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A. Proofs and Additional Theoretical Discussion

A.1. Proofs for Section II.A

Proof of Proposition 1. Fix an arbitrary direction sd. Given Assumption 3, we can write
Ŝ(ŝ) = α(e)e + (1 − α(e))Ŝ(sd) for some α(e) ∈ (0, 1), where α(·) may depend on sd. We
want to characterize

E[Ŝ(ŝ)|s] − S(s) = E
[
(1 − α(e))Ŝ(sd) + α(e)e

∣∣∣ s]− S(s).(A-1)

For notational convenience, assume a continuous space of estimates e (in which p(e|s) is a
probability density function with support E ⊆ R).1 From Assumption 1, E[e|s] = S(s), so
S(s) =

∫
E

e p(e|s) de, with p(e|s) non-degenerate. Using this in (A-1),

E[Ŝ(ŝ)|s] − S(s) =
[∫

E

(
(1 − α(e))Ŝ(sd) + α(e)e

)
p(e|s) de

]
− S(s)

=
∫

E
(1 − α(e))(Ŝ(sd) − e) p(e|s) de.(A-2)

Denote g(e) ≡ (1 − α(e))(Ŝ(sd) − e). For the first term in g(e), Assumption 3 gives that
1 − α(e) > 0. For the second term, Ŝ(sd) − e crosses 0 exactly once for e ∈ R: it is positive
for e < Ŝ(sd), and negative for e > Ŝ(sd). We thus have that

E[Ŝ(ŝ)|s] − S(s) =
∫

g(e) p(e|s) de = E[g(e)|s] = E[g(e)|sd,S],(A-3)

where g(e) is strictly single-crossing from above and where p(e|s) = p(e|sd,S) has the strict
MLRP in S, from Assumption 1(b). By the variation diminishing property of Karlin (1968),2

the expectation of a strictly single-crossing function with respect to an MLRP distribution is
also strictly single-crossing, with the same arrangement of signs as the function (here, positive
and then negative). That is, if E[Ŝ(ŝ)|s] − S(s) = 0 at S(s) = S∗, then there is overreaction
(E[Ŝ(ŝ)|s] − S(s) > 0) for S(s) < S∗ and underreaction (E[Ŝ(ŝ)|s] − S(s) < 0) for S(s) > S∗.

Further, this switching point S∗ must exist and lie within the range of feasible values
1The steps in the proof carry through for discrete e when replacing integrals with sums and adjusting

straightforwardly (though tediously) for discontinuities.
2See Karlin’s Theorem 3.1 of Chapter 5, or Gollier (2001, Proposition 16) for a textbook reference

based on the generalization of Athey (2002, Theorem 2). These results are typically stated for a function
that is single-crossing from below (SCB); in our case, one can define the SCB function g̃(e) ≡ −g(e) and
then take S(s) − E[Ŝ(ŝ)|s] =

∫
g̃(e) p(e|s) de, and all the statements carry through with signs changed

appropriately. Note also that (A-3) can be restated, suppressing dependence on the arbitrary and fixed sd, as
E[Ŝ(ŝ)|S] − S = E[g(e)|S], and it is this expression to which we apply Karlin’s result. (Note that all references
in this Online Appendix are listed in the reference list in the main text.)
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S(s) ∈ [minsmS(sd, sm), maxsmS(sd, sm)]. To see this, consider the case S(s) = minsmS(sd, sm).
By Assumption 2, Ŝ(sd) > S(s) in this case, while E[e|S] = S(s) by Assumption 1. Thus
E[Ŝ(ŝ)|s] = E[α(e)e+(1−α(e))Ŝ(sd)|s] must satisfy S(s) < E[Ŝ(ŝ)|s] < Ŝ(sd) by Assumption 3,
where the lower bound obtains from α(e) → 1 and E[e|S] = S(s) (and the upper bound
obtains from α(e) → 0). Thus E[Ŝ(ŝ)|s] − S(s) > 0 at this minimal S(s). The same argument
gives that E[Ŝ(ŝ)|s] − S(s) < 0 at the maximal S(s). The intermediate value theorem then
gives that there is such a switching point S∗ ∈ (minsmS(sd, sm), maxsmS(sd, sm)) at which
E[Ŝ(ŝ)|s] − S(s) = E[Ŝ(ŝ)|s] − S∗ = 0, and the single-crossing result above guarantees its
uniqueness, completing the proof. □

Derivation of Monotonicity Results. As at the end of Section II.A, under Assumptions 1–3,
it is not necessarily the case that a person’s expected signal strength Ŝ(ŝ) is monotonic in
e or that the amount of over- or underreaction E[Ŝ(ŝ)|s] − S(s) is monotonic in S(s). For
conditions under which these additional monotonicity results hold, we again use Assumption 3
to write Ŝ(ŝ) = α(e)e + (1 − α(e))Ŝ(sd) for some α(e) ∈ (0, 1), and for simplicity assume that
α(e) is continuously differentiable (as are other relevant functions of e or S considered below).

Using this representation, a necessary and sufficient condition for Ŝ(ŝ) to be (strictly)
monotonically increasing in e is that

α′(e)
(
e − Ŝ(sd)

)
+ α(e) > 0.(A-4)

For e > Ŝ(sd), this requires that the weight on the estimate, α(e), not fall dramatically given
small increases in e. For e < Ŝ(sd), the weight on the estimate must not fall dramatically
given small decreases in e. Taken together, Ŝ(ŝ) will be monotonic in e as long as the weight
on the estimate does not fall dramatically given small increases in |e − Ŝ(sd)| (i.e., as e moves
further from the default Ŝ(sd)), as stated in the text. Note that one simple sufficient condition
for (A-4) is the constant-weighting case (α(e) = α), since in this case α′(e) = 0 and the
condition reduces to α(e) > 0, which is guaranteed by Assumption 3.

Meanwhile, for E[Ŝ(ŝ)|s] − S(s) to be (strictly) monotonically decreasing in S(s), we must
have that

d
(
E
[
Ŝ(ŝ)

∣∣∣ s])
dS

− 1 < 0.

Fix a direction sd, so that conditioning on s is equivalent to conditioning on S. Since
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E[Ŝ(ŝ)|s] =
∫ (

(1 − α(e))Ŝ(sd) + α(e)e
)

p(e|s) de, the above condition requires

∫ (
(1 − α(e))Ŝ(sd) + α(e)e

) ∂p(e|s)
∂S

de < 1

⇐⇒
∫ (

(1 − α(e))Ŝ(sd) + α(e)e
) ∂p(e|s)

∂S
p(e|s)p(e|s) de < 1

⇐⇒ E

((1 − α(e))Ŝ(sd) + α(e)e
) ∂p(e|s)

∂S
p(e|s)

∣∣∣∣∣∣ s
 < 1,

or equivalently that

Covs

α(e)(e − Ŝ(sd)),
∂p(e|s)

∂S
p(e|s)

 < 1 − E[Ŝ(ŝ)|s]E
 ∂p(e|s)

∂S
p(e|s)

∣∣∣∣∣∣ s
 ,(A-5)

where Covs(·, ·) is the covariance conditional on s. Note further that

E

 ∂p(e|s)
∂S

p(e|s)

∣∣∣∣∣∣ s
 =

∫ ∂p(e|s)
∂S

p(e|s)p(e|s) de =
∫ ∂p(e|s)

∂S
de = 0,

since the density must integrate to 1 for all S. The monotonicity condition in (A-5) can
therefore be simplified to

Covs

α(e)(e − Ŝ(sd)),
∂p(e|s)

∂S
p(e|s)

 < 1.(A-6)

By Assumption 1(b),
∂p(e|s)

∂S
p(e|s) increases in e. Monotonicity in the degree of over-/underreaction

in S therefore requires that α(e) not increase dramatically with e, as stated in the text, so
that the covariance on the left side of (A-5) is less than 1. One can verify that this condition
is again immediately satisfied in the constant-weighting case.

A.2. Additional Discussion for Section II.B

This appendix briefly discusses the mapping between the general environment in Section II.A
and the log-normal environment in II.B. First, it is straightforward to verify that Assump-
tions 1 and 2 are satisfied in the log-normal environment. Assumption 3 is slightly more com-
plex. This assumption requires that Ŝ(sd) < Ŝ(ŝ) < e when e > Ŝ(sd), and Ŝ(sd) > Ŝ(ŝ) > e

when e < Ŝ(sd). Given the updating rule in (3), this requires exp(σ2
S/2) < e

Ŝ(sd) when
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e > Ŝ(sd), and exp(σ2
e/2) < Ŝ(sd)

e
when e < Ŝ(sd).3 In this case, the posterior is strictly

between the prior and estimate. Alternatively, to guarantee that Assumption 3 holds for all
e, one could drop the unbiasedness requirement of Assumption 1(a) (i.e., E[e|S] = S, which is
an unimportant normalization) and assume log e ∼ N (log S, σ2

e), in which case Assumption 3
will always hold.

However, even if Assumption 3 is not guaranteed to hold in this log-normal setting, this
is unimportant for our main results on over- and underreaction. This is demonstrated in
equation (4), which shows that the conclusions in Proposition 1 apply regardless, and the
person accordingly overreacts to weak signals and underreacts to strong signals (with resulting
switching point S∗ discussed in the text) in this log-normal environment. We accordingly do
not focus on the conditions under which the primitive assumptions hold; what is important
is that the main results continue to hold in this setting.

A.3. Proofs and Additional Discussion for Section II.C

Prior Distortions: Incorrect Priors, Uncertain Priors, and Base-Rate Neglect. In the case
of an incorrect prior belief π̂0 discussed at the beginning of Section II.C, we can calculate
the belief change |logit(π̂1(s)) − logit(π̂0)| when π̂0 is observed. Perceived signal strength
still follows the predictions in Proposition 1. Under the maintained assumption that belief
changes are monotonic in perceived signal strength (see footnote 11 in the main text), the
overreaction to weak signals and underreaction to strong signals in Proposition 1 will thus
continue to be reflected in the belief change |logit(π̂1(s)) − logit(π̂0)|.

We now consider the case in which the correct prior is uncertain. We can model this by
adding a pre-period t = −1, and we assume that the person entered this previous period with
a prior π̂−1 known with certainty, then observed a signal s0 (with known direction sd0) and
used a strength estimate e0 to form Ŝ0(ŝ0) and π̂0(ŝ0) following Bayes’ rule given distributions
p(S0|sd0) and p(e0|sd0 , S0).4 This post-estimation prior is then the center of a non-degenerate
distribution for the correct prior π0(s0), representing a situation with uncertainty over this
correct prior. The person then observes s1 and updates to π̂1(ŝ1) as before (again following
Bayes’ rule), with s1 independent of s0 conditional on θ, and with e0 and e1 depending only

3These conditions will hold for most draws of e given reasonably small variances. More formally, these
conditions are satisfied almost surely in a small-noise limit in which σ2

e/σ2
S is fixed while σ2

e , σ2
S → 0. A similar

limit is considered, for example, in Khaw, Li, and Woodford (2021, Section 4 and Appendix G).
4As in Section II.B, we continue to assume quasi-Bayesian updating. This allows us to formalize the

statement in the text that π̂0 incorporates all uncertainty about past signals. In the more general case
considered in Section II.A, the statement that the person overreacts to weak signals and underreacts to strong
signals in period 1 is almost tautological: as long as the belief change continues to be monotonic in perceived
signal strength, and perceived signal strength in period 1 is formed following Assumptions 1–3, then the
results hold immediately.
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on s0 and s1, respectively.5

With this setup, applying Bayes’ rule twice, the posterior given ŝ0 and ŝ1 is

logit(π̂1) = logit(π̂−1) + log
(

p(ŝ0|θ = 1)
p(ŝ0|θ = 0)

)
+ log

(
p(ŝ1|ŝ0, θ = 1)
p(ŝ1|ŝ0, θ = 0)

)

= logit(π̂0(ŝ0)) + log
(

p(ŝ1|ŝ0, θ = 1)
p(ŝ1|ŝ0, θ = 0)

)
.

Note that p(ŝ1|ŝ0, θ) = p(ŝ1|θ), since s0 and s1 are independent conditional on θ, and e0 and
e1 depend only on s0 and s1, respectively. Therefore,

logit(π̂1) = logit(π̂0(ŝ0)) + log
(

p(ŝ1|θ = 1)
p(ŝ1|θ = 0)

)
.

The belief update in period 1, |logit(π̂1) − logit(π̂0(ŝ0))|, accordingly depends on perceived
signal strength

∣∣∣log
(

p(ŝ1|θ=1)
p(ŝ1|θ=0)

)∣∣∣ exactly as was the case before, with the previous period’s
estimate (or multiple previous periods’ estimates) affecting only π̂0. Under the assumption
that

∣∣∣log
(

p(ŝ1|θ=1)
p(ŝ1|θ=0)

)∣∣∣ is monotonic in Ŝ1(ŝ1) = Ê[S1|sd1 , e1] (again as in main text footnote 11),
all our results therefore carry through to this case.

In the case that the previously formed prior is unobserved, though, we cannot calculate
|logit(π̂1)− logit(π̂0(ŝ0))| directly. Instead, we again use |logit(π̂1)− logit(π0)| as our proxy for
reaction. This measure now includes both perceived signal strength and the prior distortion:

(A-7) |logit(π̂1) − logit(π0)| = |logit(π̂0(ŝ0)) − logit(π0)| ±
∣∣∣∣∣log

(
p(ŝ1|θ = 1)
p(ŝ1|θ = 0)

)∣∣∣∣∣ .
There are thus two cases to consider. (1) If the expected prior distortion in the first term has
the same sign as the signal direction, then |logit(π̂1) − logit(π0)| will overstate the degree of
overreaction in the perceived signal strength Ŝ(ŝ), and there may appear to be overreaction
even to strong signals. This will apply, for example, if the correct prior is much lower than
0.5, but people do not use this correct prior and instead shade toward a default uninformative
prior of 0.5. This will push up the apparent reaction to a positive signal. (2) If the expected
prior distortion has the opposite sign as the signal direction, then |logit(π̂1) − logit(π0)| will
understate the degree of overreaction in the perceived signal strength Ŝ(ŝ), and there may
appear to be underreaction (or incorrectly signed reactions) even to weak signals. Intuitively,
the prior distortion offsets the signal reaction in this case. We should expect these issues to

5Note that this setup does not depend on the specific timing of periods 0 and 1; this notation simply
formalizes the idea that the correct prior is formed from some signal (like information provided in an
experiment) separate from the additional piece of information in signal s1.
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matter less when the prior estimation is more precise than the signal strength estimation, or
when the default prior (often 0.5) is close to the correct prior.

The same analysis applies to the case with base-rate neglect, which will simply move
the effective prior π̂0 in (A-7) toward the person’s default prior (which, in this binary-state
setting, is again often modeled as the uninformative prior of 0.5). Cases in which the correct
prior is equal to or close to 0.5 will therefore have little to no role for such base-rate neglect.
More generally, we expect our results to hold within a range of priors around π0 = 0.5. (Based
on our experimental results, this range appears reasonably wide.) For correct priors close
to 0 or 1, meanwhile, given strong enough base-rate neglect, this can offset our main effect
according to situations (1) and (2) as described in the preceding paragraph.

We discuss and control for the effects of base-rate neglect in additional detail in Sec-
tion III.B, which presents the results of an experiment with priors different from 0.5. In
particular, as shown in eq. (8) and discussed in footnote 28 of the main text, the measured
signal weight ŵ(s) (which we estimate as logit π̂1−logitπ0

logitπ1−logitπ0
) will be distorted by base-rate neglect to

the extent that logitπ0 (the distance of the prior from 0.5) is high relative to logitπ1 − logitπ0

(the true signed signal strength), though of course this only matters to the degree that the
person engages in strong base-rate neglect.

Uncertainty About the Direction. Following the discussion in the text, we now assume that the
person forms an estimate e of Ssigned, with that estimate satisfying Assumption 1 with respect
to Ssigned. In place of Assumption 2, we assume that the default value (the person’s subjective
prior) is Ŝ0,signed = 0. This effectively assumes a symmetric signal strength distribution
where E[Ssigned] = 0.6 Similar to Assumption 3, we assume that the posterior Ŝsigned(ŝ) is
strictly between 0 and the estimate e. Given this, it is immediate that on average, there is
underreaction in perceived signed strength: E[|Ŝsigned| | s] = a(s)|Ssigned| < |Ssigned|, where
a(s) ∈ (0, 1). Note that this definition of underreaction is in terms of the absolute perceived
signed strength relative to the absolute true signed strength. The interpretation of this result
as “underreaction” becomes more strained when the signs of Ŝsigned and Ssigned are different,
as discussed in the main text.

6We note that the prediction of underreaction does not necessarily apply in asymmetric cases, which can
lead to strange situations. While the expected change in beliefs is always equal to 0 (at least for a Bayesian),
due to the non-linear transformation from signal strength to belief changes, it is not necessarily the case that
the signal strength has a mean of zero. If one removes the assumption of symmetry, we can say only that
there is underreaction for sufficiently extreme signed strengths, but we cannot necessarily make statements
across all signal strengths. This analysis is, however, not the main focus given the settings we seek to describe.
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A.4. Proofs and Additional Discussion for Section II.D

Independent Estimates. We formally define the cross-sectional expectation as Ei[Xi|s] =
limN→∞

1
N

∑N
i=1 Xi for any measurable Xi (whose distribution implicitly depends on s). Under

the assumptions that the estimates ei are independent across people, there is no formal
distinction between taking the expectation with respect to the distribution of estimates
(as we did previously) and taking the cross-sectional expectation across people. Therefore,
Proposition 1 continues to apply, in the sense that there exists a unique switching point S∗

such that there is overreaction on average (Ei[Ŝi(ŝi)|s] > S(s)) if S(s) < S∗, and there is
underreaction on average (Ei[Ŝi(ŝi)|s] < S(s)) if S(s) > S∗.

Correlated Estimates and Over-/Underreaction Conditional on S. We consider the case with
multi-dimensional signals and perfect correlation in estimates given identical attention vectors
ai for all i. In this case, as stated in the text, Proposition 1 holds under the following new
definition: there is overreaction if E[Ŝi(ŝi)|S] > S, and underreaction if E[Ŝi(ŝi)|S] < S.

Since sm,j are i.i.d. over components j and exchangeable, E[sm,j|S] = log S. (By compari-
son, conditional on s, sm,j is known, so a given person’s Ŝ(s) in that case could potentially
differ across s for the same S, invalidating our results. This motivates our conditioning on S
here.) Similarly, ei is log-normally distributed conditional on S, log ei ∼ N (log S−σ2

e,i/2, σ2
e,i),

where this (and the expression for σ2
e,i provided in the text) follow from standard characteriza-

tions of a multivariate normal distribution along with some algebra. Therefore, conditioning
on S, E[Ŝi(ŝi)|S] = kSβ, where k and β are as given in the text. This is exactly as in (4), and
we conclude that Proposition 1 applies using the above definition of over- and underreaction.
Further, since we have assumed the extreme case of perfectly correlated estimates, this will
also apply when considering the expected cross-sectional expectation E[Ei[Ŝi(ŝi)|s]|S] given
that Ŝi(ŝi) is identical across i for a given s.

Predictions on Correlation Behavior. As stated in the text, one can make further statements
about the correlation in updating behavior across people under additional assumptions about
the signal components and person-specific vectors ai. For example, if the components are
ordered by salience, then it is natural to assume that ai is such that ai,j = 1 for j ≤ ni and
ai,j = 0 for ni < j ≤ n (i.e., person i pays attention to the first ni components, and the only
difference across people is in how large ni is). In this case, the following expression holds
for the ex ante correlation between estimates for any two people i and i′, ordered such that
0 < ni ≤ ni′ :

Corr(ei, ei′) =
√

ni

ni′
∈ (0, 1].
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This expression follows from the fact that Cov(ei, ei′) = Var(sm,j)/ max(ni, ni′), while
Var(ei) = Var(sm,j)/ni and Var(ei′) = Var(sm,j)/ni′ .

The above expression can be generalized to cases where the components are not salience-
ordered. In these cases, the correlation will simply scale down as one decreases the overlap in
the entries of ai and ai′ that are equal to 1. For example, if there are two components and
two types of people, with type 1 attentive only to component 1 and type 2 attentive only to
component 2, then there will be multimodal estimates, with perfect correlation across people
within type and none across types. With high-dimensional vectors in which the components
are not ordered according to salience (i.e., cases where people’s attention vectors are varied),
estimates will be closer to the independent case, and we will see smoother distributions of
resulting strength perceptions.

A.5. Proofs for Section IV.A

Proof of Proposition 2. Here, we provide a brief restatement of the proof of Proposition 1 of
AR (2021) for completeness. Since πt = πt(Ht) = Et[θ], by the law of iterated expectations
(LIE), beliefs are a martingale: πt = Et[πt+1]. Therefore, for arbitrary t1,

Et1 [Mt1,t1+1 − Rt1,t1+1] = Et1 [(πt1+1 − πt1)2 − (πt1(1 − πt1) − πt1+1(1 − πt1+1))]

= Et1 [(2πt1 − 1)(πt1 − πt1+1)]

= (2πt1 − 1)(Et1 [πt1 − πt1+1]) = 0,

where the first line uses the definition of movement and uncertainty reduction, the second
line simplifies, and the last line rearranges and uses the martingale property of beliefs.
Similarly, Et1+τ [Mt1+τ,t1+τ+1 − Rt1+τ,t1+τ+1] = 0 for any τ ≥ 0, and therefore by the LIE,
Et1 [Mt1+τ,t1+τ+1 − Rt1+τ,t1+τ+1] = 0. So summing all these terms from t1 to arbitrary t2 > t1,

Et1 [Mt1,t2 − Rt1,t2 ] =
t2−t1−1∑

τ=0
Et1 [Mt1+τ,t1+τ+1 − Rt1+τ,t1+τ+1] = 0,

as stated. □
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B. Additional Data Details and Estimation Results

B.1. Experimental Studies: Details and Robustness Checks

Study 1a

Timing Details. Participants saw the following five treatment blocks: (1) one symmetric
signal, (2) one asymmetric signal, (3) three symmetric signals, (4) demand for information,
(5) uncertain signals. Details of each are in the subsequent subsections. The ordering of when
they saw each treatment block was as follows:

Rounds Treatment Block Frequency Observations

1–12 One symmetric signal 67 percent 4,036

1–12 One asymmetric signal 33 percent 1,964

13 Attention check 100 percent 500

14–18 Three symmetric signals 100 percent 2,500

19–23 Demand for information 100 percent 2,500

24–25 One uncertain signal 100 percent 1,000

Questions within each treatment block were randomized for each participant. The ordering
of treatment blocks (besides “one symmetric” and “one asymmetric”) were fixed for ease of
participant comprehension. For instance, participants do not see the “demand for information”
treatment until they have played rounds in which they inferred from one signal and from
multiple signals. The uncertain-signals treatment comes after the demand-for-information
treatment because they do not reflect the signals that participants would purchase.
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Additional Results Discussed in the Text. Figures A1–A3 provide additional results discussed
in the text.

Figure A1. Comparison to Literature
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Figure A2. Heterogeneity in Inference at the Individual Level
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winsorized, for each signal strength, at the 5% level.
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Figure A3. Over- and Underinference by Number and Strength of Signals
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Notes: This figure plots the average weight participants put on signals relative to a Bayesian (indicated by the dashed line),

split by signal distribution. Black circles correspond to one signal of precision ρ (as in Figure II); light squares correspond

to two signals of precision ρ in one direction and one signal of precision ρ in the opposing direction; and hollow diamonds

correspond to three signals of strength S/3, where S = logitρ for precision ρ, in the same the direction. This figure shows

that participants put less weight on three signals as compared to the weight they put on one signal but that weight declines

in signal precision in all cases. Error bars indicate 95% confidence intervals.
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Further Results: Demand for Information. Patterns of overinference and underinference can
also lead to demand for information that is too high or too low relative to the optimum.
Figure A4 plots the average number of signals purchased as a function of each signal strength,
comparing participant behavior to the optimal choice if participants were Bayesian and only
valued signals for their instrumental value.

Figure A4. Number of Signals Purchased
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Notes: This figure plots the number of signals purchased as a function of signal precision. The horizontal lines correspond

to the payoff-maximizing number of signals that would be purchased. This figure shows that participants over-purchase

weak signals and under-purchase strong signals relative to a payoff maximizer. Error bars indicate 95% confidence intervals.

As can be seen in the figure, participants systematically over-purchase weak signals and
under-purchase strong signals. The cost of a signal that leads a Bayesian to form a posterior
of less than 0.57 outweighs its benefit; however, the majority of participants purchase at least
one signal when p = 0.55 and p = 0.525. Additionally, 81 percent of participants purchase
fewer than the optimal level of three signals when p = 0.73. Over- and underinference patterns
therefore matter not just for stated beliefs; they also lead people to overvalue low-quality
information and undervalue high-quality information, as reflected in their purchase decisions.
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Study 1b

Grether Regression Approach

Table A1. Effect of Logit Prior and Signal Strength on Logit Posterior

(1) (2) (3) (4)
50% Prior All Priors All Priors All Priors

Signal Strength: 0.05 2.371 2.844 2.800 2.795
(0.224) (0.286) (0.179) (0.178)

Signal Strength: 0.20 1.359 1.554 1.504 1.500
(0.072) (0.083) (0.059) (0.059)

Signal Strength: 0.50 1.176 1.208 1.190 1.191
(0.054) (0.041) (0.035) (0.035)

Signal Strength: 1.25 0.840 0.852 0.857 0.857
(0.028) (0.021) (0.020) (0.020)

Signal Strength: 1.75 0.824 0.768 0.762 0.762
(0.021) (0.017) (0.015) (0.015)

Logit Prior 1 0.984
(.) (0.016)

Logit Prior: Signal=0.05 1.028
(0.017)

Logit Prior: Signal=0.20 1.036
(0.021)

Logit Prior: Signal=0.50 0.996
(0.023)

Logit Prior: Signal=1.25 0.944
(0.029)

Logit Prior: Signal=1.75 0.915
(0.029)

Participant FE Yes Yes Yes Yes
Round FE Yes Yes Yes Yes

Observations 2500 7500 7500 7500
R2 0.80 0.60 0.76 0.76

Notes: OLS, with standard errors in parentheses clustered at participant level. We regress logit
posterior on each signal strength separately. Column (1) restricts to observations where the prior is
symmetric (as in Study 1a); other columns use the full dataset. Column (2) assumes that people put
weight 1 on their prior. Column (3) allows for misweighting priors overall. Column (4) allows for
weights on priors to vary for each signal strength. See main text for discussion.
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Study 2

Grether Regression Approach

Table A2. Weight on Signal and Prior by Quarter of Basketball Game

(1) (2) (3)
All Quarters All Quarters All Quarters

Quarter 1 x Signal Strength 1.344 1.405 1.406
(0.108) (0.066) (0.066)

Quarter 2 x Signal Strength 1.398 1.360 1.359
(0.110) (0.059) (0.059)

Quarter 3 x Signal Strength 0.968 0.929 0.928
(0.070) (0.041) (0.040)

Quarter 4 x Signal Strength 0.735 0.585 0.587
(0.037) (0.020) (0.020)

Logit Prior 1 0.906
(.) (0.013)

Quarter 1 x Logit Prior 1.001
(0.051)

Quarter 2 x Logit Prior 0.948
(0.031)

Quarter 3 x Logit Prior 0.917
(0.025)

Quarter 4 x Logit Prior 0.889
(0.014)

Participant FE Yes Yes Yes
Round FE Yes Yes Yes
Quarter FE Yes Yes Yes

Observations 8000 8000 8000
R2 0.48 0.86 0.86

Notes: OLS, with standard errors in parentheses clustered at participant level. We regress logit
posterior on signals in each quarter separately. Column (1) assumes that people put weight 1 on
their prior. Column (2) allows for misweighting priors overall. Column (3) allows for weights on
priors to vary for each quarter. See main text for discussion.
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B.2. Empirical Analysis: Details and Robustness Checks

Measurement Details for Risk-Neutral Beliefs

This subsection describes our use of option-price data, as introduced in Section IV.C, in
greater detail. (Much of this detail is directly from AL 2023.) First, we describe how we
clean the option data and then translate the option prices to risk-neutral beliefs. We then
detail how we translate from risk-neutral to physical beliefs under different parameterizations
for risk aversion.

Option Data Cleaning and the Risk-Neutral Distribution. We start from the OptionMetrics
data described in the text, obtaining the end-of-day bid and ask prices for all European call
and put options on the S&P 500 index, for all available strike prices and option expiration
dates for trading dates from January 1996 through December 2018. We then average the bid
and ask price to obtain the mid price. We also, as in AL (2023), obtain S&P 500 index prices
to use when determining the realized index-return state. We first get end-of-day index prices
(which we take as well from OptionMetrics, and then augment these with hand-collected
settlement values for any options whose settlement value depends on the opening (rather
than closing) index price, from the CBOE website.7

To measure the risk-free rate Rf
t,T in order to define our excess return space, we follow

van Binsbergen, Diamond, and Grotteria (2022) and estimate the risk-free rate from the
cross-section of option prices by applying put-call parity. We use their “Estimator 2,” which
estimates Rf

t,T from Theil–Sen (robust median) estimation of the put-call parity relationship.
This provides a risk-free rate consistent with observed option prices.

For the OptionMetrics data, we then use the same steps as described in Online Ap-
pendix C.5 of AL (2023) to clean the data and convert to a risk-neutral distribution. For
cleaning, we drop any options with bid or ask price of zero (or less than zero), with uncom-
putable Black–Scholes implied volatility or with implied volatility of greater than 100 percent,
with more than one year to maturity, or (for call options) with mid prices greater than the
price of the underlying; we drop any option cross-section (i.e., the full set of prices for the pair
(t, T )) with no trading volume on date t, with fewer than three listed prices across different
strikes, or for which there are fewer than three strikes for which both call and put prices are
available (as is necessary to calculate the forward price and risk-free rate).

We then measure the risk-neutral distribution following Malz (2014), again as described

7The results for the binarized noise-corrected data in Figure A10 below also use separate data directly
from AL (2023), so we refer to that paper — in particular, Section 6 and Online Appendix C.5–C.6 — for
details on the data and methodology used for the noise estimation (which use intraday option data obtained
directly from the CBOE), as well as the conversion of the histogram of risk-neutral beliefs to binarized beliefs.
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in Online Appendix C.5 of AL (2023):

1. We translate the option mid prices into equivalent Black–Scholes implied volatilities.

2. We discard the resulting observations for in-the-money calls and puts, so that the
remaining steps use data from only out-of-the-money put and call prices. To determine
the at-the-money point, we use the strike K at which call and put prices are equal (or
closest to each other).

3. For each trading date–expiration date pair, we fit a clamped cubic spline to the resulting
implied volatility curve (i.e., the curve of implied volatility vs. strike price).

4. Evaluate this spline at 1,901 strike prices, for S&P index values ranging from 200 to
4,000 (so that the evaluation strike prices are K = 200, 202, . . . , 4000), to obtain a set
of fitted implied-volatility values across this fine grid of possible strike prices for each
(t, T ) pair.

5. Invert the resulting smoothed implied volatility schedule back into call prices q̂t,T,K .

6. Using a discrete-state version of the classic Breeden and Litzenberger (1978) formula,
calculate the risk-neutral CDF for the date-T index value at strike price K as follows:
P∗

t (VT < K) = 1 + Rf
t,T (q̂t,T,K − q̂t,T,K−2)/2.

7. Defining VT,j,max and VT,j,min to be the date-T index values corresponding to the upper
and lower bounds, respectively, of the bin defining return state θj (i.e., the upper
and lower end of the five-percentage-point excess-return range defining a given return
outcome), calculate the risk-neutral belief that state θj will be realized at date T as
π∗

t,j = P∗
t (VT < VT,j,max) − P∗

t (VT < VT,j,min). (The beliefs for states θ1 and θ10 then
collect the tail probabilities for below -20% and above 20% returns, respectively.)

We do this for states θ1, . . . , θ10, where the return states are as defined and described in
the text — i.e., 5-log-point ranges of log excess returns from the first observable option
trading date (within a year of expiration) to the expiration date — for all trading dates under
consideration. We then use the resulting histogram of risk-neutral beliefs for our tests.

We note that unlike AL (2023), we include beliefs over the tail return states θ1 and θ10,
whereas AL discard them before calculating binarized beliefs π∗

t,j/(π∗
t,j + π∗

t,j+1). AL discard
them due to concerns over complications from potential changes in risk aversion over tail
outcomes; given the binarization, small changes in risk aversion would have large effects on
the measured binarized RN beliefs. But this is not the case for our analysis: since we just
use the (non-binarized) histogram of beliefs, the tail states have very low probabilities and
thus do not meaningfully affect the results. (Results are very similar when only including
movement and uncertainty reduction for states 2 through 9.) This is another way in which
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just using the RN histogram, rather than continuing from above and calculating the binarized
beliefs, helps minimize the potential effect of noise on our results.

Translating from Risk-Neutral to Physical Beliefs. Given the RN beliefs as measured from
above, we now describe the translation from RN to physical beliefs in greater detail. Assume
there exists a representative investor (“the market”) with time-separable utility over the
market index value.8 Assume, as above, that the state space (the set of possible terminal
index values VT ) is discrete, with states indexed by j (VT = θj for j = 1, 2, . . . , J), and denote
terminal utility by U(VT ). The physical belief regarding the likelihood of state j is πt,j, and
the risk-neutral belief is π∗

t,j. The two are related as follows:

(A-8) π∗
t,j = U ′(θj)πt,j∑

k U ′(θk)πt,k

.

(This is a multi-state generalization of equation (5) of AL 2023, or see equation (7) of Bliss
and Panigirtzoglou 2004.) Our main translation assumes that U ′(VT ) = V −γ

T , corresponding
to the assumption of power utility over the terminal index return, with constant relative risk
aversion coefficient of γ. We then follow Bliss and Panigirtzoglou (2004) in estimating γ as
the value under which the physical beliefs over the S&P 500 value at the one-month horizon
are well calibrated (i.e., unbiased); see Bliss and Panigirtzoglou (2004) for details on the
maximum likelihood estimation procedure.9

We then consider dozens of generalizations of this basic framework. First, we reparameter-
ize (A-8) in terms of the ratio of marginal utilities (or SDF realizations) across adjacent index
states ϕj, by substituting U ′(θj) = ϕjU

′(θj−1). We then make a range of assumptions on the
function ϕj. We assume that ϕj varies by state j, either linearly or quadratically in VT , and
we estimate ϕj by maximum likelihood for each state; we assume that ϕj varies over time
(either linearly or quadratically) or by horizon to expiration (as in Lazarus 2022); and then we
consider interactions in which ϕj varies both by bin j and over time. In all cases (as can be
seen in Figure A9, the right panel of which contains one line for each parameterization), the
movement and uncertainty reduction statistics are close to unchanged. (This is in contrast
to the physical probabilities, which do change depending on the parameterization; it is their
evolution over time that is unchanged.)

8These illustrative assumptions aid in the interpretation of our risk-aversion assumptions, but they are
stronger than needed in general; see AL (2023) for a discussion.

9Like Bliss and Panigirtzoglou (2004), we obtain reasonable estimates of risk aversion of (with estimated
γ̂ < 10) given this calibration procedure.
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Additional Empirical Results

We now provide a set of robustness results (Figures A5–A12 and Tables A3–A4) for the
betting and finance data. As described in the text, we present figures and regression tables
for when the data is split into either 12 or 36 time chunks. For the options data, we also show
results of different risk adjustments, use of binarized noise-corrected data, and in subsamples.

Different Time Windows

Figure A5. Movement and Uncertainty Reduction for Sports Betting: 12 Time Chunks
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Notes: This figure replicates Figure VII, but with 12 equal-length time windows, rather than 24. See that figure’s notes for

details on construction.
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Figure A6. Movement and Uncertainty Reduction for Finance Data: 12 Time Chunks
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Notes: This figure replicates Figure VIII, but with 12 equal-length time windows, rather than 24. See that figure’s notes

for details on construction.
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Table A3. Regressions of Movement on Uncertainty Reduction: 12 Time Chunks

Dep. Var.: Sports Finance

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Constant 0.0014 0.0018 0.0024 0.0013 0.0015 0.0060 0.0054
(0.0003) (0.0003) (0.0004) (0.0009) (0.0002) (0.0005) (0.0005)

Uncert. Red. 0.839 0.797 0.903 0.987 0.912 0.796 0.861
(0.006) (0.007) (0.012) (0.012) (0.027) (0.054) (0.063)

R2 0.984 0.991 0.996 0.990 0.997 0.945 0.941
Time Chunks 12 12 12 12 12 12 12
Events 175,026 48,430 16,536 19,445 3,212 955 955
Belief Obs. 4,598,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val: Const = 0 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
p-val: Slope = 1 <0.001 <0.001 <0.001 0.274 0.002 0.004 0.025

Notes: This table replicates Table III, but with 12 equal-length time windows, rather than 24. See that table’s notes for details

on estimation and interpretation.
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Figure A7. Movement and Uncertainty Reduction for Sports Betting: 36 Time Chunks
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Notes: This figure replicates Figure VII, but with 36 equal-length time windows, rather than 24. See that figure’s notes for

details on construction.
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Figure A8. Movement and Uncertainty Reduction for Finance Data: 36 Time Chunks
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Notes: This figure replicates Figure VIII, but with 36 equal-length time windows, rather than 24. See that figure’s notes

for details on construction.
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Table A4. Regressions of Movement on Uncertainty Reduction: 36 Time Chunks

Dep. Var.: Sports Finance

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Constant 0.0014 0.0016 0.0027 0.0020 0.0015 0.0063 0.0058
(0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0003) (0.0003)

Uncert. Red. 0.847 0.849 0.883 0.925 0.920 0.705 0.751
(0.003) (0.008) (0.015) (0.013) (0.026) (0.035) (0.040)

R2 0.955 0.974 0.993 0.975 0.982 0.932 0.928
Time Chunks 36 36 36 36 36 36 36
Events 175,026 48,430 16,536 19,445 3,212 955 955
Belief Obs. 4,598,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val: Const = 0 <0.001 <0.001 <0.001 <0.001 0.051 <0.001 <0.001
p-val: Slope = 1 <0.001 <0.001 <0.001 <0.001 0.054 <0.001 <0.001

Notes: This table replicates Table III, but with 36 equal-length time windows, rather than 24. See that table’s notes for details

on estimation and interpretation.
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Further Robustness Results for Options Data

Figure A9. Movement and Uncertainty Reduction for Options: Alternative Adjustments
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Notes: This figure replicates the right panel of Figure VIII to show the smoothed average movement (black lines) and

uncertainty reduction (lighter red lines) statistics over time for the beliefs implied by option data, but with alternative risk

adjustments. Each line represents a different method to calculate risk-adjusted beliefs from the raw, unadjusted risk-neutral

beliefs, as described in Appendix B.2. Some aspects of the figure (including confidence intervals) are omitted to enable a

clear view of the range of plotted lines across risk adjustments. While the different risk-adjustment methods do lead to

different inferred beliefs, the broad pattern of movement and uncertainty curves is very similar across the methods, as the

curves are close to overlapping in most cases.
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Figure A10. Movement and Uncert. Red. for Finance: Binarized, Noise-Corrected Beliefs
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Notes: This figure replicates the left panel of Figure VIII, but using the binarized and noise-corrected risk-neutral beliefs

data from Augenblick and Lazarus (2023). Belief movement is plotted in black, and uncertainty reduction in lighter red.

Data are not adjusted for risk aversion. See Figure VIII for details on the plot, and see Section 6 and Online Appendix C.6

of AL (2023) for details on the noise correction and binarization.
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Figure A11. Movement and Uncertainty Reduction for Finance Data: Post-2000
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Notes: This figure replicates Figure VIII, using only data after the year 2000. See that figure’s notes for details on

construction. The figure demonstrates that our option results are robust to not including the early part of the sample,

which contains somewhat noisier option data (see AL 2023).
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Figure A12. Movement and Uncertainty Reduction for Finance Data: Post-2010
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Notes: This figure replicates Figure VIII, using only data after 2010. See that figure’s notes for details on construction.

Along with Figure A11, this figure demonstrates that our option results are robust across subsamples.
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C. Experiment Study Materials

C.1. Study 1a

Overview and Instructions
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Main Decision Screen
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Attention Check
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Cognitive Reflection Test
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C.2. Study 1b

Overview and Instructions
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Main Decision Screen
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Confidence Elicitation
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C.3. Study 2
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