizing slightly, assume now that we can observe index options for N
expiration dates T ≡ {Ti}N

i=1, so i indexes belief streams (and their DGPs). We use ϕi,j for the SDF
ratio for expiration date Ti and state pair (θj, θj+1); RN beliefs are π̃∗t,i,j; and RN excess movement
is X∗i,j. We again often suppress j for an arbitrary state pair. Due to Jensen’s inequality, we cannot
simply use E[ϕi] in place of ϕi or E[π∗0,i] in place of π∗0,i when taking the expectation of both sides
of the results in Propositions 1, 2 and 5 over all i. However, the following generalizations do hold:

PROPOSITION 8. Define ϕ ≡ maxπ∗0,i
E[ϕi |π∗0,i]. We have:

(i) GENERALIZATION OF PROPOSITION 1: If Cov(π0,i,△i) = 0, and π∗0,i is constant across i (i.e.,
fixing a given π∗0,i), then over all streams,

E[X∗i ] ⩽ max
{

0,
(

π∗0,i −
π∗0,i

E[ϕi] + (1−E[ϕi])π∗0,i

)
E[△i]

}
. (15)

(ii) GENERALIZATION OF PROPOSITION 2: Over all streams, without any additional assumptions,

E[X∗i ] ⩽ E

[(
π∗0,i −

π∗0,i

ϕ + (1− ϕ)π∗0,i

)
π∗0,i

]
, (16)

21One might reasonably argue that the habit model is the wrong place to start when looking for plausible alternatives,
as it is designed to match low-frequency variation. This is in fact the point of the exercise: it shows that to generate
bounds violations, alternative models are needed to produce the high- and medium-frequency variation that we measure.
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or, fixing a given π∗0,i, E[X∗i ] ⩽
(

π∗0,i −
π∗0,i

E[ϕi ]+(1−E[ϕi ])π
∗
0,i

)
π∗0,i.

(iii) GENERALIZATION OF COROLLARY 1: Over all streams, without any additional assumptions,

E[X∗i ] ⩽ E
[
π∗0,i

2
]
.

(iv) GENERALIZATION OF COROLLARY 2: If△i ⩽ 0 for all i, then over all streams,

E[X∗i ] ⩽ 0.

Only the analogue to Proposition 1 requires an additional assumption. The original formula
includes the product of π∗0 − π0 and△, so the covariance between π0,i and△i across DGPs affects
the generalized bound. For simplicity, we set this covariance to zero, which is equivalent to
assuming no relationship between the asymmetry of the DGP and ϕ. This part also holds fixing
π∗0,i; this is sufficient for our purposes, as our empirical results for this less-conservative bound
will generally be conditional on a given π∗0,i.

22 Part (ii), meanwhile, generalizes (10) by applying
Jensen’s inequality for one of several variables, as the second partial derivative of that bound in ϕi,j

is negative. The bound in (16) is thus even more conservative than the original bound for a single
stream. The bounds that do not depend on ϕi,j (parts (iii)–(iv)) apply as previously stated.

These bounds are now empirically implementable, and the minimum ϕ that solves (16) is
a conservative estimate of the maximal conditional-mean SDF slope for the return-state pair in
question. Finally, reintroducing dependence on the state pair j, it is likely that the values ϕj vary
over j. But the same steps used for Proposition 8 to take expectations over i can also be applied to
take expectations over j, thereby obtaining a single estimate ϕ aggregated over both streams and
return states (for all states meeting CTI) when desired.

5. Robustness to Additional Assumptions

Having considered Assumption 4 in detail, we turn to the other two assumptions to continue our
discussion on how to interpret a rejection of the joint null. We consider Assumption 2 first, as the
robustness result in this case will be a useful stepping stone in discussing Assumption 3. Finally,
we provide a result accounting for possible mismeasurement or market microstructure noise.

5.1 RE and the Interpretation of Bound Violations

We have assumed throughout that Assumption 2 holds, which in general requires both (i) a correct
subjective prior and (ii) rational updating using the true signal distribution as the likelihood. One
natural question is whether an incorrect prior by itself can generate violations of the upper bound
for X∗, or whether excessive movement in general requires incorrect updating. The following
straightforward proposition makes clear that the latter is likely to be necessary for a bound violation.

22The constant-π∗0,i bounds can also be read as bounds for the conditional expectation E[X∗i |π
∗
0,i] given E[ϕi |π∗0,i].
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We continue to adopt the notation from Section 2 for clarity, but the following should be understood
to apply for conditional beliefs for some state j.23 Assume that Assumptions 3–4 continue to hold.

PROPOSITION 9. In place of Assumption 2, assume that the agent has an incorrect prior, π0 ̸= P0(θ), but
updates correctly, in the sense that πt ∝ πt−1DGP(st | θ, Ht−1). Define ϕ̌ ≡ ϕL, where L ≡ π0/(1−π0)

P0(θ)/(1−P0(θ))

indexes the prior belief distortion, with 0 < L < ∞. Then:

(i) For all Ht, the agent’s RN beliefs π∗t are equivalent to the RN beliefs of a fictitious agent whose physical
beliefs π̌t satisfy Assumption 2 but who has ϕ̌ in place of ϕ.

(ii) If ϕ̌ ⩾ 1, then all previously stated restrictions on E[X∗] continue to hold, with ϕ̌ in place of ϕ and π̌0

in place of π0. In particular, one cannot in this case have E[X∗] > π∗0
2.

(iii) If ϕ̌ < 1 so that π∗0 < P0(θ) = π̌0, then the bound expressed in Proposition 2 becomes E[X∗] ⩽
(π̌0 − π∗0)(1− π∗0), and Corollary 1 becomes E[X∗] ⩽ (1− π∗0)

2. Thus regardless of ϕ̌, it must be
the case that E[X∗] ⩽ max(π∗0

2, (1− π∗0)
2).

Part (i) formalizes that risk aversion is isomorphic to an incorrect prior, in that both have the
same effect on π∗t relative to the objective Pt(θ). Thus with a suitably altered value of ϕ, the bounds
generally cover the case of an incorrect prior, as in part (ii). The only case in which this argument
requires slight amendment is when the prior is so downwardly distorted that π∗0 < P0(θ). Even in
this case, though, a slightly altered version of Corollary 1 still applies, as in part (iii). An incorrect
prior acts as a one-time belief distortion; while reverting to the correct belief in this case does
require some excess movement, this is generally not sufficient for a full violation of the bound in
Proposition 2. In general, then, incorrect updating behavior must be present in such a violation.24

5.2 Robustness to ϕ < 1

We now turn to Assumption 3, which imposes that ϕj ⩾ 1 with return states ordered such that
θj < θj+1. This requires that the expected SDF realization in the low-return state be greater than its
expected realization in the high-return state. A line of work beginning with Jackwerth (2000) and
Aït-Sahalia and Lo (2000), however, argues that the SDF does not decrease monotonically with the
index return in options data. This finding, often referred to as the “pricing kernel puzzle,” would
imply a violation of Assumption 3 for at least some subset of the return space. How should our
results be interpreted in light of this possibility?

Given such a violation, it turns out that one can still make theoretical statements providing an
upper bound for RN excess movement. As shown in Proposition 9(i), assuming a different value
for ϕ is formally equivalent to assuming a distortion in the agent’s prior belief. The case with ϕ < 1
is equivalent to a large downward distortion in the prior, as in part (iii) of that proposition. This
equivalence leads to the following corollary, which holds under Assumptions 2 and 4.

23For example, the incorrect prior is π̃0,j ̸= P0(Rm
T = θj | Rm

T ∈ {θj, θj+1}), and L ≡ π̃0,j/(1−π̃0,j)

P̃0(Rm
T =θj)/(1−P̃0(Rm

T =θj))
.

24Note that even if ϕ is constant under the agent’s subjective belief, incorrect updating will induce a probability
distortion such that the actual SDF (assessed under P) will feature a time-varying ϕt.
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COROLLARY 3. If ϕ < 1 rather than ϕ ⩾ 1 in Assumption 3, then the bound from Proposition 2 becomes

E[X∗] ⩽ (π0 − π∗0)(1− π∗0) =

(
1− 1

ϕ−1 + (1− ϕ−1) (1− π∗0)

)
(1− π∗0)

2,

and Corollary 1 becomes E[X∗] ⩽ (1− π∗0)
2. For any ϕ, therefore, E[X∗] ⩽ max(π∗0

2, (1− π∗0)
2).

The main bounds thus apply with minor modification, effectively flipping the role of the two
states when ϕ < 1. This entails replacing π∗0 with 1 − π∗0 , and for Proposition 2, replacing ϕ

with ϕ−1 as well. Thus it is not the case that anything goes when Assumption 3 is violated: excess
movement is bounded no matter what, and its upper bound is a function of max(ϕ, ϕ−1), which in
both cases indexes risk aversion across the two states. Bounds violations, meanwhile, retain their
interpretation regardless of ϕ.

While Corollary 3 shows that one can still make statements about excess movement when ϕ < 1,
the bound in this case would have to be estimated separately from our main bounds derived for the
ϕ ⩾ 1 case. So for the sake of simplicity, we empirically estimate only the main bounds. We do so in
part because we estimate the bounds separately for multiple points in the return space. Thus even
if one is concerned about the pricing kernel puzzle affecting our results, one can confine empirical
attention to our estimates for return ranges for which the puzzle does not emerge. For example,
within this literature, it is a robust finding that the estimated SDF declines monotonically for the
range of negative index returns; see, for example, Driessen, Koëter, and Wilms (2022, Figure 4) or
Schreindorfer and Sichert (2022, p. 4). And as will be seen in Section 6, our empirical estimates
for ϕj for these negative return states are just as high (in fact somewhat higher) than for positive
return states, indicating that the results are unlikely to be driven by violations of Assumption 3.

5.3 Robustness to Measurement Error

The robustness results above speak to the possibility of theoretical misspecification. As the final
step in making our bounds implementable, we now consider how to account for possible empirical
misspecification arising from mismeasurement or microstructure noise in RN beliefs. The bounds
provide a minimum value of ϕ required to rationalize the observed variation in RN beliefs; if some
of this variation is in fact arising due to noise, then we may overestimate this required ϕ. A simple
correction can be applied to our bounds to account for this issue, as shown in the following result.
Given that noise arises period-by-period, we first define one-period analogues for our statistics:
denote RN movement between t and t + 1 by m∗t,t+1 ≡ (π∗t − π∗t+1)

2, RN uncertainty at t by
u∗t ≡ (1− π∗t+1)π

∗
t , and RN excess movement between t and t + 1 as X∗t,t+1 ≡ m∗t,t+1 − (u∗t − u∗t+1).

Similar to Augenblick and Rabin (2021, Section II.E), we then have the following:

PROPOSITION 10. Assume that the observed π̂∗t is measured with error with respect to the true π∗t :

π̂∗t = π∗t + ϵt, (17)

where E[ϵt] = 0, E[ϵt ϵt+1] = 0, and E[ϵt+k π∗t+k′ ] = 0 for k, k′ ∈ {0, 1}. Denoting the observed
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one-period RN excess movement statistic by X̂∗t,t+1, its relation to the true value X∗t,t+1 in expectation is

E
[

X̂∗t,t+1 − X∗t,t+1

]
= 2Var(ϵt).

We can thus subtract 2Var(ϵt,j) from each period’s observed excess-movement statistic to obtain
an unbiased true excess movement value, which can then be used in our bounds. If measurement
error is positively correlated over time rather than uncorrelated, this will reduce the upward bias in
measured X∗. We discuss estimation of Var(ϵt), and autocovariance statistics for ϵt, in Section 6.2.

6. Empirical Estimation and Results

Our theory leads to bounds on the variation in RN beliefs over the market index return, which we
proceed now to measure in the data. We begin by describing how we map from theory to data and
how we estimate microstructure noise; we then summarize the data before turning to our main
results. We conclude with a discussion of the predictors of RN excess movement.

6.1 Data and Risk-Neutral Distribution

Data. Our main source for S&P 500 index options data is the OptionMetrics database, which
provides end-of-day prices for European call and put options for all strike prices and option
expiration dates traded on the Chicago Board Options Exchange (CBOE). The sample runs from
January 1996 through December 2018.25 We augment this data with intraday price quotes obtained
directly from the CBOE for a subset of trading days in our sample, in order to account for market
microstructure noise; this additional data is described further in Section 6.2.

We apply standard filters to remove outliers and options with poor trading liquidity from the
OptionMetrics data, with details provided in Internet Appendix C.5.26 Two aspects of this data
cleaning bear mention here. First, while our bounds apply for belief streams of arbitrary length, we
follow past literature (e.g., Christoffersen, Heston, and Jacobs, 2013; Martin, 2017) and consider
options with maturity of at most one year. Second, after transforming the filtered prices to RN
beliefs (described below), we keep only conditional RN belief observations π̃∗t,i,j for which the
non-conditional beliefs satisfy π∗t (Rm

Ti
= θj) + π∗t (Rm

Ti
= θj+1) ⩾ 5%, as conditional beliefs are likely

to be particularly susceptible to mismeasurement when the underlying beliefs are close to zero.

Empirical return space. For our baseline estimation, we define the return state space Θ in terms
of log excess return intervals:

Θ = R f
0i ,Ti

exp
{
(−∞,−0.2], (−0.2,−0.15], (−0.15,−0.1], . . . , (0.1, 0.15], (0.15, 0.2], (0.2, ∞)

}
,

25We use the same sample as in an earlier version of the paper (Augenblick and Lazarus, 2022), as it aligns with our
intraday data for noise estimation. The 2018 cutoff precludes the volatility observed in 2020 from affecting our estimates.

26There are 12.4 million option prices in the raw data, and 4.3 million (for 5,537 trading dates and 991 expiration
dates) after filtering. The bulk of the difference is attributable to our use of only out-of-the-money call and put strikes.
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where R f
0i ,Ti

is the gross risk-free rate from 0i to Ti.27 In words, return state 1 is realized if the
log excess S&P return from 0i to Ti is less than -0.2 ≈ -20%; state 2 is realized if the excess
return is in the five-percentage-point bin between -0.2 and -0.15; and so on. Abusing notation
slightly, we often refer to states by the right end of their associated excess-return bin: θ1 = −0.2,
θ2 = −0.15, . . ., θ9 = 0.2, θ10 = ∞. The binary conditional beliefs to be used in our tests are
π̃∗t,i,j ≡ π∗t (Rm

Ti
= θj | Rm

Ti
∈ {θj, θj+1}), so π̃∗t,i,j again corresponds to the probability that the low

state j (e.g., θ2 = −15%) will be realized, conditional on j or j + 1 (in this case, conditional on
an excess return between -20% and -10%). We again use the right end of the return bin for j in
referencing statistics for pair (θj, θj+1), corresponding to the midpoint of the two return bins.

This five-percentage-point partition of the return space reflects a desire to balance (i) measure-
ment accuracy for the RN beliefs and (ii) plausibility of our assumption of constant ϕj (CTI). Wider
bins lead to greater measurement accuracy, but make it less likely that there are no changes in the
expected SDF realization conditional on a given return state θj relative to θj+1. We report empirical
estimates below for all adjacent state pairs for completeness, but as discussed after Assumption 4, it
is unlikely that CTI is met for the extreme state pairs (θ1 relative to θ2, and θ9 = θJ−1 vs. θ10 = θJ ).
Our focus is thus on the interior state pairs with low-return states θ2, . . . , θ8; in particular, when we
aggregate our state-by-state estimates of ϕj required to rationalize the data into a single average
value ϕ across states, we use only these interior states.28

Risk-neutral beliefs. To extract a risk-neutral distribution over the return states in Θ from the
observed option cross-sections, we use standard tools from the option-pricing literature. Our
starting point is equation (13), which tells us how to map from option prices to RN beliefs. We use
this to construct a smooth RN distribution for returns, largely following the technique proposed
by Malz (2014); Appendix C.5 provides a detailed description. With the RN beliefs π∗t,i,j in hand,
we can then calculate conditional beliefs straightforwardly as π̃∗t,i,j = π∗t,i,j/(π

∗
t,i,j + π∗t,i,j+1). We

then use the resulting conditional RN belief streams to calculate the excess movement statistics X∗i,j
needed to implement our bounds. Our general results in Section 3 restrict the expectation of X∗i,j
conditional on state θj or θj+1 being realized — in particular, Propositions 5 and 8 give bounds for
Ẽ[X∗i,j] — and we accordingly keep only observations for which π̃∗Ti ,i,j

= 0 or 1 ex post; for example,
if the total excess return on the market over the life of option contract i is -14%, then we keep only
X∗i,2 (θ2 ranges from -20% to -15% return, so π̃∗Ti ,i,2

= 0) and X∗i,3 (π̃∗Ti ,i,3
= 1).

Simplifying notation. Having clarified how the relevant empirical objects (π̃∗t,i,j, X∗i,j) depend
on the contract i and state pair j, in what follows we generally drop the cumbersome use of i, j,
and ·̃, and again write π∗t for π̃∗t,i,j, X∗ for X∗i,j, and so on. Similarly, we often drop the “conditional”
qualifier when referring to conditional RN belief statistics.

27We use excess returns for convenience of interpretation. Following van Binsbergen, Diamond, and Grotteria (2022),
we measure R f

0i ,Ti
directly from the options prices by applying the put-call parity relationship; again see Appendix C.5.

28This yields an additional de facto data filter, as we are effectively considering only option strikes with moneyness
between 0.8 and 1.2 (following, e.g., Constantinides, Jackwerth, and Savov, 2013).
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6.2 Noise Estimation

As in Proposition 10, we also wish to account for measurement error stemming from possible non-
fundamental or microstructure noise in risk-neutral beliefs. With noise described by π̂∗t = π∗t + ϵt

as in (17), Proposition 10 tells us that we must estimate Var(ϵt) in order to eliminate the bias in X∗

arising from any such non-fundamental noise. We turn to a sample of high-frequency option prices
to estimate this noise variance in our RN beliefs data.

Specifically, we obtain minute-by-minute price quotes on S&P index options for a subset of
trading days directly from the CBOE. For each available option expiration date on each such
trading day, we recalculate the RN belief distribution at the end of each minute using exactly the
same procedure as described in Section 6.1. As this requires calculating 390 sets of RN beliefs for
each trading day (9:30 AM–4:00 PM), this procedure would be computationally infeasible if applied
to our entire sample of 5,537 trading days (each of which has an average of 11 available option
expiration dates, generating 60,543 (t, T) combinations). We accordingly select 30 trading days at
random from within our available sample period, and use the minute-by-minute quotes to calculate
intraday RN distributions for these days.29

We then use tools from the literature on microstructure noise to estimate Var(ϵt) using these
intraday data. The intuition for this strategy — as described, for example, by Zhang, Mykland,
and Aït-Sahalia (2005) — is best understood by assuming temporarily that the noise ϵt in (17) is
i.i.d., while the true π∗t changes smoothly over time. Given high-frequency option data, imagine
calculating movement using the observed beliefs, (π̂∗t+h − π̂∗t )

2, with less and less time h between
consecutive observations. As one decreases h to 0, the noise swamps the true variation: since
(π∗t+h − π∗t )

2 → 0, we have E[(π̂∗t+h − π̂∗t )
2]→ 2Var(ϵt). Thus in this simple example, Var(ϵt) can

be estimated by calculating the quadratic variation in RN beliefs sampled at a high frequency.

In practice, one would expect the data to contain both non-i.i.d. noise ϵt and jumps in the true
process π∗t , and it is desirable to use a noise estimation method that is robust to these features. One
such estimator for Var(ϵt) is the ReMeDI (“Realized moMents of Disjoint Increments”) estimator
proposed by Li and Linton (2022). This estimator takes the average product of disjoint increments
of the observed process, (π̂∗t − π̂∗t−h)(π̂

∗
t − π̂∗t+h).

30 The idea is that even if the true process
features jumps so that E[(π∗t+h − π∗t )

2] > 0, its increments over non-overlapping windows are
still approximately uncorrelated. Li and Linton (2022, Theorem 4.1) show that this estimator is
consistent for Var(ϵt) for quite general dependent noise processes and for π∗t in a general class of
semimartingales. It also performs well in simulations and empirical applications.

Using this ReMeDI estimator on our minute-by-minute data, we estimate Var(ϵt) = Var(ϵt,i,j)

separately for each combination of trading day t, expiration date Ti, and state pair j in our intraday
sample. We then match the noise estimates (which are obtained for a subsample of days) to the

29This yields an intraday data set roughly twice as large as the original one, as 30× 390× 11 ≈ 130,000.
30More formally, the estimator is V̂ar(ϵt) =

1
Nϵ,n

∑
Nϵ,n−kn
i=2kn

(π̂∗ti
− π̂∗ti−2kn

)(π̂∗ti
− π̂∗ti+kn

), where Nϵ,n is the number of
observations over a fixed span (in our case, one trading day) and kn is a tuning parameter.
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X∗ observations in our original data.31 Finally, we subtract 2V̂ar(ϵt,i,j) from X̂∗t,t+1,i,j to obtain a
noise-adjusted estimate of one-day excess movement following Proposition 10, and we sum these
noise-adjusted one-day values over the full stream to obtain noise-adjusted X∗i,j.

We discuss the magnitude of the noise estimates in the next subsection. The ReMeDI procedure
also allows for estimation of the intraday autocovariances of the noise ϵt. These autocovariances
are estimated to be positive for small lag values, but they die out quickly and are precisely
estimated near zero for noise observations more than an hour apart. This justifies the assumption in
Proposition 10 that end-of-day noise observations are uncorrelated, E[ϵtϵt+1] = 0, as ultimately we
care about noise only to the extent that it affects our excess movement statistics at a daily frequency.

Our main results in Section 6.4 use the noise-adjusted excess movement data. All standard
errors and confidence intervals are based on a bootstrap procedure (detailed in Section 6.4) that
accounts for the sampling uncertainty in the above noise estimation and averaging procedure.

6.3 Excess Movement: Descriptive Statistics and Figures

Table 1 summarizes the average RN excess movement X∗ overall (across all interior state pairs
and expiration dates) and by subsample. Excess movement is difficult to interpret without some
normalization. The first two columns thus divide X∗ by average initial uncertainty u0. As in
Augenblick and Rabin (2021), this normalized statistic can be interpreted as the percent by which
movement exceeds initial uncertainty and thus uncertainty resolution. These values are quite high
in our data: for the noise-adjusted statistics, there is on average 123% more movement than initial
uncertainty. These values decrease for return states in the middle of the distribution. The early
sample has high but noisy X∗ statistics,32 but these averages remain high until the most recent
subsample. And higher priors π∗0 correspond with greater X∗, in line with our bounds given ϕ ⩾ 1.

The next two columns of Table 1 instead normalize X∗ by the average contract length T, so the
resulting statistics can be interpreted as excess movement per day.33 Under this normalization,
there is now no clear pattern for average excess movement across bins: longer average contract
lengths tend to coincide with more excess movement, as RN beliefs bounce up and down over
the length of a contract. This is inconsistent with RE, under which excess movement in subjective
beliefs should not depend at all on the horizon at which uncertainty is resolved. For the splits by
date and by prior, the basic patterns discussed above are still present here.

Comparing the raw and noise-adjusted values makes clear that despite the substantial excess
movement in the noise-adjusted statistics, noise does represent a meaningful portion (about 1/3) of
the raw X∗ data. The raw and noise-adjusted mean for X∗/T differ by about 0.002, so V̂ar(ϵt) ≈
0.002/2 = 0.001. The standard deviation of ϵt is thus roughly 0.03 per day. For the return-state

31We match these observations using the two best predictors of V̂ar(ϵt) in our data: the state pair j and the sum
π∗t (Rm

T = θj) + π∗t (Rm
T = θj+1). Further explanation and technical details can be found in Internet Appendix C.6.

32Excess movement peaks in this subsample during the 1998 Russian debt crisis.
33For a rough idea of the actual variation in RN beliefs given these values, consider a pair (t, t + 1) for which

π∗t+1 = 1−π∗t . One-day X∗ and m∗ then coincide (there is no uncertainty resolution), so, for example, the noise-adjusted
mean of 0.0038 corresponds to a raw change of

√
0.0038 ≈ 0.06 (or π∗t = 0.47, π∗t+1 = 0.53).
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Table 1: Descriptive Statistics for Excess Movement

X∗/u0 X∗/T

Raw Noise-Adj. Raw Noise-Adj. u0 T N (Obs.)

Overall mean: 1.89 1.23 0.0059 0.0038 0.18 56 1,809
[Bootstrapped SE] [0.25] [0.22] [0.0015] [0.0013] [0.00] [2]

By return state:
1 (-20%) 5.83 4.83 0.0049 0.0041 0.17 200 26

[1.18] [1.05] [0.0027] [0.0024] [0.01] [20]

2 (-15%) 11.61 5.70 0.0180 0.0088 0.22 141 19
[3.32] [3.06] [0.0096] [0.0083] [0.01] [25]

3 (-10%) 5.76 2.37 0.0151 0.0062 0.21 81 49
[0.99] [1.07] [0.0059] [0.0051] [0.01] [12]

4 (-5%) 2.67 1.39 0.0088 0.0046 0.14 42 272
[0.59] [0.50] [0.0038] [0.0029] [0.01] [5]

5 (0%) 0.70 0.47 0.0045 0.0030 0.23 37 700
[0.16] [0.14] [0.0019] [0.0017] [0.00] [2]

6 (+5%) 1.71 1.14 0.0039 0.0026 0.11 49 567
[0.35] [0.34] [0.0015] [0.0014] [0.01] [3]

7 (+10%) 3.87 2.92 0.0053 0.0040 0.18 129 144
[1.00] [1.03] [0.0023] [0.0023] [0.01] [9]

8 (+15%) 5.65 5.26 0.0060 0.0056 0.21 200 58
[1.48] [1.48] [0.0027] [0.0027] [0.01] [11]

9 (+20%) 3.44 2.09 0.0032 0.0020 0.22 232 36
[0.89] [1.27] [0.0015] [0.0020] [0.01] [9]

By date:
1996–2000 10.89 9.67 0.0211 0.0187 0.21 107 109

[2.24] [2.17] [0.0074] [0.0072] [0.01] [11]

2001–2005 1.75 0.55 0.0042 0.0013 0.22 90 112
[0.51] [0.40] [0.0021] [0.0015] [0.01] [11]

2006–2010 1.25 0.68 0.0065 0.0035 0.17 32 502
[0.22] [0.19] [0.0026] [0.0021] [0.00] [4]

2011–2015 1.75 1.09 0.0050 0.0031 0.19 67 530
[0.36] [0.28] [0.0024] [0.0019] [0.00] [5]

2016–2018 0.36 -0.11 0.0011 -0.0003 0.16 50 556
[0.21] [0.14] [0.0017] [0.0009] [0.00] [3]

By π∗0 :
0–0.25 1.01 0.30 0.0055 0.0017 0.09 16 185

[0.60] [0.55] [0.0048] [0.0047] [0.01] [2]

0.25–0.5 1.58 0.91 0.0067 0.0039 0.23 55 883
[0.21] [0.17] [0.0017] [0.0014] [0.00] [3]

0.5–0.75 2.84 2.19 0.0053 0.0041 0.23 123 284
[0.61] [0.58] [0.0020] [0.0019] [0.00] [7]

0.75–1 2.54 1.88 0.0048 0.0036 0.06 31 457
[0.95] [0.90] [0.0031] [0.0029] [0.00] [2]

Notes: Empirical conditional means of risk-neutral excess movement X∗≡ Ê[X∗i,j] are calculated over all
interior state pairs j = 2, . . . , 8, aside from averages by bin, which are calculated for each state pair separately.
Standard errors are estimated using a block bootstrap for the normalized statistic X∗/u0 or X∗/T, with a
block size of one month (where contracts are classified by the month in which they expire) and 10,000 draws.
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splits, noise tends to be lowest for returns near the center of the distribution, as is intuitive.

Next, Figure 5 provides a visual summary of the X∗ statistics relative to the bounds. The
blue curves describe the raw and noise-adjusted local-average X∗ statistics as one varies the RN
prior π∗0 ; these curves are the same in both panels. As one would expect, there is very little excess
movement for RN priors near 0 or 1, but excess movement is positive for intermediate π∗0 values
for which there is greater initial uncertainty. We compare these values to the theoretical bounds
under different levels of ϕ for each value of π∗0 , as shown in gray. Panel (a) uses the tighter bound
from Proposition 8(i), with △ estimated using local averages for the conditional expectations
E[X∗ | θ, π∗0 ] in (9) over π∗0 .34 Panel (b) uses the conservative bound from the second inequality in
Proposition 8(ii), so the gray lines in this panel align with the solid bound lines in Figure 3.

Across the two panels, the X∗ values observed in the data exceed both sets of bounds, other
than for high RN priors π∗0 and for high ϕ. For panel (a), we estimate △̂ = 0 for π∗0 ≈ 0.5, △̂ < 0
for π∗0 below this cutoff, and △̂ > 0 above it, as is evident from the bounds crossing zero at
π∗0 ≈ 0.5. As discussed in Section 2.3, this indicates that the DGP is close to symmetric, with equally
informative signals for the two states (θj, θj+1) on average (and thus roughly equal-sized upward
and downward movements of π∗t ). As the bounds in Proposition 8 apply for each possible π∗0 , the
positive point estimates for E[X∗ |π∗0 ] clearly violate the bounds for π∗0 < 0.5, which are (at most) 0
for all ϕ. And while the empirical curves are closer to the more-conservative bounds in panel (b),
the noise-adjusted estimates still exceed π∗0

2 (the bound for ϕ = ∞) for π∗0 less than about 2/3.

These figures do not, however, integrate over π∗0 , nor do they include any measures of statistical
uncertainty necessary to make inferential statements or conduct hypothesis tests. To address these
issues, we move on to our main estimation and results.

6.4 Main Results

We turn now to the empirical implementation of our theoretical bounds. Given our sample of
noise-adjusted excess movement statistics and corresponding RN priors, each possible value of ϕ

leads to a residual excess movement value ei(ϕ) = X∗i − bound(π∗0,i, ϕ) for contract i. We calculate
two versions of this residual corresponding to the bound in part (i) and the unconditional bound in
part (ii) of Proposition 8 (equations (15) and (16), respectively):

e△i (ϕ) = X∗i −max

{
0,

(
π∗0,i −

π∗0,i

ϕ + (1− ϕ)π∗0,i

)
△̂i

}
,

emain
i (ϕ) = X∗i −

(
π∗0,i −

π∗0,i

ϕ + (1− ϕ)π∗0,i

)
π∗0,i.

(18)

The first version corresponds to the tighter bound from Proposition 1, which requires a smoothed
estimate of△i as calculated for Figure 5. This version accounts for the estimated DGP (through
△̂i) and thus conveys some useful preliminary information, but strictly speaking, part (i) of the

34To emphasize that △̂ < 0 for π∗0 < 0.5, the figure does not cut the bounds off at 0.
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Figure 5: Excess Movement vs. RN Prior: Data and Theoretical Bounds

(a) Tighter Bound from Proposition 8(i)
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(b) Conservative Bound from Proposition 8(ii)
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Notes: Empirical excess movement curves are kernel-weighted local averages (Epanechnikov kernel, bandwidth for
π∗0 of 0.08) over all interior state pairs j = 2, . . . , 8. All statistics are estimates of conditional means Ẽ[·] for RN beliefs
π̃∗t,i,j, and theoretical curves correspond to ϕ ≡ Ẽ[ϕi,j], with notation simplified for clarity. Bounds for (a) obtain △̂ using
a kernel-weighted local average over π∗0 for each of the two terms in (9), with △̂ then plugged into the inequality in
Proposition 8(i). Bounds for (b) use only the second inequality in Proposition 8(ii).
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Table 2: Residual Excess Movement t-Statistics for Different ϕ

(a) Tighter Lower Bound (b) Conservative Lower Bound
from Proposition 8(i) from Proposition 8(ii)

ϕ : 1 2 5 10 50 ∞ 1 2 5 10 50 ∞

Overall t-stat.: 5.19 5.15 4.98 4.64 3.03 0.78 5.19 4.08 2.68 1.75 0.07 -1.48

By return state:
1 (-20%) 4.06 3.69 3.04 2.57 1.94 1.72 4.06 3.58 2.79 2.22 1.47 1.21

2 (-15%) 2.13 2.13 2.13 2.13 2.14 2.14 2.13 2.03 1.94 1.90 1.87 1.86

3 (-10%) 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.03 1.86 1.79 1.72 1.70

4 (-5%) 2.78 2.78 2.77 2.77 2.76 2.76 2.78 2.51 2.28 2.18 2.09 2.06

5 (0%) 3.09 3.09 3.08 3.08 3.06 3.06 3.09 1.86 0.74 0.26 -0.19 -0.31

6 (+5%) 3.26 2.66 1.27 0.04 -1.71 -2.42 3.26 1.96 -0.12 -1.77 -5.22 -8.39

7 (+10%) 2.82 2.73 2.51 2.29 1.70 1.23 2.82 2.38 1.73 1.28 0.50 0.06

8 (+15%) 3.53 3.49 3.42 3.37 3.29 3.25 3.53 3.20 2.77 2.51 2.21 2.10

9 (+20%) 1.63 1.58 1.52 1.48 1.44 1.43 1.63 1.36 1.05 0.89 0.72 0.68

Notes: This table shows t-statistics for the average residuals ei(ϕ) in (18) for different values of ϕ. The columns
for (a) use e△i (ϕ), with△i estimated as in panel (a) of Figure 5. The columns for (b) use emain

i (ϕ). Standard errors
are estimated using a block bootstrap with block size of one month and 10,000 draws. All statistics are calculated
using conditional means of noise-adjusted X∗.

proposition applies only conditional on a given π∗0,i and only under the unverifiable condition
that Cov(π0,i,△i) = 0. Thus the second version, which implements the more conservative bound
from Proposition 2 and which applies unconditionally, is the basis for our main set of results. Both
residuals can be directly calculated using our noise-adjusted data for each possible value of ϕ.

We first present sample averages of these residual statistics for a range of values of ϕ, both
for each individual state pair j and aggregated over all interior states. As these values have no
natural scaling, we present them as t-statistics, te = ei(ϕ)/ŜEe, where ei(ϕ) is the sample average of
ei(ϕ) and ŜEe is its standard error. We calculate these standard errors using a block bootstrap with
a block length of one month, with each block containing (i) raw excess movement statistics and
priors for all contracts expiring in a given month, and (ii) noise variance estimates for any trading
days in our intraday sample that fall in the same month. For each resampled data set, we use
the set of (X∗i , π̃∗0,i, {V̂ar(ϵt,i)}) values to recalculate noise-adjusted excess movement and residual
values ei(ϕ).35 The bootstrap accordingly accounts for sampling uncertainty in all statistics used
to calculate noise-adjusted X∗i and ei(ϕ). We conduct 10,000 such draws, from which we calculate
standard errors as the standard deviation of ei(ϕ) across draws.

These residual t-statistics are presented in Table 2 for the two versions of the residual in (18),
both overall and by state pair. Since E[ei(ϕ)] = 0 under RE given a correctly specified ϕ, these

35For the residual e△i (ϕ) corresponding to the tighter bound, we also re-estimate △̂i in each bootstrap draw by
calculating the same local average (with respect to π∗0,i) as in Figure 5(a), and then evaluating it at the observed π∗0,i.
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t-statistics tell us how far the residuals are from being consistent with any hypothesized null for
the SDF slope. Positive numbers correspond to the data exhibiting too much excess movement
to be consistent with a given value of ϕ. In the first six columns, the only negative t-statistics for
the tighter bound are for RN beliefs over (θj, θj+1) = ([0%, 5%], [5%, 10%]) (i.e., j = 6) for ϕ > 10;
all other t-statistics, including the overall values, are positive (and mostly large in magnitude),
indicating no value of ϕ is consistent with the degree of observed excess RN movement. In the
remaining columns, the conservative bound t-statistics are somewhat smaller in magnitude but
also generally positive, other than for large ϕ and for returns in the middle of the distribution.

As admissible excess movement E[X∗i ] is monotonically increasing in the unobserved parame-
ter ϕ, our main empirical exercise is to estimate the lower bound for this SDF slope such that the
bound for E[X∗i ] is satisfied. This lower bound for ϕ is estimated as the minimal value for which
the average residual ei(ϕ) is zero, so that we are effectively finding the root of the function traced
out in Table 2. Given that the tighter bound is generally not satisfied even for ϕ = ∞ (and since it
holds only under restrictive assumptions), we now confine attention to the conservative bound
from Proposition 8(ii). The estimated ϕ is the minimal SDF slope for which the amount of observed
excess movement in RN beliefs can be rationalized; it is thus an index of the restrictiveness of
Assumptions 2–4 (or, given Proposition 7, Assumptions 2–3 and supermartingale ϕt). As above, we
estimate this SDF slope both for each individual state pair (ϕ = ϕj) and overall (ϕ = ϕ). To make
the estimates for ϕ more interpretable, we also use Proposition 6 to translate them into local relative
risk aversion values γ = (ϕ−1)

0.05 = 20(ϕ− 1) for a representative agent who consumes the market.

Table 3 presents our main results. Whenever there is no value of ϕ for which the bound for
E[X∗i ] is satisfied — i.e., from Proposition 8(iii), when we estimate E[X∗i ] > E[π∗0,i

2] — we write
ϕ = ∞. In brackets below each point estimate, we provide the lower bound of a one-sided
95% confidence interval (CI) for the parameter in question.36 Starting from the same bootstrap
resampling procedure as described just above, we obtain these CIs by inverting a one-sided test.
The CI lower bound ϕ̂LB is the minimal ϕ such that emain

i (ϕ) = 0 is not rejected at the 5% level using
the bootstrapped data (see Internet Appendix C.7 for further details).

Starting with the overall estimates in the first row, the point estimate for the conservative
lower bound for ϕ is slightly greater than 50, in line with the t-statistic of 0.07 in Table 2(b) for
ϕ = 50. This translates to an extraordinarily high estimated lower bound for γ of 1,075. Values of
ϕ below 9.8 (for γ, below 175) are rejected at the 5% level. This is our main empirical result: under
our maintained assumptions, extremely high risk aversion is needed to rationalize the large degree
of excess movement in RN beliefs observed in the data.

For the individual return-state pairs, all but two of the point estimates are infinite, indicating that
no amount of utility curvature (or SDF slope) can rationalize the observed excess movement such
that the bounds are satisfied. For many of the states (j = 2, 3, 4, 8), their confidence intervals also
have lower bounds of ∞ (or more precisely, are empty), indicating outright model rejection. Only
for RN beliefs over state pairs in the middle of the distribution — i.e., for j = 5 and 6, with return

36The set identification implied by our theoretical bound motivates our use of these one-sided intervals.
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Table 3: Main Estimation Results

Conservative
Lower Bound for:

SDF Slope ϕ RRA γ

Overall bound: 54.7 1,075
[95% CI Lower Bound] [9.8] [175]

By return state:
1 (-20%) ∞ ∞

[24.2] [464]

2 (-15%) ∞ ∞
[∞] [∞]

3 (-10%) ∞ ∞
[∞] [∞]

4 (-5%) ∞ ∞
[∞] [∞]

5 (0%) 19.4 368
[2.1] [22]

6 (+5%) 4.8 75
[2.2] [24]

7 (+10%) ∞ ∞
[4.6] [73]

8 (+15%) ∞ ∞
[∞] [∞]

9 (+20%) ∞ ∞
[1.0] [1]

Notes: The first column reports estimates for the minimal value of ϕ satisfying the conservative
bound for excess movement in Proposition 8(ii). These estimates are translated to relative risk
aversion γ using Proposition 6, as shown in the second column. Point estimates are obtained
by finding the value ϕ such that emain

i (ϕ) = 0 in (18). Confidence interval lower bounds
are obtained by inverting a test for ϕ using bootstrapped data; see Online Appendix C.7 for
details. All estimates use conditional means of noise-adjusted excess movement.

midpoints of 0% and 5%, respectively — are there finite point estimates and confidence intervals
that contain reasonable risk-aversion values of about 20. RN beliefs over these intermediate return
states are thus comparatively well-behaved; for all other states, there is so much mean-reverting
variation in RN beliefs that the bounds are only met for implausibly large values of ϕj, if at all.

As discussed in Section 5.2, the pricing kernel puzzle tends to emerge only in the range of
positive returns. One can thus focus attention on the interior states with negative returns, j = 2–5,
for estimates that are unlikely to be affected by the possibility that ϕ < 1. For all four of these states,
the null is fully rejected. It is thus unlikely that Assumption 3 is driving our results. Similarly, by
Proposition 9, our findings cannot in general be produced solely by miscalibrated priors. This
indicates that our rejection must be arising either from excessively volatile physical belief revisions,
or a strong violation of CTI arising from changes in the local price of risk.
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Table 4: Regressions for Monthly Average of RN Excess Movement

(1) (2) (3) (4) (5) (6)

Option Bid-Ask Spread 0.24 -0.03
[0.15] [0.11]

Option Volume 0.07 -0.05
[0.09] [0.10]

RN Belief Stream Length 0.28 0.16 0.18
[0.14] [0.05] [0.07]

VIX2 0.33 0.58 0.62
[0.16] [0.32] [0.36]

Variance Risk Premium 0.38
[0.24]

Volatility of Risk-Aversion Proxy 0.06
[0.10]

Repurchase-Adjusted
∣∣pdt − pd

∣∣ 0.37 0.17 0.18
[0.12] [0.05] [0.06]

12-Month S&P 500 Return 0.30 0.53 0.53
[0.16] [0.22] [0.21]

R2 0.08 0.08 0.28 0.14 0.37 0.37
Obs. 264 264 264 264 264 264

Notes: Heteroskedasticity- and autocorrelation-robust standard errors are in brackets, calculated
using the equal-weighted periodogram estimator with 0.4 Obs.2/3 = 16 degrees of freedom following
Lazarus et al. (2018) and Lazarus, Lewis, and Stock (2021). Dependent variable in all regressions is the
mean noise-adjusted X∗t,t+1,i,j, for all available expiration dates and interior state pairs, over trading
dates within a given month. All variables are normalized to have unit standard deviation, and all
regressions include a constant. See Internet Appendix C.8 for variable construction details.

6.5 Predictors of RN Excess Movement

Our results suggest there must either be significant mean reversion in the marginal investor’s
beliefs, or large variation in the local price of risk, in order to make sense of the observed excess
movement without resorting to implausibly large risk aversion. While we have provided some
theoretical results and simulations suggesting that it is difficult to rationalize the data from variation
in the price of risk alone, this is ultimately an empirical question that we consider here.

More generally, we ask what variables comove strongly with observed RN excess movement.
This exercise is meant to provide preliminary guidance on the ingredients a model would need in
order to get closer to explaining the data. Table 4 shows results from a set of time-series regressions
to this end. The dependent variable in all cases is the monthly average of noise-adjusted RN excess
movement X∗t,t+1,i,j, and all variables are normalized to have unit standard deviation. See Internet
Appendix C.8 for details on variable construction.

The first column shows that proxies for option illiquidity and trading activity — namely, volume-
weighted average monthly bid-ask spread in our options sample, and exponentially detrended
option trading volume — are insignificant as predictors of X∗, which provides further evidence
that option-market frictions are unlikely to be the main drivers of our results. Column (2) shows,
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however, that one economically meaningful factor specific to the option market does robustly predict
excess movement: the average length of RN belief streams (i.e., Ti for contracts i traded in the given
month). As in Section 6.3, excess volatility seems to be concentrated at longer horizons, suggesting
the possibility of overreaction to weak signals about events resolving relatively far in the future.

Column (3) considers volatility-related predictors. Excess movement has a significant positive
relationship with the (squared) VIX; a weak positive relationship with the variance risk premium,
calculated as VIX2 minus realized variance following Bollerslev, Tauchen, and Zhou (2009); and
essentially no relationship with the volatility of Bekaert, Engstrom, and Xu’s (2022) high-frequency
risk-aversion proxy.37 This suggests that X∗ comoves strongly with the quantity of market uncer-
tainty; slightly less strongly with the price of this uncertainty; and not at all with the volatility of
risk aversion, which can be thought of as a proxy for Var(ϕt). We thus find no evidence, at least
with this set of predictors, for meaningful comovement between variation in the price of risk and
our measured RN excess movement.

Column (4) considers proxies for (mis)valuation and return reversals, in the form of the absolute
deviation of the log repurchase-adjusted price-dividend ratio (from Nagel and Xu, 2022) and
the trailing 12-month S&P return. Both are significantly positively related to X∗. As noted by
Greenwood and Shleifer (2014), the trailing 12-month return predicts Gallup survey-based return
expectations well, suggesting a plausible role here for similar survey expectations to predict excess
movement. Column (5) considers all four predictors from (1)–(4) that are significant separately at
the 10% level and shows that they remain significant jointly, and explain 37% of the variation in X∗.
Column (6) adds back the illiquidity and volume predictors; they remain insignificant, while the
other predictors from (5) retain their significance.

Taken together, these results suggest again that RN excess movement is a real phenomenon:
it is not attributable to option-specific frictions, and it comoves strongly with variables that are
intuitively related to aggregate equity valuations and excess volatility in expectations. While we
find no evidence that variation in ϕt contributes substantially to X∗, it is of course possible that
alternative models for time variation in ϕt are capable of generating significant excess movement,
alongside alternative models of belief formation.

7. Conclusion

We derive new bounds on the admissible rational variation in risk-neutral beliefs as expressed in
asset prices. Unlike in much of the previous literature, these results do not require any restrictions
on the data-generating process, and they allow for meaningful time variation in discount rates.
Further, by using asset prices, we do not require direct measures of physical beliefs over future
outcomes, and our bounds exploit intertemporal consistency requirements of rational beliefs
without the need for the econometrician to know what agents’ beliefs “should” be under RE.

37Using daily data, they estimate time-varying relative risk aversion raBEX
t for a representative agent with habit-like

preferences and preference shocks. We then take the sum of squared daily changes in raBEX
t in a given month.
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When taken to the data using risk-neutral beliefs over the return on the S&P 500 index, we find
that these RN beliefs are so volatile that our bounds are routinely violated. This implies a violation
of our joint assumptions. We provide evidence suggesting that RE violations by the marginal
investor are likely to be at least partly responsible for this violation, though we remain open to
alternative forms of variation in the local price of risk playing a part. But our framework allows
us to rule out other explanations for the excess volatility we document, providing a meaningful
improvement in understanding the restrictions implied by the observed volatility in prices.

We believe that there are numerous feasible ways to make additional progress in identifying the
specific causes of our bound violations. Largely missing from our analysis is a positive explanation
for the underlying drivers of excess movement in beliefs. We begin to take up this question
in a follow-up paper (Augenblick, Lazarus, and Thaler, 2023), in which we show that a model
of overreaction to strong signals and underreaction to weak signals helps explain a range of
experimental and observational data (including our option-price data). But in the current paper’s
setting, conducting additional tests on the empirical correlates of excess movement, as well as
generalizing our analysis to alternative asset classes, may provide useful additional information.
Further, detailed data on changes in individual portfolios could allow for tests on the rationality of
individual beliefs, which would help distinguish between micro and macro explanations for the
observed excess movement in RN beliefs.

Appendix A. Proofs of Main Results

This appendix contains proofs for the main results in Sections 2–3. The remaining proofs can be
found in the Internet Appendix, along with additional technical materials and discussions.

A.1. Proofs for Section 2

See Internet Appendix B.1 for a rederivation of Lemma 1. Some preliminaries are useful before
proceeding to the main proofs. Start by defining the RN measure as

P∗(HT) ≡

P(HT)
π∗0
π0

if πT(HT) = 1

P(HT)
1−π∗0
1−π0

if πT(HT) = 0,
(A.1)

where P(HT) is the probability of observing history HT under DGP. As shown in Lemma A.3
below, (A.1) follows from the usual definition of the RN measure in a general asset-pricing setting.
It suffices to think of P∗ as representing the change of measure that adjusts the frequency of each
path of signal realizations such that a person with RN beliefs has RE.

LEMMA A.1. Define E∗[·] to be the expectation under P∗. Under Assumption 1 (RE):

(i) For any HT and θ, P∗(HT|θ) = P(HT|θ).

(ii) For any Ht, π∗t (Ht) = E∗[π∗t+1(Ht+1)|Ht].
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(iii) For any DGP, E∗[X∗] = 0.

Proof of Lemma A.1. For the physical measure,

P(HT) = P(θ = 1) ·P(HT|θ = 1) + P(θ = 0) ·P(HT|θ = 0)

= π0 ·P(HT|θ = 1) + (1− π0) ·P(HT|θ = 0), (A.2)

where the second line uses that π0 = E[θ] = P(θ = 1) by RE. For the RN measure, (A.1)–(A.2) give

P∗(HT) =
π∗0
π0
· π0 ·P(HT|θ = 1) +

1− π∗0
1− π0

· (1− π0) ·P(HT|θ = 0)

= π∗0 ·P(HT|θ = 1) + (1− π∗0) ·P(HT|θ = 0). (A.3)

For any HT such that πT = 1, (A.1) gives that P∗(HT) =
π∗0
π0

P(HT), so P∗(θ = 1) = π∗0
π0

P(θ = 1).
Thus from the definition of conditional probability, P∗(HT|θ = 1) = P(HT|θ = 1). Similarly,
P∗(HT|θ = 0) = P(HT|θ = 0), proving part (i).

Given this, (A.3) becomes P∗(HT) = π∗0 ·P∗(HT|θ = 1) + (1− π∗0) ·P∗(HT|θ = 0). Summing
over all HT for which θ = 1 gives π∗0 = P∗(θ = 1), so P∗ is a valid distribution for which the law
of iterated expectations holds. Part (ii) then follows from P∗(θ = 1) = E∗[θ] = E∗[πT] = E∗[π∗T].

Finally, given (ii), the same proof for Lemma 1 (see Appendix B.1) gives E∗[X∗] = 0, as expected
RN movement under the RN measure must equal RN initial uncertainty. This proves part (iii).

Part (i) says that compared to the physical measure, the RN measure places higher likelihood
of all signal histories resolving in state 1, but does so proportionally, so that likelihoods of signal
histories conditional on state 1 do not change. This implies that conditional expectations under the
two respective measures are equal. Therefore, E∗[X∗|θ] = E[X∗|θ] (see Lemma A.4 below for the
analogue of this result in the general asset-pricing setting). This implies

E∗[X∗] = π∗0 ·E∗[X∗|θ = 1] + (1− π∗0) ·E∗[X∗|θ = 0]

= π∗0 ·E[X∗|θ = 1] + (1− π∗0) ·E[X∗|θ = 0] = 0, (A.4)

where the last equality applies part (iii) of the lemma. For E[X∗], it is useful to similarly write

E[X∗] = π0 ·E[X∗|θ = 1] + (1− π0) ·E[X∗|θ = 0]. (A.5)

Now, recall that△ ≡ E[X∗|θ = 0]−E[X∗|θ = 1]. It will be useful to bound△:

LEMMA A.2. For any DGP,△ ⩽ π∗0 .
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Proof of Lemma A.2. First write:

△ ≡ E∗[X∗|θ = 0]−E∗[X∗|θ = 1]

= E∗[m∗|θ = 0]− u∗0 − (E∗[m∗|θ = 0]− u∗0) = E∗[m∗|θ = 0]−E∗[m∗|θ = 1]. (A.6)

Further, using (A.4),

0 = π∗0 ·E[X∗|θ = 1] + (1− π∗0) ·E[X∗|θ = 0]

= π∗0 · (E[m∗|θ = 1]− u∗0) + (1− π∗0) · (E[m∗|θ = 0]− u∗0),

so from the definition of u∗0 ,

π∗0 ·E[m∗|θ = 1] + (1− π∗0) ·E[m∗|θ = 0] = π∗0(1− π∗0). (A.7)

Solving for E[m∗|θ = 0] gives E[m∗|θ = 0] = π∗0 −
π∗0

1−π∗0
·E[m∗|θ = 1]. Using this in (A.6),

△ = π∗0 −
π∗0

1− π∗0
·E[m∗|θ = 1]−E∗[m∗|θ = 1] = π∗0 −

1
1− π∗0

·E[m∗|θ = 1]. (A.8)

Given that 1
1−π∗0

⩾ 0 and E[m∗|θ = 1] ⩾ 0,△ is bounded above by π∗0 .

Proof of Proposition 1. Start from equation (A.5) and apply equation (A.4):

E[X∗] = π0 ·E[X∗|θ = 1] + (1− π0) ·E[X∗|θ = 0]− 0

= π0 ·E[X∗|θ = 1] + (1− π0) ·E[X∗|θ = 0]− (π∗0 ·E[X∗|θ = 1] + (1− π∗0) ·E[X∗|θ = 0])

= (π∗0 − π0)(E[X∗|θ = 0]−E[X∗|θ = 1]) = (π∗0 − π0)△, (A.9)

as stated. Then the second equality holds using equation (8) and the definition of△.

Proof of Proposition 2. From Lemma A.2 above, we have△ ⩽ π∗0 . Further, equation (8) implies

π∗0 − π0 = π∗0 −
π∗0

π∗0 + ϕ(1− π∗0)

= π∗0

(
1− 1

π∗0 + ϕ(1− π∗0)

)
⩾ 0, (A.10)

where the last inequality uses π∗0 + ϕ(1− π∗0) ⩾ 0 since ϕ ⩾ 1. Using these two inequalities in the
expression for E[X∗] in (A.9),

E[X∗] = (π∗0 − π0)△ ⩽ (π∗0 − π0)π
∗
0 . (A.11)

Plugging in the expression for π∗0 − π0 in (A.10) then gives equation (10).

Proof of Corollary 1. This is an immediate implication of (A.11) and π0 ⩾ 0.
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Proof of Corollary 2. As in (A.10), we have π∗0 − π0 ⩾ 0. Using this in the equality in (A.11)
alongside the assumption that△ = E∗[m∗|θ = 0]−E∗[m∗|θ = 1] ⩽ 0 gives E[X∗] ⩽ 0.

Proof of Proposition 3. Consider a given ϕ, RN prior π∗0 , and signal DGPs DGP(st|θ = 0, Ht−1)

and DGP(st|θ = 1, Ht−1) that lead to some E[X∗|θ = 0], E[X∗|θ = 1], and △. Now consider the
“reversed” DGP D̂GP in which we modify the DGP by relabeling state 1 as state 0 and state 0
as state 1. That is, D̂GP(st|θ = 0, Ht−1) ≡ DGP(st|θ = 1, Ht−1) and D̂GP(st|θ = 1, Ht−1) ≡
DGP(st|θ = 0, Ht−1). Similarly, we consider the “reversed” RN prior π̂∗0 = 1− π∗0 implied by the
physical prior π̂0 = 1−π∗t

ϕ+(1−ϕ)(1−π∗t )
.

With this relabeling, if the RN belief in the original DGP given history Ht is π∗t (Ht), then
the RN belief in the reversed D̂GP with RN prior 1− π∗0 must be π̂∗t (Ht) = 1− π∗t (Ht). Thus
E∗[X̂∗|θ = 0] = E∗[X∗|θ = 1] and E∗[X̂∗|θ = 1] = E∗[X∗|θ = 0]. And since E∗[X∗|θ] = E[X∗|θ]
by Lemma A.1(i), E[X̂∗|θ = 0] = E[X∗|θ = 1] and E[X̂∗|θ = 1] = E[X∗|θ = 0]. Thus for D̂GP,
△̂ ≡ E[X̂∗|θ = 0]−E[X̂∗|θ = 1] = −△.

Proof of Proposition 4. Consider a sequence of binary resolving DGPs indexed by T. There are
two possible signals in each period, l and h, and assume that for any history,

DGP(st = h|θ = 1) = 1, (A.12)

DGP(st = h|θ = 0) =
π∗t−1(1− π∗t−1 − ϵ)

(1− π∗t−1)(π
∗
t−1 + ϵ)

, with ϵ ≡ 1− π∗0
T

. (A.13)

Since DGP(st = l|θ = 1) = 0 from (A.12), beliefs (both physical and RN) update to 0 given any l
signal. Meanwhile, after seeing h (and assuming no l through t− 1), Bayes’ rule gives that physical
beliefs update to

πt({s1 = h, . . . , st = h}) = πt−1

πt−1 + (1− πt−1)DGP(st = h|θ = 0)
.

Applying the transformation (8) to the πt−1 values on the right side of this equation,

πt({s1 = h, . . . , st = h}) =
π∗t−1

π∗t−1 + (1− π∗t−1)ϕDGP(st = h|θ = 0)
.

Now applying the transformation (5), we obtain that π∗t given an only-h signal history (suppressing
the dependence on this history for simplicity) is, after additional algebra,

π∗t =
π∗t−1

π∗t−1 + (1− π∗t−1)DGP(st = h|θ = 0)
.

Now using (A.13), we obtain after further algebra that π∗t − π∗t−1 = ϵ. Given the definition of ϵ,
this DGP is resolving for any T: given any l signal at any t, beliefs resolve to 0, while given only h
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signals, beliefs increase slowly (π∗t = π∗0 + tϵ) and resolve to 1 at period T. We thus have

E[m∗|θ = 1] = Tϵ2 = T
(

1− π∗0
T

)2

=
(1− π∗0)

2

T
T→∞−−−→ 0.

Thus for such a sequence, using equation (A.8),

△ = π∗0 −
1

1− π∗0
·E[m∗|θ = 1] T→∞−−−→ π∗0 .

Using this in equation (A.9) gives E[X∗]→ (π∗0 −π0)π∗0 as T → ∞, as stated. And as further stated,
the sequence of DGPs is constructed such that any downward movement is resolving and any
upward movement is small (π∗t − π∗t−1 = ϵ→ 0). We have thus proven the first two statements.

For the final statement, given ϕ > 1 and 0 < π∗0 < 1, the inequality in (A.10) is strict, so that
π∗0 − π0 > 0. Further, the only way to obtain m∗ = 0 for finite T is if π∗0 = π∗1 = . . . = π∗T, which
is ruled out by 0 < π∗0 < 1 since π∗T = 0 or 1 with probability 1, so E[m∗|θ = 1] > 0. Thus in
(A.8), we have the strict inequality △ < π∗0 for fixed T < ∞. Combining these in (A.9) gives
E[X∗] < (π∗0 − π0)π∗0 for fixed T, as stated.

A.2. Proofs for Section 3

Again see Internet Appendix B.1 for a derivation of equation (13). A pair of preliminary lemmas
will also be useful in proving this section’s main results. As usual, assume throughout that
Assumptions 2–4 hold.

LEMMA A.3. For some return-state pair (θj, θj+1), with P̃ ≡ P(· | Rm
T ∈ {θj, θj+1}), define a new

pseudo-risk-neutral measure P̃⋄ by

dP̃⋄

dP̃

∣∣∣∣∣
Ht

=
π̃∗t,j
π̃t,j

1{Rm
T = θj}+

1− π̃∗t,j
1− π̃t,j

1{Rm
T = θj+1}. (A.14)

Denote the conditional expectation under P̃⋄ by Ẽ⋄t [ · ]. If conditional transition independence holds for the
return-state pair (θj, θj+1), and Pt(Rm

T ∈ {θj, θj+1}) > 0, we have that P̃⋄ serves as a martingale measure
for the risk-neutral belief in the sense that

π̃∗t,j = Ẽ⋄t [π̃
∗
t+1,j]. (A.15)

We conclude from Lemma 1 that

Ẽ⋄0 [X
∗
j ] = 0. (A.16)
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Proof of Lemma A.3. Following the discussion after equation (14), we have that

π̃∗t,j
π̃t,j

=
ϕj

1 + π̃t,j(ϕj − 1)
, (A.17)

1− π̃∗t,j
1− π̃t,j

=
1

1 + π̃t,j(ϕj − 1)
. (A.18)

Note therefore that P̃⋄ is absolutely continuous with respect to P̃.

Recall that Ht = σ(sτ, 0 ⩽ τ ⩽ t), where σ(sτ, 0 ⩽ τ ⩽ t) is the σ-algebra generated by {st}, with
signals st ∈ S . Denote NS ≡ |S|, so st ∈ {s1, s2, . . . , sNS}, and further denote pt,k ≡ P̃t(st+1 = θk),
ϱt,k ≡ P̃t(Rm

T = θj | st+1 = sk), and ϱ∗t,k ≡ P∗t (Rm
T = θj | st+1 = sk, Rm

T ∈ {θj, θj+1}), so that
π̃t+1,j = ϱt,k if st+1 = sk, and similarly π̃∗t+1,j = ϱ∗t,k if st+1 = sk. Combining (A.14), (A.17), (A.18),
and these definitions:

Ẽ⋄t [π̃
∗
t+1,j] =

π̃∗t,j
π̃t,j

NS

∑
k=1

pt,k ϱ∗t,k Ẽt
[
1{Rm

T = θj} | st+1 = sk
]

+
1− π̃∗t,j
1− π̃t,j

NS

∑
k=1

pt,k ϱ∗t,k Ẽt
[
1{Rm

T = θj+1} | st+1 = sk
]

=
ϕj

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k
ϕjϱt,k

1 + ϱt,k(ϕj − 1)
ϱt,k

+
1

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k
ϕjϱt,k

1 + ϱt,k(ϕj − 1)
(1− ϱt,k)

=
ϕj

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k
ϱt,k
(
1 + ϱt,k(ϕj − 1)

)
1 + ϱt,k(ϕj − 1)

=
ϕj

1 + π̃t,j(ϕj − 1)

NS

∑
k=1

pt,k ϱt,k =
ϕjπ̃t,j

1 + π̃t,j(ϕj − 1)
= π̃∗t,j,

where the second-to-last equality uses that π̃t,j = Ẽt[π̃t+1,j], as can be seen from the law of iterated
expectations (LIE) given that π̃t,j = Et[1{Rm

T = θj} | Rm
T ∈ {θj, θj+1}] = Ẽt[1{Rm

T = θj}] =

Ẽt[Ẽt+1[1{Rm
T = θj}]] = Ẽt[π̃t+1,j], and the last equality above again uses (A.17). Then Ẽ⋄0 [X

∗
j ] = 0

follows immediately from the proof of Lemma 1.

LEMMA A.4. For any return-state pair (θj, θj+1) meeting CTI, for j′ = j, j + 1, RN movement must satisfy

Ẽ⋄0 [m
∗
j | Rm

T = θj′ ] = Ẽ0[m
∗
j | Rm

T = θj′ ]. (A.19)

Proof of Lemma A.4. The stream of RN beliefs is π∗j , and denote some arbitrary realization for that
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path by bj. For any bj such that π̃∗T,j = 1 (i.e., Rm
T = θj), the definition of P̃⋄ in (A.14) gives that

P̃⋄0(π
∗
j = bj) =

π̃∗0,j

π̃0,j
P̃(π∗j = bj), (A.20)

and further P̃⋄0(Rm
T = θj) = (π̃∗0,j/π̃0,j) P̃0(Rm

T = θj) trivially. Combining these two equations
yields P̃⋄0(π

∗
j = bj | Rm

T = θj) = P̃0(π∗j = bj | Rm
T = θj). (Intuitively, all paths ending in π̃∗T,j = 1

receive the same change of measure under P̃⋄ relative to P̃, so probabilities conditional on Rm
T = θj

are preserved, and similarly for Rm
T = θj+1, as was the case for the simpler version in (A.1).) Thus

Ẽ⋄0 [m
∗
j | Rm

T = θj] = ∑
bj : π̃∗T,j=1

m∗j (bj) P̃⋄0

(
π∗j = bj

∣∣∣ Rm
T = θj

)

= ∑
bj : π̃∗T,j=1

m∗j (bj) P̃0

(
π∗j = bj

∣∣∣ Rm
T = θj

)
= Ẽ0[m

∗
j | Rm

T = θj].

The same applies for Rm
T = θj+1: for any bj such that π̃∗T,j = 0, (A.20) now becomes P̃⋄0(π

∗
j = bj) =

(1− π̃∗0,j)/(1− π̃0,j) P̃(π∗j = bj). Further, P̃⋄0(Rm
T = θj+1) = (1− π̃∗0,j)/(1− π̃0,j) P̃0(Rm

T = θj+1),
so again P̃⋄0(π

∗
j = bj | Rm

T = θj+1) = P̃0(π∗j = bj | Rm
T = θj+1). Thus Ẽ⋄0 [m

∗
j | Rm

T = θj+1] =

Ẽ0[m∗j | Rm
T = θj+1].

Note that the definition in (A.14) aligns with the definition of the RN measure in (A.1), so the
two lemmas above prove the statements in the text connecting the RN measure in the simple case
in Section 2 to the general case in Section 3 (see after (A.1) and Lemma A.1(i)). Indeed, (A.15) is
the precise analogue to Lemma A.1(i); (A.16) is the analogue to Lemma A.1(iii); and (A.19) gives
immediately that Ẽ⋄0 [X

∗
j | Rm

T ] = Ẽ0[X∗j | Rm
T ], which was the main implication of Lemma A.1(i)

used in deriving the results in Section 2. We will thus be able to apply those results in this case
using the above two lemmas, as follows.

Proof of Proposition 5. No arbitrage gives the existence of a positive SDF for which (14) and
Assumption 3 are valid. We have

π̃t,j = Et[π̃t+1,j], π̃∗t,j = Ẽ⋄t [π̃
∗
t+1,j],

Ẽ⋄0 [X
∗
j ] = 0, Ẽ⋄0 [X

∗
j | Rm

T ] = Ẽ0[X∗j | Rm
T ],

where the first equality uses LIE and the rest use Lemmas A.3–A.4. The last equation implies, using
the argument applied in Lemma A.2, that△j ⩽ π̃∗0,j. Further, (5)–(8) hold for π̃t,j, π̃∗t,j, ϕj. We have
thus obtained all the conditions used for Lemma 1, Propositions 1–4, and Corollaries 1–2, and thus
those results continue to hold, with π̃∗t,j replacing π∗t , π̃t,j replacing πt, X∗j replacing X∗, ϕj replacing
ϕ, Ẽ0[·] replacing E[·], and△j ≡ Ẽ0[X∗j | Rm

T = θj+1]− Ẽ0[X∗j | Rm
T = θj] replacing△, as stated.

Proof of Proposition 6. The result follows immediately from equation (7), with Vm
j and Vm

j+1 re-
placing CT,1 and CT,0, respectively.
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BOROVIČKA, J., L. P. HANSEN, AND J. A. SCHEINKMAN (2016): “Misspecified Recovery,” Journal
of Finance, 71, 2493–2544.

BREEDEN, D. T. AND R. H. LITZENBERGER (1978): “Prices of State-Contingent Claims Implicit in
Option Prices,” Journal of Business, 51, 621–651.

CAMPBELL, J. Y. AND J. H. COCHRANE (1999): “By Force of Habit: A Consumption-Based Expla-
nation of Aggregate Stock Market Behavior,” Journal of Political Economy, 107, 205–251.

CHABI-YO, F. AND J. LOUDIS (2020): “The Conditional Expected Market Return,” Journal of Financial
Economics, 137, 752–786.

47



CHRISTOFFERSEN, P., S. HESTON, AND K. JACOBS (2013): “Capturing Option Anomalies with a
Variance-Dependent Pricing Kernel,” Review of Financial Studies, 26, 1962–2006.

COCHRANE, J. H. (2011): “Presidential Address: Discount Rates,” Journal of Finance, 66, 1047–1108.

CONSTANTINIDES, G. M., J. C. JACKWERTH, AND A. SAVOV (2013): “The Puzzle of Index Option
Returns,” Review of Asset Pricing Studies, 3, 229–257.

DE LA O, R. AND S. MYERS (2021): “Subjective Cash Flow and Discount Rate Expectations,” Journal
of Finance, 76, 1339–1387.

DEW-BECKER, I. AND S. GIGLIO (2016): “Asset Pricing in the Frequency Domain: Theory and
Empirics,” Review of Financial Studies, 29, 2029–2068.

DRIESSEN, J., J. KOËTER, AND O. WILMS (2022): “Horizon Effects in the Pricing Kernel: How
Investors Price Short-Term Versus Long-Term Risks,” Working Paper.

EPSTEIN, L. G. AND S. E. ZIN (1989): “Substitution, Risk Aversion, and the Temporal Behavior of
Consumption and Asset Returns: A Theoretical Framework,” Econometrica, 57, 937–969.

——— (1991): “Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset
Returns: An Empirical Analysis,” Journal of Political Economy, 99, 263–286.

FAMA, E. F. (1991): “Efficient Capital Markets: II,” Journal of Finance, 46, 1575–1617.

GABAIX, X. (2012): “Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in
Macro-Finance,” Quarterly Journal of Economics, 127, 645–700.

GANDHI, M., N. GORMSEN, AND E. LAZARUS (2023): “Excess Persistence in Return Expectations,”
Working Paper.

GEMAN, H., N. EL KAROUI, AND J.-C. ROCHET (1995): “Changes of Numéraire, Changes of
Probability Measure and Option Pricing,” Journal of Applied Probability, 32, 443–458.

GIGLIO, S. AND B. KELLY (2018): “Excess Volatility: Beyond Discount Rates,” Quarterly Journal of
Economics, 133, 71–127.

GREENWOOD, R. AND A. SHLEIFER (2014): “Expectations of Returns and Expected Returns,”
Review of Financial Studies, 27, 714–746.

HADDAD, V., A. MOREIRA, AND T. MUIR (2023): “Whatever It Takes? The Impact of Conditional
Policy Promises,” Working Paper.

HANSEN, L. P. AND R. JAGANNATHAN (1991): “Implications of Security Market Data for Models
of Dynamic Economies,” Journal of Political Economy, 99, 225–262.

JACKWERTH, J. C. (2000): “Recovering Risk Aversion from Option Prices and Realized Returns,”
Review of Financial Studies, 13, 433–451.

LAZARUS, E. (2022): “Horizon-Dependent Risk Pricing: Evidence from Short-Dated Options,”
Working Paper.

LAZARUS, E., D. J. LEWIS, AND J. H. STOCK (2021): “The Size-Power Tradeoff in HAR Inference,”
Econometrica, 89, 2497–2516.

LAZARUS, E., D. J. LEWIS, J. H. STOCK, AND M. W. WATSON (2018): “HAR Inference: Recommen-
dations for Practice,” Journal of Business & Economic Statistics, 36, 541–559.

LEROY, S. F. AND R. D. PORTER (1981): “The Present-Value Relation: Tests Based on Implied
Variance Bounds,” Econometrica, 49, 555–574.

LI, Z. M. AND O. B. LINTON (2022): “A ReMeDI for Microstructure Noise,” Econometrica, 90,
367–389.

48



MALZ, A. M. (2014): “A Simple and Reliable Way to Compute Option-Based Risk-Neutral Distri-
butions,” Federal Reserve Bank of New York Staff Report No. 677.

MARSH, T. A. AND R. C. MERTON (1986): “Dividend Variability and Variance Bounds Tests for the
Rationality of Stock Market Prices,” American Economic Review, 76, 483–498.

MARTIN, I. (2013): “Consumption-Based Asset Pricing with Higher Cumulants,” Review of Economic
Studies, 80, 745–773.

——— (2017): “What Is the Expected Return on the Market?” Quarterly Journal of Economics, 132,
367–433.

MILGROM, P. AND N. STOKEY (1982): “Information, Trade, and Common Knowledge,” Journal of
Economic Theory, 26, 17–27.

NAGEL, S. AND Z. XU (2022): “Asset Pricing with Fading Memory,” Review of Financial Studies, 35,
2190–2245.

POLKOVNICHENKO, V. AND F. ZHAO (2013): “Probability Weighting Functions Implied in Options
Prices,” Journal of Financial Economics, 107, 580–609.

RADNER, R. (1979): “Rational Expectations Equilibrium: Generic Existence and the Information
Revealed by Prices,” Econometrica, 47, 655.

ROSS, S. (2015): “The Recovery Theorem,” Journal of Finance, 70, 615–648.

SCHREINDORFER, D. AND T. SICHERT (2022): “Volatility and the Pricing Kernel,” Working Paper.

SHILLER, R. J. (1981): “Do Stock Prices Move Too Much to be Justified by Subsequent Changes in
Dividends?” American Economic Review, 71, 421–436.

STEIN, J. (1989): “Overreactions in the Options Market,” Journal of Finance, 44, 1011–1023.

WEST, K. D. (1988): “Dividend Innovations and Stock Price Volatility,” Econometrica, 56, 37–61.

ZHANG, L., P. A. MYKLAND, AND Y. AÏT-SAHALIA (2005): “A Tale of Two Time Scales,” Journal of
the American Statistical Association, 100, 1394–1411.

49



Internet Appendix:

A New Test of Excess Movement in Asset Prices*

Ned Augenblick and Eben Lazarus

JULY 2023

Contents

B. Additional Derivations and Proofs of Theoretical Results . . . . . . . . . . . . . . . . . . 1
B.1 Additional Proofs for Sections 2–3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
B.2 Proofs for Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
B.3 Proofs for Section 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C. Additional Technical Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
C.1 Simulations for the Relationship of RN Prior and DGP with △ . . . . . . . . . . . . . 10
C.2 Risk-Neutral Beliefs and Time-Varying Discount Rates . . . . . . . . . . . . . . . . . 12
C.3 Simulations with Time-Varying ϕt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
C.4 Solution Method and Simulations for Habit Formation Model . . . . . . . . . . . . . 13
C.5 Data Cleaning and Measurement of Risk-Neutral Distribution . . . . . . . . . . . . . 15
C.6 Noise Estimation and Matching to X∗ Observations . . . . . . . . . . . . . . . . . . . 17
C.7 Details of Bootstrap Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.8 Variable Construction for RN Excess Movement Regressions . . . . . . . . . . . . . . 19

Appendix References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

*Contact: ned@haas.berkeley.edu and eblazarus@gmail.com.

mailto:ned@haas.berkeley.edu
mailto:eblazarus@gmail.com


Appendix B. Additional Derivations and Proofs of Theoretical Results

The proofs for Propositions 1–6 and Corollaries 1–2 are provided in the main paper in Appendix A.
We provide proofs for the remaining theoretical statements here.

B.1 Additional Proofs for Sections 2–3

Proof of Lemma 1. Following Augenblick and Rabin (2021), it is useful to define period-by-period
movement, uncertainty reduction, and excess movement, respectively, as

mt,t+1(π) ≡ (πt+1 − πt)
2, rt,t+1(π) ≡ πt(1 − πt)− πt+1(1 − πt+1),

Xt,t+1(π) ≡ mt,t+1(π)− rt,t+1(π).

Given the definitions of movement, initial uncertainty, and excess movement in the text, note that

m(π) = ∑ T−1
t=0 mt,t+1(π), u0(π) = ∑ T−1

t=0 rt,t+1(π), X(π) = ∑ T−1
t=0 xt,t+1(π),

where the second equality relies on the fact that πT ∈ {0, 1} and therefore πT(1 − πT) = 0 for any
belief stream π. We have that

E[Xt,t+1|Ht] = E[mt,t+1 − rt,t+1|Ht] = E[(πt+1 − πt)
2 − ((πt(1 − πt)− (πt+1(1 − πt+1))|Ht]

= E[(2πt − 1)(πt − πt+1)|Ht] = (2πt(Ht)− 1)(πt(Ht)− E[πt+1|Ht])

= (2πt(Ht)− 1) · 0 = 0,

where the last line uses Assumption 1. Summing and applying the law of iterated expectations (LIE),

E[X] =
T−1

∑
t=0

E[Xt,t+1] =
T−1

∑
t=0

E[E[Xt,t+1|Ht]] = 0.

Proof of Equation (13). This follows from a discrete-state application of Breeden and Litzenberger
(1978), or see Brown and Ross (1991) for a general version. To review why the stated equation
holds, the risk-neutral pricing equation for options can be written

qm
t,K =

1

R f
t,T

E∗
t [max{Vm

T − K, 0}] = 1

R f
t,T

[
∑

j : Kj⩾K
(Kj − K)P∗

t (V
m
T = Kj)︸ ︷︷ ︸

P∗
t (Rm

T =θj)

]
.

This implies that for two adjacent return states θj−1 and θj,

qm
t,Kj

− qm
t,Kj−1

=
1

R f
t,T

[
∑
j′⩾j

(Kj′ − Kj)P∗
t (V

m
T = Kj′)− ∑

j′⩾j−1
(Kj′ − Kj−1)P∗

t (V
m
T = Kj′)

]

1



=
1

R f
t,T

[
∑
j′⩾j

(Kj−1 − Kj)P∗
t (V

m
T = Kj′)

]
=

1

R f
t,T

(Kj−1 − Kj)
[
1 − P∗

t (V
m
T < Kj)

]
.

Rearranging,

R f
t,T

qm
t,Kj

− qm
t,Kj−1

Kj − Kj−1
= P∗

t (V
m
T < Kj)− 1.

Repeating this for θj and θj+1, we obtain R f
t,T

qm
t,Kj+1

−qm
t,Kj

Kj+1−Kj
= P∗

t (V
m
T < Kj+1) − 1. Subtracting the

preceding equation from this equation and using P∗
t (Rm

T = θj) = P∗
t (V

m
T = Kj) yields (13).

B.2 Proofs for Section 4

Proof of Statements 3–6 in Section 4.1. As in footnote 16 in the main text, statements 1–2 are im-
mediate given the definition of CTI. We take the remaining statements in order:

3. The Gabaix (2012) economy features a representative agent with CRRA consumption utility,
and log consumption and log dividends follow ct+1 = ct + gc + εc

t+1 + log(Bt+1)Dt+1 and
dt+1 = dt + gd + εd

t+1 + log(Ft+1)Dt+1, respectively, where Dt+1 = 1{disastert+1}; disasters in
t+ 1 occur with probability pt; Bt+1 and Ft+1 are possibly correlated variables with support [0, 1];
and (εc

t+1, εd
t+1)

′ is i.i.d. bivariate normal (or a discretized approximation thereof) with mean zero
and is independent of all disaster-related variables. Resilience is Ht = ptEt[B

−γ
t+1Ft+1 − 1 |Dt+1],

and write Ht = H∗ + Ĥt. The dynamics of pt are governed by Ĥt+1 = 1+H∗
1+Ht

e−ϕHĤt + εHt+1, where
εHt+1 is mean-zero and independent of all other shocks. Gabaix (2012, Theorem 1) shows that

Vm
t = Dt

1−e−βm

(
1 + e−βm−h∗ Ĥt

1−e−βm−ϕH

)
, where h∗ ≡ log(1+H∗) and βm ≡ − log β+ γgc − gd − h∗. Thus

for any θ and H0, there exists some value dθ and function f (dθ , ĤT), which is strictly increasing
in dθ and strictly decreasing in ĤT, such that, by Bayes’ rule,

P0

((
T

∑
t=1

Dt

)
> 0

∣∣∣∣∣ Rm
T ⩾ θ

)
=

P0

(
Rm

T ⩾ θ | ∑T
t=1 Dt > 0

)
P0

(
∑T

t=1 Dt > 0
)

P0(Rm
T ⩾ θ)

=
P0

(
DT ⩾ f (dθ , ĤT)

∣∣∣ ∑T
t=1 Dt > 0

)
P0

(
∑T

t=1 Dt > 0
)

P0

(
DT ⩾ f (dθ , ĤT)

) .

Note now that (i) the innovation to Ĥt+1 is independent of Dt+1; (ii) Ft+1 (the exponential
of the disaster shock to Dt) has support [0, 1]; and (iii) Pt(εd

t+1 ⩾ ϵ) = o(e−ϵ2
) as ϵ → ∞.1

Thus P0(DT ⩾ f (dθ , ĤT) | ∑T
t=1 Dt > 0) = o(P0(DT ⩾ f (dθ , ĤT))) as dθ → ∞, from which

1To see why point (iii) holds, denote σd ≡ Var(εd
t ), and then note that

∫ ∞
ϵ exp(−x2/(2σ2

d ))/
√

2πσ2
d dx <∫ ∞

ϵ (x/ϵ) exp(−x2/(2σ2
d ))/

√
2πσ2

d dx = σd exp(−ϵ2/(2σ2
d ))/(

√
2πϵ). A similar calculation can be used to derive

a lower bound for the upper tail of the normal CDF. Then applying the previous upper-bound calculation to
P0(DT ⩾ f (dθ , ĤT) | ∑T

t=1 Dt > 0) and the lower-bound calculation to P0(DT ⩾ f (dθ , ĤT)), it follows that
P0(DT ⩾ f (dθ , ĤT) | ∑T

t=1 Dt > 0)/P0(DT ⩾ f (dθ , ĤT)) = o(1), as stated, since the distribution of the value in
the denominator is shifted to the right relative to the distribution of the value in the numerator given (i)–(ii).
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the statement in footnote 18 follows. Denote the value δ in that statement by δ = δ0. It also
follows immediately that for any t > 0 (with t < T), for any δt > 0, there exists an θ such that
Pt(∑T

τ=1 Dt > 0 | Rm
T ⩾ θ) < δt asymptotically P0-a.s. as δ0 → 0. Given some δt > 0, consider

θj, θj+1 large enough that Pt(∑T
τ=1 Dt > 0 | Rm

T ∈ {θj, θj+1}) < δt. We then have from (14) that

ϕt,j =

Et[Mt,T | Rm
T = θj, ∑T

τ=1 Dτ = 0]Pt(∑T
τ=1 Dτ = 0 | Rm

T = θj)

+ Et[Mt,T | Rm
T = θj, ∑T

τ=1 Dτ > 0]Pt(∑T
τ=1 Dτ > 0 | Rm

T = θj)

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ = 0]Pt(∑T
τ=1 Dτ = 0 | Rm

T = θj+1)

+ Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ > 0]Pt(∑T
τ=1 Dτ > 0 | Rm

T = θj+1)

=
Et[Mt,T | Rm

T = θj, ∑T
τ=1 Dτ = 0](1 −O(δt)) +O(δt)

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ = 0](1 −O(δt)) +O(δt)

=
Et[Mt,T | Rm

T = θj, ∑T
τ=1 Dτ = 0]

Et[Mt,T | Rm
T = θj+1, ∑T

τ=1 Dτ = 0]
+O(δt).

The fraction in the last expression is constant given that Mt,T = βT−te−γgc(T−t) conditional on

∑T
t=1 Dt = 0, using eq. (2) of Gabaix (2012). Thus denoting ϕj ≡

E0[Mt,T | Rm
T =θj,∑T

t=1 Dτ=0]
E0[Mt,T | Rm

T =θj+1,∑T
t=1 Dτ=0]

, we

have ϕt,j = ϕj +O(δt). Since we can take δt → 0 asymptotically P0-a.s. as δ0 → 0, we have
ϕt,j = ϕj + op(1) for any sequence of values δ = δ0 → 0, as stated.

4. The Epstein–Zin (1989) preference recursion is Ut =
[
(1 − β)C1−ψ−1

t + β(Et[U
1−γ
t+1 ])

1−ψ−1
1−γ

] 1
1−ψ−1 ,

and it can be shown (e.g., Campbell, 2018, eq. (6.42)) that the SDF evolves in this case according
to Mt,t+1 = β(Ct+1/Ct)−ϑ/ψ(1/Rm

t,t+1)
1−ϑ, where ϑ ≡ (1 − γ)/(1 − ψ−1). In case (i) of the

statement, γ = 1 and Mt,t+1 = β/Rm
t,t+1, so MT depends only on the index return. Thus the

numerator and denominator in equation (14) are constant, and CTI holds immediately. For
case (ii), write ∆ct+1 = µc + ρ∆ct + σηt+1, with ηt+1

i.i.d.∼ N (0, 1). Given ψ = 1, it follows from
Hansen, Heaton, and Li (2008, eq. (3)) that the log SDF follows mt,t+1 = −∆ct+1 +

1−γ
1−βρ σηt+1

(up to a constant, as we ignore throughout). Further, the consumption-wealth ratio Ct/Vm
t

is a constant given ψ = 1, so rm
t,t+1 = ∆ct+1. Using this in the log SDF and summing from t

to T, mt,T = −rm
t,T + 1−γ

1−βρ σ ∑T
τ=t+1 ητ. The first term is known conditional on Rm

t . In addition,
recursive substitution and summation for rm

t,t+1 gives that rm
t,T = σ

1−ρ ∑T
τ=t+1(1 − ρT−τ+1)ητ.

Thus for the second term in mt,T, conditioning on Rm
T = θj is equivalent to conditioning on

∑T
τ=t+1(1 − ρT−τ+1)ητ = const + log θj ≡ k j. Denoting wt ≡ (1 − ρT−t+1), it can then be

shown (e.g., Vrins, 2018, eq. (2)–(3)) that (∑T
τ=t+1 ητ | ∑T

τ=t+1 wτητ = k j) ∼ N (µt,j, ςt), where

µt,j = k j
∑T

τ=t+1 wτ

∑T
τ=t+1 w2

τ
and where ςt does not depend on k j. Therefore,

log ϕt,j = log Et

[
T

∑
τ=t+1

ητ | Rm
T = θj

]
− log Et

[
T

∑
τ=t+1

ητ | Rm
T = θj+1

]
= log θj − log θj+1,

so CTI holds. Case (iii) follows immediately from eq. (17) of Kocherlakota (1990), which shows
that MT ∝ (Rm

T )
−γ in the i.i.d. case.
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5. The Campbell and Cochrane (1999) economy features a representative agent with utility
E0{∑∞

t=0 βt[(Ct − Ht)1−γ − 1]/(1 − γ)}, where Ht is the level of (exogenous) habit and other
terms are standard. The surplus-consumption ratio is Sc

t ≡ (Ct − Ht)/Ht. Log dynamics are
sc

t+1 = (1 − ϕ)sc + ϕsc
t + λ(sc

t)εt+1, ct+1 = g + ct + εt+1, and dt+1 = g + dt + ηt+1, where

εt+1
i.i.d.∼ N (0, σ2

ε ), ηt+1
i.i.d.∼ N (0, σ2

η), Corr(εt+1, ηt+1) = ρ, and the sensitivity function is λ(sc
t) =[

1
Sc

√
1 − 2(sc

t − sc)− 1
]
1{sc

t ⩽ sc
max}, with Sc

= esc
= σε

√
γ

1−ϕ and sc
max = sc + (1 − Sc

)2/2.

The SDF evolves according to Mt,t+1 = β
(

Ct+1
Ct

)−γ ( Sc
t+1
Sc

t

)−γ
, so

Et[Mt,T | Rm
T = θj]

Et[Mt,T | Rm
T = θj+1]

=
Et

[
exp

(
∑T−t−1

τ=0 −γ
(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = θj

]
Et

[
exp

(
∑T−t−1

τ=0 −γ
(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = θj+1

] .

For a counterexample to constant ϕt, set T = 2 and ρ = 1 (so ∆ct = ∆dt, as in the sim-
plest case considered by Campbell and Cochrane). A sufficient condition for non-constant
ϕt is Cov0(ϕ1, E1[M1,2 | Rm

2 = θj+1]) ̸= 0, as this gives E0[ϕ1] ̸= ϕ0. As of t = 0, both
ε1 and ε2 are relevant for Rm

2 and M0,2: ε1 determines sc
1 and thus λ(sc

1). As of t = 1,
the only source of uncertainty for both Rm

2 and M1,2 is ε2: sc
2 and d2 determine Rm

2 , and
conditional on time-1 variables, these depend only on ε2. Write ε1

j for the realization of
ε2 needed to generate Rm

2 = θj given ε1 — i.e., ε1
j ≡ {ε2 : Rm

2 = θj | ε1} — and simi-
larly write ε1

j+1 for θj+1. Then we have E1[M1,2 | Rm
2 = θj′ ] = exp(−γ(1 + λ(sc

1))ε
1
j′) for

j′ = j, j + 1, so ϕ1 = exp(−γ(1 + λ(sc
1))(ε

1
j − ε1

j+1)). Thus Cov0(ϕ1, E1[M1,2 | Rm
2 = θj+1]) =

Cov0(exp(−γ(1 + λ(sc
1))(ε

1
j − ε1

j+1)), exp(−γ(1 + λ(sc
1))ε

1
j+1)). Given Gaussian ε1, this value

is generically non-zero.

6. Take the two-agent CRRA case considered in Section 5 of Basak (2000), with notation adopted
directly. Basak’s Proposition 7 shows that when extraneous risk matters, state prices (and
thus the SDF) depend on both the stochastic weighting process η(t) and the aggregate en-
dowment ε(t). These two processes are driven respectively by independent shocks, dWz(t)
(extraneous risk) and dWε(t) (fundamental risk). Asset returns thus do not pin down the SDF
realization, generating a generically path-dependent SDF and thus time-varying ϕt (see also the
discussion in Atmaz and Basak, 2018, footnote 17).

Proof of Proposition 7. Given that ϕt can change, we explicitly allow it to depend on the signal
history. RN beliefs are thus now denoted by π∗

t (Ht) =
ϕt(Ht)πt(Ht)

(ϕt(Ht)−1)πt(Ht)+1 , where we use the simpler
notation from Section 2 for clarity throughout. Uncertainty about θ is again resolved by period T,
and we again consider X∗ from 0 to T. Since πT ∈ {0, 1} implies π∗

T = πT, time variation in ϕt has
no effect on X∗ for t > T − 1.

Toward a contradiction, assume that there exists some DGP(s) in which ϕt changes such that
Et[ϕt+1] ⩽ ϕt and expected RN movement is higher than the bounds in Proposition 2 for some T.
Consider a DGP from this set with the highest expected RN movement. We now consider the last
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meaningful movement of ϕ in this DGP. Specifically, given that ϕt is assumed to change at some
point, but ϕt is constant when t ⩾ T, there must exist some history Ht in which πt ∈ (0, 1), ϕt

can change between t and t + 1 (i.e., there exists a signal st+1 for which ϕt+1(Ht ∪ st+1) ̸= ϕt(Ht),
where st+1 includes the signal sϕt+1) but for which ϕt is constant after t + 1. Following any Ht, by
assumption, ϕt+1(Ht ∪ st+1) can take two values: ϕH

t+1 > ϕt following signal sH
t+1 with probability

qH > 0, and ϕL
t+1 < ϕt following signal sL

t+1 with probability qL = 1− qH > 0. We start by assuming
that ϕt evolves as a martingale:

∑
i∈{L,H}

qi · ϕi
t+1 = ϕt. (B.1)

Given the maintained assumption that πt does not evolve in the same period as ϕt and therefore
is constant immediately following history Ht, π∗

t (Ht ∪ st+1) can take at most two values: π∗i
t+1 =

ϕi
t+1·πt

(ϕi
t+1−1)πt+1

for i ∈ {L, H}. Now consider expected RN movement following Ht. From period t to

t + 1, given signal si
t+1, RN beliefs move from π∗

t to π∗i
t+1, leading to per-period RN movement

E[m∗
t,t+1|Ht ∪ si

t+1] = (π∗
t − π∗i

t+1)
2 =

(
ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt+1

(ϕi
t+1 − 1)πt+1 + 1

)2

=

(
ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2

.

Given that the postulated ϕt process is constant after t + 1, at that point our main bounds hold with
π∗

0 replaced with π∗i
t+1 and ϕ replaced with ϕi

t+1. Thus given signal si
t+1,

E[m∗
t+1,T|Ht ∪ si

t+1] = E[X∗
t+1,T|Ht ∪ si

t+1] + E[r∗t+1,T|Ht ∪ si
t+1]

⩽ (πi∗
t+1 − πt+1) · πi∗

t+1 + (1 − πi∗
t+1) · πi∗

t+1 = (1 − πt+1) · πi∗
t+1

= (1 − πt+1) ·
ϕi

t+1 · πt+1

(ϕi
t+1 − 1)πt+1 + 1

= (1 − πt) ·
ϕi

t+1 · πt

(ϕi
t+1 − 1)πt + 1

,

where the second line plugs in our bound for excess RN movement and uncertainty reduction
given that uncertainty is zero at period T, and the third line states everything in terms of ϕt and πt

and uses the assumption that πt = πt+1. Therefore, expected RN movement from period t onward
following history Ht is bounded above by:

E[m∗
t,T|Ht] = E[m∗

t,t+1|Ht] + E[m∗
t+1,T|Ht]

⩽ ∑
i∈{L,H}

qi ·
(
(

ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2 + (1 − πt) ·
ϕi

t+1 · πt

(ϕi
t+1 − 1)πt + 1

)
.

We now show that this DGP will have higher RN movement if ϕt is constant from Ht onward.
To see this, consider the “worst-case” DGP in Proposition 4 in which ϕ remains constant at ϕt.
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In this case, RN movement is (arbitrarily close to) EmaxDGP[m
∗
t,T|Ht] = (1 − πt) · ϕt·πt

(ϕt−1)πt+1 . We
now subtract the expected RN movement given changing ϕ (E[m∗

t,T|Ht]) from the worst-case RN
movement (EmaxDGP[m

∗
t,T|Ht]) and show it is positive given the assumption that ϕt evolves as a

martingale. The difference is positive if and only if

(1 − πt) ·
ϕt · πt

(ϕt − 1)πt + 1
− ∑

i∈{L,H}
qi ·
(( ϕt · πt

(ϕt − 1)πt + 1
−

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)2
+ (1 − πt) ·

ϕi
t+1 · πt

(ϕi
t+1 − 1)πt + 1

)
> 0.

Using (B.1) in this inequality gives that EmaxDGP[m
∗
t,T|Ht]− E[m∗

t,T|Ht] > 0 if and only if

π3
t (1 − πt)

2(ϕH
t+1 − ϕt)(ϕt − ϕL

t+1)
(
(ϕH

t+1 − ϕt) + (ϕL
t+1 − 1) + (πt)(2 + πt(ϕt − 1))(ϕH

t+1 − 1)(ϕL
t+1 − 1)

)
(1 + πt(ϕt − 1))2(1 + πt(ϕH

t+1 − 1))2(1 + πt(ϕL
t+1 − 1))2

> 0.

It is straightforward to see that the expression on the left side of this inequality is positive: every
parentheses contains a positive value as ϕH

t+1 > ϕt > ϕL
t+1 ⩾ 1 and πt ∈ (0, 1). Therefore, we

conclude that expected RN movement can be increased if ϕt remains constant following Ht rather
than changing. But this gives us a contradiction, as it violates the assumption that the DGP with ϕt

moving following Ht has the highest possible movement. Therefore, we conclude that there does
not exist a DGP satisfying in which ϕ evolves as a martingale that produces more expected RN
movement than the bound in Proposition 2.

We now extend this observation to DGPs in which movement in ϕ is a supermartingale rather
than a martingale. We do so by showing that if there exists a DGP where ϕ evolves as super-
martingale and leads to expected movement that is higher than our bound, there there must exist a
martingale that leads to higher expected movement. Given the previous martingale result, this is
impossible. Formally, assume that there exists a DGPsuper in which ϕ evolves as a supermartingale
such that the expected movement of this DGP is higher than our bound for a given T. Consider the
supermartingale DGP with the maximum expected movement, and consider a period t (history
Ht) with the last meaningful movement in ϕ in which ϕ is a strict supermartingale. If this period
does not exist, the process is a martingale, and the previous results hold. Note that, following
this movement, there cannot be further change in ϕ. If there were and ϕ were a martingale, the
previous result shows that no change in ϕ would produce more expected movement, contradicting
the assumption that this DGP produces the highest expected movement in the class. If instead
there was movement and the change in ϕ was a strict supermartingale, it would contradict the
assumption that the previous movement was the last meaningful movement of that type.

Now, we show that it is possible to adjust DGPsuper following history Ht to increase expected
movement following Ht by adjusting the change in ϕ from period t to period t+ 1 to be a martingale
rather than a supermartingale. To do so, we first show that any upward movement from ϕt to
ϕt+1 > ϕt always leads to more total movement following Ht than any downward movement from
ϕt to ϕt+1 < ϕt. Consider total expected movement from Ht onward given a change from ϕt to ϕt+1:

E[m∗
t,T|Ht, ϕt, ϕt+1] = (

ϕt · πt

(ϕt − 1)πt + 1
− ϕt+1 · πt

(ϕt+1 − 1)πt + 1
)2 + (1 − πt) ·

ϕt+1 · πt

(ϕt+1 − 1)πt + 1
.
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Our claim is that this is higher if ϕt+1 > ϕt than if ϕt+1 < ϕt. To see this, compare the above with
movement if ϕt+1 = ϕt. In this case, E[m∗

t,T|Ht, ϕt = ϕt+1] = (1 − πt) · ϕt·πt
(ϕt−1)πt+1 . Subtracting from

above and writing π = πt for simplicity yields:

E[m∗
t,T|Ht, ϕt, ϕt+1]− E[m∗

t,T|Ht, ϕt = ϕt+1]

=
(π − 1)2 · π · (1 + π · (2 + π · (ϕt − 1)) · (ϕt+1 − 1)) · (ϕt − ϕt+1)

(1 + π(ϕ − 1))2 · (1 + π(ϕt+1 − 1))2 .

As with the inequality in the martingale case, every component in this expression is weakly
positive (as 0 < π < 1 because the ϕ movement is meaningful and ϕ ⩾ 1), except for (ϕt − ϕt+1).
Therefore, this equation is positive if ϕt+1 < ϕt and negative if ϕt+1 > ϕt. But then it must be
that E[m∗

t,T|Ht, ϕt, ϕt+1] is greater if ϕt+1 > ϕt than if ϕt+1 < ϕt. In this case, we can adjust the
evolution of ϕ following history Ht — which was assumed to be a supermartingale — to be a
martingale by taking a probability from downward change in ϕ and shifting it to an upward change
in ϕ. Specifically, if ϕt is a strict supermartingale at Ht, there must be at least some probability
on a realization of ϕt+1 < ϕ. Consider the lowest possible realization of ϕL

t+1 with associated
probability qL. There are two possibilities. First, there is some value ϕH

t+1 > ϕ such shifting the
probability qL from ϕL

t+1 to ϕH
t+1 makes ϕ a martingale. Second, there is some qH < qL such that

shifting qH from ϕL
t+1 to ϕH

t+1 makes ϕ a martingale. In either case, we are shifting probability from
ϕL

t+1 < ϕt to ϕH
t+1 > ϕt. But, as just proven above, it must be that E[m∗

t,T|Ht, ϕt, ϕt+1] is greater
if ϕt+1 > ϕt than if ϕt+1 < ϕt. But then the total movement of the change from ϕ at Ht must
increase. This implies that there exists a martingale process for ϕ at Ht that has higher expected
movement than the strict supermartingale process for ϕ at Ht. This contradicts the assumption
that the strict supermartingale process has the highest movement in the class of supermartingale
processes (which includes martingales), completing the proof.

Proof of Proposition 8. In what follows, we often use Ei[·] to make explicit that we are taking
expectations over DGPs indexed by i, and we continue to use the notational simplifications used in
the statement of the proposition. For (i), fixing π∗

0,i = π∗
0 across i and applying Proposition 1,

Ei[E[X∗
i ]] = Ei[(π

∗
0 − π0,i) · △i] = π∗

0 · Ei[△i]− Ei[π0,i] · Ei[△i]

= (π∗
0 − Ei[π0,i]) · Ei[△i] = Ei[π

∗
0 − π0,i] · Ei[△i]

= Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· Ei[△i] (B.2)

where the last equality in the first line follows from the assumption that Cov(π0,i,△i) = 0.

Now consider ζ1(ϕi, π∗
0) ≡ π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0
. This function is concave in ϕi:

∂2ζ1
∂ϕ2

i
=

−2π∗
0 (1−π∗

0 )
2

(π∗
0+ϕ(1−π∗

0 ))
3 ,

which is weakly negative given π∗
0 ∈ [0, 1] and ϕ ⩾ 1. Thus by Jensen’s inequality, the expectation

of ζ1 over ϕi is less than ζ1 evaluated at ϕ ≡ Ei[ϕi], so Ei

[
π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0

]
⩽ π∗

0 − π∗
0

ϕ+(1−ϕ)π∗
0
.
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Returning to (B.2), suppose that Ei[△i] > 0. In this case,

Ei[E[X∗
i ]] = Ei[π

∗
0 −

π∗
0

ϕi + (1 − ϕi)π∗
0
] · Ei[△i]] ⩽ (π∗

0 −
π∗

0
ϕ + (1 − ϕ)π∗

0
) · Ei[△i].

Now assume that Ei[△i] ⩽ 0. Then, as π∗
0 −

π∗
0

ϕi+(1−ϕi)π
∗
0
= π∗

0 − π0 ⩾ 0 given ϕi ⩾ 1,

Ei[E[X∗
i ]] = Ei[π

∗
0 −

π∗
0

ϕi + (1 − ϕi)π∗
0
] · Ei[△i] ⩽ 0.

Taken together, Ei[E[X∗
i ]] ⩽ max{0, (π∗

0 −
π∗

0
ϕ+(1−ϕ)π∗

0
) · Ei[△i]}.

For part (ii), first consider the situation in which π∗
0,i is constant and equal to π∗

0 . As above,

Ei[E[X∗
i ]] ⩽ Ei[(π

∗
0 − π0,i) · π∗

0 ] = Ei[π
∗
0 − π0,i] · π∗

0 = Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· π∗

0 .

As above, given the concavity of ζ2 ≡ π∗
0 −

π∗
0

ϕi+(1−ϕi)π
∗
0

with respect to ϕi and the fact that π∗
0 ⩾ 0,

Ei[E[X∗
i ]] ⩽ Ei

[
π∗

0 −
π∗

0
ϕi + (1 − ϕi)π∗

0

]
· π∗

0 ⩽

(
π∗

0 −
π∗

0
ϕ + (1 − ϕ)π∗

0

)
π∗

0 ,

as stated in the second inequality. Now allowing π∗
0,i to vary, write the bound for E[X∗] in

Proposition 2 as ζ2′(ϕi, π∗
0,i) ≡

(
π∗

0 −
π∗

0
ϕi+(1−ϕi)π

∗
0

)
π∗

0,i. Again since ∂2ζ2′/∂ϕ2
i ⩽ 0, for any arbitrary

realization of π∗
0,i = ϱ, we have from the application of Jensen’s inequality above (now dropping

the dependence of E on i) that E[ζ2′(ϕi, π∗
0,i) |π∗

0,i] ⩽ ζ2′
(

E[ϕi |π∗
0,i = ϱ], ϱ

)
. Using Proposition 2

and applying LIE to this inequality,

E[X∗
i ] ⩽ E[ζ2′(ϕi, π∗

0,i)] ⩽ E
[
ζ2′
(
E[ϕi |π∗

0,i], π∗
0,i
)]

⩽ E
[
ζ2′(ϕ, π∗

0,i)
]

, (B.3)

where ϕ is as in the proposition statement and where the last inequality uses ∂ζ2′/∂ϕi ⩾ 0. Substi-
tuting the definition of ζ2′ into this inequality yields equation (16).

For part (iii), as (π∗
0,i −

π∗
0,i

ϕ+(1−ϕ)π∗
0,i
) ⩽ π∗

0,i for any ϕ ⩾ 1, E[X∗
i ] ⩽ E[(π∗

0,i − 0)π∗
0,i] = E[(π∗

0,i)
2],

as stated. (Equivalently, one can use (B.3) and note again that ∂ζ2′/∂ϕ ⩾ 0, so that the bound is
most slack as ϕ → ∞, giving the same bound.)

For part (iv), Corollary 2 gives that if E[X∗|θ = 0] ⩽ E[X∗|θ = 1], then E[X∗] ⩽ 0. Therefore, if
E[X∗

i |θ = 0] ⩽ E[X∗
i |θ = 1] for all i, then E[X∗

i ] ⩽ 0 over all streams, completing the proof.

B.3 Proofs for Section 5

Proof of Proposition 9. For part (i), first define the likelihood of a prior π0 as

L(π0) ≡
π0

1 − π0
, (B.4)
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and the likelihood of a signal st as

L(st) ≡
DGP(st|θ = 1)
DGP(st|θ = 0)

,

where the dependence of the latter on Ht−1 is left implicit for simplicity. The likelihood for any
belief πt is defined as well following (B.4). The above likelihoods are well-defined for interior
priors (as we assume given finite L in the proposition) and for DGP(st|θ = 0, Ht−1) > 0 (we
return to the situation in which DGP(st|θ = 0, Ht−1) = 0 shortly). From Bayes’ rule, beliefs satisfy
L(πt) = L(π0) · L(s1) · L(s2) · · · L(st). Now note from (5) that L(π∗

0) ≡ π∗
0

1−π∗
0
= ϕ π0

1−π0
, from

which it follows that under Bayesian updating,

L(π∗
t ) = L(π∗

0) · L(s1) · L(s2) · · · L(st) = ϕL(π0) · L(s1) · L(s2) · · · L(st).

For a fictitious agent with a rational prior, one could replace L(π0) with L(P0(θ = 1)). In our
case, given the incorrect prior (but correct Bayesian updating), we have π∗

t
1−π∗

t
= ϕ̌ P0(θ=1)

1−P0(θ=1) , where
ϕ̌ ≡ ϕL, with L defined as in the proposition. We can therefore write

L(π∗
t ) = ϕ̌L(P0(θ = 1)) · L(s1) · L(s2) · · · L(st).

As the likelihood ratios for the RN beliefs in this case are equal to those of a fictitious agent with
a correct prior π̌0 = P0(θ = 1) and ϕ̌ in place of ϕ, we conclude that the RN beliefs are as well.
Finally, for the case in which DGP(st|θ = 0, Ht−1) = 0 and this signal st is observed, the person
will update to πt = 1, matching the belief of a rational agent again. We have thus shown part (i).

We can thus treat the agent with the incorrect prior as if she were rational (satisfying Assump-
tion 2) but with ϕ̌ in place of ϕ. Further, ϕ̌ satisfies Assumption 4, since L is constant and ϕ is
constant by that assumption as well. For part (ii) of the proposition, if ϕ̌ ⩾ 1, then Assumption 3
holds as well, so all three assumptions are satisfied, and the stated results carry through.

For part (iii), assuming 0 < ϕ̌ < 1 (so Assumption 3 no longer holds for the fictitious rational
agent), note first that the proof of Proposition 1 never employs Assumption 3 and therefore still
holds straightforwardly, as we can write E[X∗] = (π∗

0 − π̌0)△ without use of this assumption. For
Proposition 2, the result as stated for a rational agent requires that π∗

0 > π̌0, which is not true for
ϕ̌ < 1. But an alternative bound can be shown for this case, by obtaining a lower bound for △
similar to the upper bound in Lemma A.2. Starting from (A.7) but solving now for E[m∗|θ = 1],
E[m∗|θ = 1] = (1 − π∗

0)−
1−π∗

0
π∗

0
· E[m∗|θ = 0]. Using this in (A.6),

△ = E[m∗|θ = 0]−
(
(1 − π∗

0)−
1 − π∗

0
π∗

0
· E[m∗|θ = 0]

)
=

1
π∗

0
· E[m∗|θ = 0]− (1 − π∗

0).

Then, given that 1
π∗

0
⩾ 0 and E[m∗|θ = 0] ⩾ 0, △ must be bounded below by −(1 − π∗

0). Returning
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to the formula from Proposition 2, if ϕ̌ < 1, then π∗
0 − π̌0 ⩽ 0, which gives

E[X∗] = (π∗
0 − π̌0)(△) ⩽ (π̌0 − π∗

0)(1 − π∗
0). (B.5)

Further, as π̌0 ⩽ 1, E[X∗] ⩽ (π̌0 − π∗
0)(1 − π∗

0) ⩽ (1 − π∗
0)(1 − π∗

0) = (1 − π∗
0)

2, as stated. And
taking (ii) and (iii) together, we have that E[X∗] ⩽ max(π∗

0
2, (1 − π∗

0)
2).

Proof of Corollary 3. Case (iii) from the previous proof applies, with ϕ in place of ϕ̌ and π0 in
place of π̌0 (since the agent now has RE but ϕ < 1). Thus (B.5) applies with these substitutions.
The second expression for the bound given in the corollary then substitutes for π0 (using (8)) and
simplifies. Equivalently, by swapping the labels of states 0 and 1, the swapped RN beliefs become
1 − π∗

t in place of π∗
t and the swapped SDF ratio becomes 1

ϕ in place of ϕ. As ϕ < 1, 1
ϕ > 1.

Therefore, all of our results hold, with π∗
t replaced by 1 − π∗

t and ϕ replaced by ϕ−1 > 1.

Proof of Proposition 10. Under the stated assumptions for ϵt, observed RN movement satisfies

E[m̂∗
t,t+1] = E[(π̂∗

t+1 − π̂∗
t )

2] = E
[(
(π∗

t+1 − π∗
t )

2 + (ϵt+1 − ϵt)
)2
]

= E[m∗
t,t+1] + 2E[π∗

t+1ϵt+1 − π∗
t ϵt+1 − π∗

t+1ϵt + π∗
t ϵt] + E[(ϵt+1 − ϵt)

2]

= E[m∗
t,t+1] + E[ϵ2

t + ϵ2
t+1].

For the observed counterpart of uncertainty resolution r∗t,t+1 ≡ (u∗t − u∗t+1),

E[̂r∗t,t+1] = E[(π∗
t + ϵt)(1 − π∗

t − ϵt)− (π∗
t+1 + ϵt+1)(1 − π∗

t+1 − ϵt+1)] = E[r∗t,t+1] + E[ϵ2
t+1 − ϵ2

t ].

Combining these two, with Var(ϵt) ≡ E[(ϵt − E[ϵt])2] = E[ϵ2
t ] and X∗

t,t+1 ≡ m∗
t,t+1 − r∗t,t+1,

E[X̂∗
t,t+1] = E[X∗

t,t+1] + 2Var(ϵt).

Appendix C. Additional Technical Material

C.1 Simulations for the Relationship of RN Prior and DGP with △

As noted in Section 2.3, we run numerical simulations of a large number of DGPs and priors in
order to understand the precise impact of the RN prior and DGP on △ (and therefore E[X∗]). We
consider the universe of history-independent binary-signal DGPs with a prior π∗

0 where st ∈ {l, h}
and P[st = h|θ = 1] and (assumed lower) P[st = h|θ = 0] are constant over t. These signal
distributions imply likelihood ratios for the signals of Lh ≡ P[st=h|θ=1]

P[st=h|θ=0] > 1 and Ll ≡ P[st=l|θ=0]
P[st=l|θ=1] > 1.

We use a fine grid to discretize π∗
0 , Lh, and Ll , then conduct 1000 simulations with T = 100 and

calculate △ in all cases. We find:

1. When π∗
0 is low, △ > 0 is very unlikely: the percentage of DGPs with positive △ given a

π∗
0 < .25 is 2%. For π∗

0 < .5, it is 11%.
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Figure C.1: Contour Plot: Simulations for △ by DGP and π∗
0

Note: See text in Appendix C.1 for description of simulations and discussion of results.

2. When π∗
0 is low, the only DGPs in which △ > 0 are very asymmetric and extreme. For

example, when π∗
0 = .25, △ > 0 only occurs if P[st = h|θ = 1] > .95 and Ll > 2 · Lh.

3. The converse is true when π∗
0 is high: △ < 0 is rare and only occurs given a very asymmetric

and extreme DGP.

4. For symmetric DGPs (Lh = Ll), △ ⪋ 0 when π∗
0 ⪋ .5.

5. Holding the DGP constant, △ rises with π∗
0 .

6. Holding all else constant, as Lh rises and the size of upward updates rises, △ falls. As Ll rises
and the size of upward-updates rises, △ rises.

We present these results visually in Figure C.1. We reduce the dimensionality of the setting
by focusing on the likelihood ratio Lh

Ll
rather than Lh and Ll individually. (While the impact of both

Lh and Ll on △ appears monotonic, the impact of Lh
Ll

is only monotonic on average, leading to a
slightly messier graph.) The figure shows a contour plot with the RN prior on the x-axis, with the
y-axis stacking all of the DGP combinations in order of the likelihood ratio, and the contour colors
showing the approximate value of △ (darker colors corresponding to higher values) for each prior
and DGP (with the dotted line highlighting the points at which △ = 0). For example, drawing a
vertical line at a prior of π∗

0 = 0.25 suggests that a large portion of DGPs produce a △ < 0, and the
only DGPs that produce △ > 0 have extreme likelihood ratios.
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C.2 Risk-Neutral Beliefs and Time-Varying Discount Rates

This section provides further context on the relationship between RN beliefs and discount rates,
as discussed in Section 4.1 in the main paper. We again work in the setting in Section 2 here for
simplicity of exposition. The price of the terminal consumption claim is given in equilibrium in
by Pt(CT) = Et

[
βT−t

t
U′(CT)
U′(Ct)

CT

]
, where βt is now the agent’s (possibly time-varying) time discount

factor. Defining the gross return RC
t,T ≡ CT

Pt(CT)
, rearranging this equation for Pt(CT) yields

Et[RC
t,T] =

1 − Covt

(
βT−t

t
U′(CT)
U′(CT)

, CT

)
Et

[
βT−t

t
U′(CT)
U′(Ct)

] =

U′(Ct)

βT−t
t

− Covt(U′(CT), CT)

Et[U′(CT)]
,

as usual. We can write Et[U′(CT)] = πtU′(Clow) + (1 − πt)U′(Chigh) in our two-state setting, and
Covt(U′(CT), CT) can be similarly rewritten as a function of πt, CT, and U′(CT). In this setting,
discount-rate variation can arise from four sources:

1. Changes in the time discount factor βt.

2. Changes in contemporaneous marginal utility U′(Ct).

3. Changes in the relative probability πt.

4. Changes in state-contingent terminal consumption Ci or marginal utility U′(Ci).

Our framework allows for any discount-rate variation arising from the first three sources, but
restricts the last one: under CTI, it must be the case that any changes to (expected) U′(Ci) are
proportional across states. (More generally, as in Section 4.1, permanent changes to the SDF are
admissible, which by itself greatly generalizes this setting relative to one with constant discount
rates.) With constant discount rates, meanwhile, none of the four changes are admissible, or any
such changes must offset perfectly.

C.3 Simulations with Time-Varying ϕt

This section provides further detail for the simulations discussed in Section 4.3 and shown in
Figure 4. First consider the baseline situation in which π∗

0 = 0.5 and ϕt = 3 for all t. There is thus
only uncertainty about θ, and E[m∗] varies depending on the signal DGP. To trace the distribution of
E[m∗] across DGPs, we attempt to cover the space of binary DGPs in which the signal strengths are
constant over time. We start by looping over P[st = h|θ = 1] from {1,.99,.98,...,.01}. Then we loop
over P[st = l|θ = 0] from {.01,.02,.03,....99} while constraining P[st = h|θ = 1] > P[st = l|θ = 0]
such that the h signal leads to an upward movement. This process leads to 5052 DGPs. For each of
these DGPs, we simulate 100 random streams of T = 200 periods, after which the state is perfectly
observed. This number of periods allows beliefs to get very close to certainty prior to the resolving
signal. We calculate m∗ for each stream, from which we calculate the average m∗ statistic as an
estimate of E[m∗] for each DGP. The distribution of E[m∗] values across all such simulated DGPs is
shown in the dark line in Figure 4.
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Next, we allow additional uncertainty about the conditional realizations of the SDF MT, so
that ϕt also evolves over time. For each state (j and j + 1), we allow MT to take two possible
values with equal probability, where we choose the values such that ϕ0 = 3. Here, we start to run
into calculation timing constraints such that we limit the possible signal strengths. In particular,
we allow signal strengths for the high signal of .55,.75,.95 and for the low signal of .05,.25,.45 for
both states. Therefore we simulate nine DGPs for learning about MT in state j and nine DGPs
for learning about j + 1, leading to 81 combined DGPs to learn about MT. We combine each such
DGP with each of the DGPs for θ discussed above, and we again simulate 100 random draws of
movement of 200 periods. Each line in Figure 4 represents a different E[m∗] distribution given
variation in the signal strengths for θ, with the different lines showing different signal strengths for
learning about the conditional values of MT (and thus ϕ). In the “Low ϕ Uncertainty” case, MT in
state j can take the values 2.5 or 3.5 with equal probability and in state j + 1 can take the values
0.833 or 1.167 with equal probability. Consequently, ϕ0 = 3, and ϕT can vary from 2.14 to 4.2 (with
a coefficient of variation of 12%). In the “Medium ϕ Uncertainty” case, MT in state j can be 2 or
4 and in state j + 1 can be 0.667 or 1.333, so that ϕT can vary from 1.5 to 6 (with a coefficient of
variation of 54%). Finally, in the “High ϕ Uncertainty” case, MT in state j can be 1.5 or 4.5 and in
state j + 1 can be 0.5 or 1.5, so that ϕT can vary from 1 to 9 (with a coefficient of variation of 100%).

C.4 Solution Method and Simulations for Habit Formation Model

See the proof of statement 5 in Appendix B.2 for a description of the model, and the calibrated
parameters are identical to those used by Campbell and Cochrane (1999, Table 1), converted to
daily values, for the version of their model with imperfectly correlated consumption and dividends.
We consider 90-day option-expiration horizons (i.e., Ti − 0i = 90), and after solving the model for
the price-dividend ratio, we then solve for the joint distribution for returns (from t to Ti) and the
SDF at every point in a gridded state space as of t = Ti − 1, then t = Ti − 2, and so on, as below.

The initial market index value is normalized to Vm
0i

= 1, and the joint CDF for the SDF
realization and the return as a function of the current surplus-consumption state is then solved
by iterating backwards from Ti: after solving the model for the price-dividend ratio as a function
of the surplus-consumption value, we then calculate the Ti − 1 CDF for any possible surplus-
consumption value by integrating over the distributions of shocks to consumption (and thus
surplus consumption) and dividends at Ti; we then project this CDF onto an interpolating cubic
spline over the three dimensions (Sc

Ti−1, MTi , log(Rm,e
Ti

)); we then calculate the Ti − 2 CDF by
integrating over the distribution of shocks at Ti − 1 and the projection solutions for the conditional
distribution functions for (Ti − 1) → Ti obtained in the previous step; and so on. These CDFs are
then used for the model simulations.

We conduct 25,000 simulations, where each simulation runs from 0i to Ti, and for which the
initial surplus-consumption state is drawn from its unconditional distribution. For each period
in each simulation, we evaluate risk-neutral beliefs over return states at every point in the space
Θ and use these to calculate the set of conditional risk-neutral beliefs {π̃∗

t,i,j}j. Further, we store
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Figure C.2: Estimates of SDF Slope in Habit Formation Model Simulations
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Note: See text in Appendix C.4 for description of simulations.

the associated set of expected SDF slopes {ϕt,i,j}j. We can thus calculate the true average values of
these objects of interest, ϕ0i ,j ≡ Ê[ϕ0i ,i,j], where Ê[·] denotes the expectation over all simulations i
and we have fixed the state pair j. And using the risk-neutral beliefs series, we can naively apply
our conservative bound in Proposition 8 to obtain lower-bound estimates for those SDF slopes
and compare those estimates to the true simulated values. Relative risk aversion for this model’s
representative agent does not match the definition used in Proposition 6, as this agent’s utility
does not depend only on terminal wealth (see Campbell and Cochrane, 1999, Section IV.B), so we
accordingly present estimates for the SDF slope rather than for relative risk aversion.

Figure C.2 presents these simulation results. The blue circles show the true simulated average
values of the SDF slopes ϕ0i ,j, while the red triangles show the naive lower-bound estimates of
these values using our theoretical bound on the simulated RN beliefs data. It is clear in both cases
that these SDF-slope values are far below those obtained from our empirical estimates, so the
model does not replicate the observed variation in RN beliefs even with the violation of CTI. We
can understand the validity of the theoretical bound for the interior states by way of Proposition 7,
which shows that the bounds hold approximately for violations of CTI for which the ϕt,i,j process
is close to a martingale. In our simulations, the values |Ê[ϕt+1,i,j − ϕt,i,j]| for different state pairs j
range from 0.00002 to at most 0.00011, which is not large enough to invalidate the bounds.
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C.5 Data Cleaning and Measurement of Risk-Neutral Distribution

Before detailing measurement of the risk-neutral distribution, we note that we must collect ad-
ditional data in order to follow the procedure below. In particular, in order to obtain the ex post
return state for each option expiration date Ti (and thereby assign probability 1 to that state on
date Ti, so that our streams are resolving), we need S&P 500 index prices used as option settlement
values. Our first step in this exercise is therefore to obtain end-of-day index prices (which we
take as well from OptionMetrics). But the settlement value for many S&P 500 options in fact
reflects the opening (rather than closing) price on the expiration date; for example, the payoff
for the traditional monthly S&P 500 option contract expiring on the third Friday of each month
depends on the opening S&P index value on that third Friday morning, while the payoff for the
more recently introduced end-of-month option contract depends on the closing S&P index value
on the last business day of the month.2 To obtain the ex-post return state for A.M.-settled options,
we hand-collect the option settlement values for these expiration dates from the Chicago Board
Options Exchange (CBOE) website, which posts these values.

In addition, in order to measure the risk-neutral distribution and to measure realized excess
index returns, we need risk-free zero-coupon yields R f

t,Ti
for t = 0i, . . . , Ti − 1. To obtain these,

we follow van Binsbergen, Diamond, and Grotteria (2022) and obtain the relevant yield directly
from the cross-section of option prices by applying the put-call parity relationship. We apply
their “Estimator 2,” which obtains R f

t,Ti
= β−1/T from Theil–Sen (robust median) estimation of

qm,put
t,i,K − qm,call

t,i,K = α + βK + εt,i,K. This provides a very close fit to the option cross-sections (see van
Binsbergen, Diamond, and Grotteria, 2022, for details) and thus produces a risk-free rate consistent
with observed option prices, as is necessary to correctly back out the risk-neutral distribution.

Finally, for both the OptionMetrics end-of-day and CBOE intraday data, we apply standard
filters (e.g., Christoffersen, Heston, and Jacobs, 2013; Constantinides, Jackwerth, and Savov, 2013;
Martin, 2017) to the raw option-price data before estimating risk-neutral distributions. We drop
any options with bid or ask price of zero (or less than zero), with uncomputable Black–Scholes
implied volatility or with implied volatility of greater than 100 percent, with more than one year to
maturity, or (for call options) with mid prices greater than the price of the underlying; we drop
any option cross-section (i.e., the full set of prices for the pair (t, Ti)) with no trading volume on
date t, with fewer than three listed prices across different strikes, or for which there are fewer
than three strikes for which both call and put prices are available (as is necessary to calculate the
forward price and risk-free rate); and after transforming the data to a risk-neutral distribution as
below, we keep only conditional RN belief observations π̃∗

t,i,j for which the non-conditional beliefs
satisfy π∗

t (Rm
Ti
= θj) + π∗

t (Rm
Ti
= θj+1) ⩾ 5%. Our bounds can be calculated using data of arbitrary

frequency, so we calculate X∗
i,j using changes in RN beliefs over whatever set of trading days are

left in the sample after this filtering procedure.

As introduced in Section 6.1, we measure the risk-neutral return distribution by applying the

2See http://www.cboe.com/SPX for further detail. For our dataset, the majority (roughly 2/3) of option expiration
dates correspond to A.M.-settled options.
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following steps to the remaining option prices (for which we use mid prices), following Malz (2014):

1. Transform the collections of call- and put-price cross-sections (for example, for call options on
date t for expiration date Ti, this set is {qm

t,i,K}K∈K) into Black–Scholes implied volatilities.

2. Discard the implied volatility values for in-the-money calls and puts, so that the remaining steps
use data from only out-of-the-money put and call prices (as, e.g., in Martin, 2017). Moneyness is
measured relative to the at-the-money-forward price, measured (again following Martin, 2017)
as the strike K at which qm,put

t,i,K = qm,call
t,i,K .

3. Fit a cubic spline to interpolate a smooth function between the points in the resulting implied-
volatility schedule for each trading date–expiration date pair. The spline is clamped: its boundary
conditions are that the slope of the spline at the minimum and maximum values of the knot
points K is equal to 0; further, to extrapolate outside of the range of observed knot points, set the
implied volatilities for unobserved strikes equal to the implied volatility for the closest observed
strike (i.e., maintain a slope of 0 for the implied-volatility schedule outside the observed range).

4. Evaluate this spline at 1,901 strike prices, for S&P index values ranging from 200 to 4,000 (so
that the evaluation strike prices are K = 200, 202, . . . , 4000), to obtain a set of implied-volatility
values across this fine grid of possible strike prices for each (t, Ti) pair.3

5. Invert the resulting smoothed 1,901-point implied-volatility schedule for each (t, Ti) pair to
transform these values back into call prices, and denote this fitted call-price schedule as
{q̂m

t,i,K}K∈{200,202,...,4000}.

6. Calculate the risk-neutral CDF for the date-Ti index value at strike price K using P∗
t (V

m
Ti

< K) =

1 + R f
t,Ti

(q̂m
t,i,K − q̂m

t,i,K−2)/2. (See the proof of equation (13) in Appendix B.1 for a derivation of
this result; the index-value distance between the two adjacent strikes is equal to 2 given that we
evaluate the spline at intervals of two index points.)

7. Defining Vm
i,j,max and Vm

i,j,min to be the date-Ti index values corresponding to the upper and lower
bounds, respectively, of the bin defining return state θj,4 we then calculate the risk-neutral
probability for state θj will be realized at date Ti, referred to with slight notational abuse as
P∗

t (θj), as
P∗

t (θj) = P∗
t (V

m
Ti

< Vm
i,j,max)− P∗

t (V
m
Ti

< Vm
i,j,min),

where the CDF values are taken from step 6 using linear interpolation between whichever two
strike values K ∈ {200, 202, . . . , 4000} are nearest to Vm

i,j,max and Vm
i,j,min, respectively.

Steps 1 and 2 represent the only point of distinction between our procedure and that of Malz,
who assumes access to a single implied-volatility schedule without considering put or call prices
directly; our procedure is accordingly essentially identical to his. Note that we transform the option

3This set of ∼1,900 strike prices is on average about 20 times larger than the set of strikes for which there are prices
in the data, as there is a mean of roughly 90 observed values in a typical set {qm

t,i,K}K∈K .
4That is, formally, Vm

i,j,min = R f
0i ,Ti

Vm
T0

exp(θj − 0.05) and Vm
i,j,max = R f

0i ,Ti
Vm

0i
exp(θj). For example, for excess return

state θ2, we have Vm
i,j,min = R f

0i ,Ti
Vm

0i
exp(−0.2) and Vm

i,j,max = R f
0i ,Ti

Vm
T0

exp(−0.15).
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prices into Black–Scholes implied volatilities simply for purposes of fitting the cubic spline and
then transform these implied volatilities back into call prices before calculating risk-neutral beliefs,
so this procedure does not require the Black–Scholes model to be correct.5 The clamped cubic spline
proposed by Malz (2014), and used in step 3 above, is chosen to ensure that the call-price schedule
obtained in step 5 is decreasing and convex with respect to the strike price outside the range
of observable strike prices, as required under the restriction of no arbitrage. Violations of these
restrictions inside the range of observable strikes, as observed infrequently in the data, generate
negative implied risk-neutral probabilities; in any case that this occurs, we set the associated
risk-neutral probability to 0.

As noted in step 3, the clamped spline is an interpolating spline, as it is restricted to pass through
all the observed data points so that the fitted-value set {q̂m

t,i,K} contains the original values {qm
t,i,K}.

Some alternative methods for measuring risk-neutral beliefs use smoothing splines that are not
constrained to exhibit such interpolating behavior. To check the robustness of our results to the
choice of measurement technique, we have accordingly used one such alternative method proposed
by Bliss and Panigirtzoglou (2004). Empirical results obtained using risk-neutral beliefs calculated
in this alternative manner are unchanged as compared to the benchmark results in Section 6.4.

We have also conducted robustness tests with respect to the fineness of the grid on which we
evaluate the spline in step 4 and calculate the risk-neutral CDF in step 6, with results from these
exercises also indistinguishable from the benchmark results.

C.6 Noise Estimation and Matching to X∗ Observations

As introduced in Section 6.2, we first estimate Var(ϵt) = Var(ϵt,i,j) separately for each combination
of trading day t, expiration date Ti, and return state pair j in our intraday sample.6 Our ReMeDI
estimator for this noise variance follows the replication code provided by Li and Linton (2022):
V̂ar(ϵt) = 1

Nϵ,n
∑

Nϵ,n−kn
i=2kn

(π̂∗
ti
− π̂∗

ti−2kn
)(π̂∗

ti
− π̂∗

ti+kn
). We select kn for each return state using the

algorithm in Section F.1 of the Online Appendix of Li and Linton (2022).

We must then match the noise estimates (which are obtained only for a subsample of days) to the
observed excess movement observations in our original daily data. To do so, we take advantage of
the fact that the best predictors of V̂ar(ϵt,i,j) are (i) state pair j (we see more noise for tail states) and
(ii) the observed RN belief of either θj or θj+1 being realized, Σ∗

t,i,j ≡ π∗
t (Rm

Ti
= θj) + π∗

t (Rm
Ti
= θj+1)

(conditional beliefs are noisier when the underlying sum Σ∗
t,i,j is lower, as Σ∗

t,i,j enters into the
denominator of π̃∗

t,i,j). We thus partition Σ∗
t,i,j into 5-percentage-point bins ([0, 0.05), [0.05, 0.1], . . .),

and then calculate the average noise σ̂ϵ,j,Σ ≡ V̂ar(ϵt,i,j) for each combination of state pair j and bin
for Σ∗

t,i,j. We then match σ̂ϵ,j,Σ to each observed one-day excess movement observation X̂∗
t,t+1,i,j in

our original end-of-day data, based on that observation’s state j and total probability Σ∗
t,i,j.

5We conduct this transformation following Malz (2014), as well as much of the related literature, which argues that
these smoothing procedures tend to perform slightly better in implied-volatility space than in the option-price space
given the convexity of option-price schedules; see Malz (1997) for a discussion.

6For this exercise, to increase our available observations, we do not condition on the ex post state being θj or θj+1.
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C.7 Details of Bootstrap Confidence Intervals

Our block-bootstrap resampling procedure is described in Section 6.4, and we provide further
details on how we construct one-sided confidence intervals for Table 3 here. Fixing a given ϕ,
denote the point estimate for emain

i (ϕ) by ê(ϕ). The null that emain
i (ϕ) = 0 is rejected at the 5%

level if 2ê(ϕ)− e∗(0.95)(ϕ) > 0, where e∗(0.95)(ϕ) is the 95th percentile of the bootstrap distribution

of emain
i (ϕ) statistics (i.e., it is rejected if it is outside of the one-sided 95% basic bootstrap CI for

emain
i (ϕ)). We conduct this procedure for all possible ϕ values, and we obtain ϕ̂LB = minϕ s.t.

2ê(ϕ)− e∗(0.95)(ϕ) ⩽ 0.

A more straightforward procedure for conducting inference on ϕ would be to construct the
basic bootstrap CI directly for ϕ (i.e., ϕ̂LB = 2ϕ̂ − ϕ∗

(0.95)). The challenge preventing us from doing
so is that in nearly all cases, the 95th percentile of the bootstrap distribution for ϕ̂ is ∞, given how
large our point estimates are (and how much excess movement we observe in our data). This
motivates our use of a test-inversion confidence interval using the residuals for different possible
values of ϕ, which solves this problem. These CIs achieve asymptotic coverage of at least the
nominal level under weak conditions (discussed further below), given the duality between testing
and CI construction; see, e.g., Carpenter (1999). We find that our procedure performs quite well,
with unbiased and symmetric bootstrap distributions around the full-sample point estimate.

We note that our bootstrap procedure fully preserves the groupings of return-state pairs (in-
dexed by j = 1, . . . , J − 1) for each set of observations indexed by i (corresponding to the option
expiration date) within each block, as we split the observations into blocks only by time and not by
return states. We do so in order to obtain valid inference for the aggregate value ϕ, which uses ob-
servations for state pairs (θ2, θ3), . . . , (θJ−2, θJ−1), in the face of arbitrary dependence for the obser-
vations across those state pairs and a fixed number of return states J (whereas we assume N → ∞,
and further the number of blocks B → ∞ according to a sequence such that (TN + 1)/B → ∞). In
this way our procedure is in fact a panel (or cluster) block bootstrap; see, for example, Palm, Smeekes,
and Urbain (2011). Lahiri (2003, Theorem 3.2) provides a weak condition on the strong mixing coef-
ficient of the relevant stochastic process — in our case, {(X∗

i,j, π̃∗
0,i,j, {V̂ar(ϵt,i,j)})t,j}i — under which

the blocks are asymptotically independent and the bootstrap distribution estimator is consistent for
the true distribution under the asymptotics above, so that our test-inversion confidence intervals
have asymptotic coverage probability of at least 95% for the population parameters of interest in
the presence of nearly arbitrary (stationary) autocorrelation and heteroskedasticity.7 This coverage
rate may in fact be greater than 95% given that we are estimating lower bounds for the parameters
of interest rather than the parameters themselves, and this motivates our use of one-sided rather
than two-sided confidence intervals, as in Section 6.4.

7There are additional conditions required for the result of Lahiri (2003, Theorem 3.2) to hold, but they will hold
trivially in our context under the RE null given the boundedness of the relevant belief statistics. Our block bootstrap is
a non-overlapping block bootstrap (NBB); others (e.g., Künsch, 1989) have proposed a moving block bootstrap (MBB)
using overlapping blocks, among other alternatives. While the MBB has efficiency gains relative to the NBB, these are
“likely to be very small in applications” (Horowitz, 2001, p. 3190), so we use the NBB for computational convenience.
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C.8 Variable Construction for RN Excess Movement Regressions

As discussed in Section 6.5, we consider reduced-form evidence on the macroeconomic and financial
correlates of RN excess movement, with results presented in Table 4. The dependent variable in
all cases is the monthly average of noise-adjusted RN excess movement X∗

t,t+1,i,j, with the average
calculated across all available expiration dates and interior state pairs for all trading days t in
a month. For the dependent variables, from top to bottom in the table, option bid-ask spread
is the volume-weighted average bid-ask spread for all S&P 500 options with less than a year to
maturity and positive bid prices in the given month. Option volume is total monthly dollar trading
volume in that same sample, detrended using an estimated exponential trend given the steady
growth in option volume over the sample. RN belief stream length is the average full-stream
length Ti over all contracts i active in that month. VIX2 is calculated using the average VIX in the
given month. The variance risk premium is VIX2 minus realized variance, and we use the data
provided by Lochstoer and Muir (2022) for this VRP. (We thank these and subsequent authors for
making the relevant data available.) The risk-aversion proxy raBEX

t , as discussed in footnote 37 in
the text, is obtained from Nancy Xu’s website (https://www.nancyxu.net/risk-aversion-index),
and we take the sum of squared daily changes in raBEX

t in a given month (winsorized at the 5th

and 95th percentiles) to measure the volatility of this risk-aversion proxy. We obtain the monthly
repurchase-adjusted log price-dividend ratio pdt from Nagel and Xu (2022), and we calculate the
absolute value of its deviation from its sample mean pd. The 12-month S&P 500 change is calculated
as the log change in the S&P price from month t − 12 to t, using data from Robert Shiller’s website
(http://www.econ.yale.edu/~shiller/data.htm). All variables (both dependent and dependent)
are normalized to have zero mean and standard deviation of 1, and all regressions include a
constant.
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