Demand-Based Expected Returns

Alessandro Crescini, Fabio Trojani, and Andrea Vedolin

Discussion

EBEN LAZARUS UC Berkeley Haas

AFA Annual Meeting January 2025

Outline

1. Brief recap

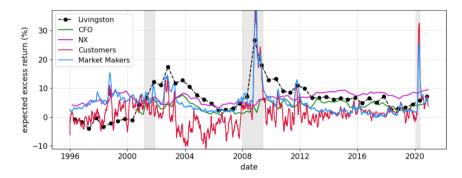
2. Comments

Brief recap

1. Theory:

- Assume investor *i* has a growth-optimal portfolio $\theta_i \implies \text{SDF } M_i = (\theta'_i R)^{-1}$
- Implies subj. expected market return is

$$\mathbb{E}^{i}[R_{m}] = \frac{1}{R_{f}} \mathbb{E}^{\mathbb{Q}}[(\boldsymbol{\theta}_{i}^{\prime}\boldsymbol{R})R_{m}] \approx \boldsymbol{\theta}_{i}^{\prime} \mathbb{E}^{\mathbb{Q}}[\boldsymbol{R}R_{m}]$$


▶ If θ_i has only index & index options, then $\mathbb{E}^{\mathbb{Q}}[RR_m]$ is observable [Carr & Madan 2001] ⇒ can recover subjective expectation $\mathbb{E}^i[R_m]$. [Paper has further results I'll return to later.]

2. Empirics:

- ▶ Using daily CBOE orders by investor type, create $\theta_{i,options}$ for $i \in \{\text{customers, market makers}\}$
- Then infer $\theta_i = (\theta_{i,\text{market}}, \theta'_{i,\text{options}})'$ under different assumptions on the share α invested in market
- ► Customers are typically net holders of put options, for which E^Q[R_{put} R_m] < 0 ⇒ their inferred beliefs are much lower than MMs' inferred beliefs (~4% vs. 7%)</p>
- ▶ Positions shrink after crises hit ⇒ acyclical cust. beliefs, still countercyclical MM beliefs

Brief recap

Countercyclical inferred MM beliefs (in line with surveys), lower and less cyclical customer beliefs:

Figure 9. Subjective Expected Market Return from Survey Data, Customers and Market Makers *Notes:* This figure plots the time-series of the expected market premium (p.a. in %) for market makers and customers (with $\alpha = 0.9$) together with survey data from Nagel and Xu [2023] (NX), the Graham and Harvey survey (CFO), and the Livingston Survey. Data runs from January 1996 to December 2020. Gray bars indicate NBER recessions.

Outline

1. Brief recap

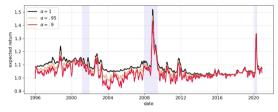
2. Comments Positives Beliefs vs. preferences/constraints Assets outside the measured portfolio

1. Positives

I like this general idea for a few reasons:

- Burgeoning demand-based AP literature [Koijen & Yogo 2019, ...]: typically assume "preferences" for asset characteristics (and "latent demand") & identify parameters using IV given holdings data
- "Latent demand"-based explanations for differences in holdings are hard to interpret. Much clearer & more intuitive interpretation: differences in beliefs.
- The paper also doesn't require instruments to identify demand parameters: clear theoretical identification approach without all the structure imposed in the demand system literature.
- ▶ I also like the idea to make use of option holdings data in a structured way.
- Plenty of papers have used net buy/sell orders, but aggregating up to holdings (and using them in this way) seems novel and worthwhile.

2. Beliefs vs. preferences/constraints

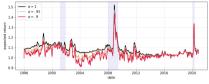

I'm less sure how to interpret the inferred expectations:

- Public customers are typically thought to buy put options as insurance, not due to pessimistic beliefs
- Market makers' role is to meet customer demand, so they provide this insurance at some spread
- Positions shrink during crises because intermediaries face tighter constraints at those times [Chen, Joslin, Ni 2019], not necessarily because customer beliefs & demand have changed
- Demand for insurance is not, in principle, ruled out here: there's *some* return distribution for which the growth-optimal portfolio features the index + puts
- But this demand, and MMs' willingness to write these contracts, is often modeled as reflecting differences in risk aversion [e.g., Gertler & Kiyotaki 2015], not beliefs
- Growth-optimal portfolio assumption implies $\gamma_{t,\text{cust}} = \gamma_{t,\text{MM}} = 1$. Authors note that if $\gamma > 1$, their estimate gives lower bound for expected returns [w/ weak assumptions, $\mathbb{E}^{\mathbb{Q}}[(\theta'_i R)R_m] < \mathbb{E}^{\mathbb{Q}}[(\theta'_i R)^{\gamma}R_m]]$.
- But if γ_{t,cust} > γ_{t,MM}, then the bound will be tighter for MMs than for customers ⇒ customers will seem more pessimistic, but this just reflects that their bound for ER is looser given their higher RRA.
- And when MM constraints bind, holdings no longer reflect beliefs.

2. Beliefs vs. preferences/constraints

Constraints pose issues that seem hard to address. Outside of crises, though, some ideas:

1. Paper reports bounds for a range of different values for share α invested in market:


A. Lower Bound Customers Subjective Expected Returns

My view: More informative exercise to fix α and report point estimates for a range of γ values.

2. Beliefs vs. preferences/constraints

Constraints pose issues that seem hard to address. Outside of crises, though, some ideas:

1. Paper reports bounds for a range of different values for share α invested in market:

A. Lower Bound Customers Subjective Expected Returns

My view: More informative exercise to fix α and report point estimates for a range of γ values.

- 2. For time-varying RRA, could use external estimates of γ_t [e.g., Bekaert, Engstrom, Xu 2022] and then estimate implied ER using this
- 3. More ambitiously: Estimate γ_t as value that minimizes pricing error subject to requirement that the holding-implied SDF is decreasing in the index return.
 - Intuitively: There are some option positions (e.g., straddles) that can't be rationalized as providing insurance. This suggestion is a structured way to estimate γ_t (and resulting ER) to take advantage of this, while respecting that the underlying is the benchmark over which the customer is risk-averse.

3. Assets outside the measured portfolio (time permitting)

A further challenge, with more ambiguous consequences:

- ► Recall: For $\mathbb{E}^{i}[R_{m}] = \theta'_{i} \mathbb{E}^{\mathbb{Q}}[RR_{m}]$, need θ_{i} to have only index & index options so that $\mathbb{E}^{\mathbb{Q}}[RR_{m}]$ is an observable function of the index return.
- ▶ In reality, investors hold a wide variety of outside assets in their portfolio.
- Might think richer holdings data could help sidestep this, but then $\mathbb{E}^{\mathbb{Q}}[RR_m]$ wouldn't be observable
 - **R** would contain returns on other assets, so would need **joint options** on those assets & the index
- Authors address this by deriving bounds s.t. L^2 distance between observed θ_i and truth is at most δ . Then estimate bounds with δ set to 1/2 avg. option bid-ask spread.
- ▶ Why does the bid-ask spread serve as a good benchmark for a distance **measured in portfolio shares**?
- What does this mean intuitively? For example, what does it imply about the maximum share of bonds held in customers' portfolios?
- More generally: I'm less sure what direction this non-observability would bias things (if at all), but encourage further discussion to the extent possible.

Final notes

- Really like the idea, and nicely written paper
- Less sure how to interpret empirical estimates given importance of insurance demand & intermediary constraints in explaining option holdings
- But the framework (making use of holdings data to discipline beliefs) is novel & appealingly simple, so think it's a promising start

Thank you!