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Outline

1. Placing the paper

2. Interpreting the empirics



The paper’s context
Rich literature related to categorical thinking

▶ Useful to place the paper within this literature

▶ Will paint with a very broad brush (sorry!)

▶ Highlight some key commonalities & distinctions between small # of seemingly unrelated papers

Important questions:

1. Are the categorization criteria objectively goal-relevant?

2. How does behavior change within a category?
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Style investing [Barberis & Shleifer 2003]

Portfolio choice when growth stocks have recently done well relative to value

Average

Low

High
A

llo
ca

tio
n 

to
 a

ss
et

 i

 

Asset i's growthiness (e.g., M/B)

1. Are categorization criteria objectively goal-relevant? Probably not. Allocations based on past returns.

2. How does behavior change within a category? Not at all (n.b. style allocations do change with past returns)
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Selective attention [BCGKS 2024, BGLS 2024]: diff. foundations, some broad-brush similarities

Posterior belief given base rate of 25%, signal likelihood 75%
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Salience of likelihood relative to base rate

1. Are categorization criteria objectively goal-relevant? No. Bayesian line would be flat.

2. How does behavior change within a category? Not at all (can be relaxed)
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Overinference from weak signals, . . . [Augenblick, Lazarus, Thaler 2024]

The basic premise:

▶ In many settings, easy to categorize a piece of news as “good” or “bad”

▶ Harder to figure out exactly how good or bad

▶ Good poll numbers: ↗ Pr(win). . .but how much?
▶ Basket: ↗ Pr(win). . .but how much?
▶ Earnings beat expectations: ↗ fundamental value. . .but how much?

▶ Can understand if info is good/bad, but must generate imperfect estimate of strength

▶ Shrinkage to moderate strength: after good news, shade toward “average” good news
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Overinference from weak signals, . . . [Augenblick, Lazarus, Thaler 2024]

Updating behavior given a signal where direction (good/bad) is clear, strength less clear
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Log update for a Bayesian

1. Are categorization criteria objectively goal-relevant? Yes

2. How does behavior change within a category? Attenuated, but not fully flat
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Overinference from weak signals, . . . [Augenblick, Lazarus, Thaler 2024]

Updating behavior given a signal where direction (good/bad) is clear, strength less clear
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Our Model
Bayesian

1. Are categorization criteria objectively goal-relevant? Yes

2. How does behavior change within a category? Attenuated, but not fully flat
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Overinference from weak signals, . . . [Augenblick, Lazarus, Thaler 2024]

Updating behavior: Experimental evidence
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1. Are categorization criteria objectively goal-relevant? Yes

2. How does behavior change within a category? Attenuated, but not fully flat
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This paper [finally!]

The basic premise:

1. Easy to classify news as “high” or “low,” possibly compared to multiple categorical default levels

2. Harder to incorporate precise numerical information
▶ Earnings (a) beat expectations and (b) were positive
▶ . . .and (c) EPS = $3.25, with various one-time items

▶ #1 generalizes our setup, while #2 slightly constrains to numerical processing
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This paper
Market reactions to earnings announcements
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1. Are categorization criteria objectively goal-relevant? Yes

2. How does behavior change within a category? Attenuated, but not fully flat
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This paper
Market reactions to earnings announcements with multiple comparison points
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1. Are categorization criteria objectively goal-relevant? Yes

2. How does behavior change within a category? Attenuated, but not fully flat

▶ This is a substantive generalization: in our case, wouldn’t work to be switching
overinference → underinference → overinference

▶ They show evidence for mult. comparison points, but won’t discuss
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My basic version of the theory

Market reactions to earnings announcements
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1. Are categorization criteria objectively goal-relevant? Yes

2. How does behavior change within a category? Attenuated, but not fully flat
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Problem: Basic theory ̸= data

1. No clear break at category boundary (pos. vs. neg. surprise)

2. Diminishing sensitivity away from boundary
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Where they take things
They’re upfront about these issues, and theory is geared to address them

▶ Recall question #2 from before: How does behavior change within a category?

▶ Style investing, some selective attention models: Not at all

▶ Over-/underinference model: Attenuated, possibly for good reasons (e.g., constrained optimal
response to qualitative signal), possibly not (e.g., selective attention to only a subset of the signal)

▶ Their model: Response to signal s is r(s) = λ(s)rcognitive signal(s) + (1 − λ(s))rcategory default(s)

▶ Standard parameterization: λ =
σ2

prior

σ2
signal+σ2

prior
=⇒ piecewise linear response function ̸= data

▶ They assume: σ2
signal(s) increases in the distance of s from default

=⇒ S shape, diminishing sensitivity: λ(s) close to 1 near s = sd, and shrinks to 0 far away
▶ Why? Processing noise ↗ in distance to simple defaults (Enke et al. 2024),

or ↘ in empirical mass of signal due to efficient coding (Frydman & Jin 2022)

▶ Further prediction: λ(s) ↘ everywhere — leading to sharper changes at boundaries, and less
sensitivity away from them — for hard-to-value firms for which σ2

signal(s) is high everywhere
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Theory now appears to match the data
Returns for firms with high vs. low valuation uncertainty

(where VU is dispersion in fundamental value across different accounting-based methods)
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Theory now appears to match the data. . .and the experiment
Participants’ predicted returns across complexity treatments
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My thoughts

▶ A lot of steps to get to diminishing sensitivity within category. . .

▶ . . .but the basic idea is surely right in many contexts

▶ I think the experiment is one such context: Hard to predict the market response to good vs. bad news,
especially with extraneous info ⇒ jump at clear good/bad threshold and attenuation elsewhere

▶ The empirical application is trickier: Small return diffs for low vs. high VU, and not clear what the
benchmark (correct) response is

▶ Old idea in accounting lit: EPS surprises contain permanent and transitory news about future earnings,
and the transitory component tends to be larger for big surprises
▶ May matter more for high-VU firms: lower earnings quality (Golubov & Konstantinidi 2024)

▶ They try to rule out by showing SUEt doesn’t predict SUEt+4 differently for high vs. low VU
▶ But predicting the future earnings surprise (SUEt+4) doesn’t measure earnings persistence: it just

shows predictability of forecast errors. Want to measure change in expected future earnings level.
▶ Luckily for me, Liu & Thomas (2000) do this: they look at IBES forecast revisions after earnings

responses to measure expected return response given constant discount rates.
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Liu & Thomas: S-shaped return response vs. SUE. . .
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. . .attenuates when accounting for future EPS forecast revisions

▶ Of course, EPS forecast revisions might not be rational!

▶ But suggests that diminishing sensitivity may be less important over and above whatever is
happening to those forecasts
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Slight counterpoint 1: Small but significant PEAD for large |SUE|

▶ But overall S shape in 30-day return further suggests that this shape may be a reasonable benchmark
response function
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Counterpoint 2: Overreaction for small |SUE|

▶ In appendix, they show that in small window around |SUE| = 0, the big 5-day return responses for
high-VU firms tend to revert slightly by day 30
▶ I predict I will have negative time left by now, so won’t bother showing the table

▶ Suggests that there is meaningful overreaction for weak signals

▶ Very hard to generate this if the observed S shape is correct long-run benchmark
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Final Notes

▶ Very nice, thought-provoking paper

▶ Their motivation in terms of categorical defaults spurred me to see connections between previous
papers’ frameworks that I hadn’t realized were there

▶ Basic idea seems correct in lots of settings

▶ But some caution warranted around the specific empirical application considered here

Thank you!
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