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When people receive new information, sometimes they revise their beliefs too 
much, and sometimes too little. We show that a key driver of whether people over- 
infer or underinfer is the strength of the information. Based on a model in which 

people know which direction to update in, but not exactly how much to update, 
we hypothesize that people will overinfer from weak signals and underinfer from 

strong signals. We then test this hypothesis across four different environments: 
abstract experiments, a naturalistic experiment, sports betting markets, and fi- 
nancial markets. In each environment, our consistent and robust finding is over- 
inference from weak signals and underinference from strong signals. Our frame- 
work and findings can help harmonize apparently contradictory results from the 
experimental and empirical literatures. JEL codes: C91, D83, D91, G14, G41.

I. INTRODUCTION 

How do people update their beliefs given new inform
tion? This important question has spawned a vast experimen
and empirical literature, with seemingly contradictory resu
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A common finding in the experimental literature is that people
often underreact to information in standard updating tasks. But
this is seemingly at odds with observational evidence from real-
world settings, such as excess volatility in asset prices, which
often appears more consistent with overreaction. Updating be-
havior is clearly context-dependent, but what specific mediating
factors help explain how people will respond to a given piece of
information? 

This article hypothesizes that people commonly overinfer
from weak information and underinfer from strong information.
We start with a theoretical framework in which we formalize
these concepts and provide simple but general conditions under
which the effect will arise. We then use a classic experimental
paradigm to show that while people do underinfer when provided
with strong signals (as commonly studied in the lab), they over-
infer from sufficiently weak signals (which have been previously
understudied). After replicating and extending this result in a
follow-up study, we demonstrate that this effect is not an arti-
fact of the abstract environment by showing the same results in a
novel experiment with more naturalistic information. Finally, we
use two empirical settings to show that betting markets and asset
prices exhibit excess volatility when information is weak, but this
effect reverses with sufficiently strong information. 

To understand the intuition for our hypothesis, consider the
constant stream of information faced by people every day. Peo-
ple might read a new poll about an election, have a conversation
with their boss at work, or see news about daily stock market
movements. In many cases, people understand the directional im-
pact this news should have on their beliefs, but are less certain
about the strength of the information. That is, they know that
better polling raises a candidate’s election chances, managerial
praise raises promotion chances, and positive stock returns raise
early retirement chances, but they don’t know exactly how much
their beliefs should move. How will a person update in this sit-
uation? Consider the extreme case in which the person knows
that a signal is positive but is completely unsure about the sig-
nal’s strength. The person only knows that beliefs should rise and
therefore updates as if the news has “intermediate” strength. But
if a person is always updating an intermediate amount, then they
will be overreacting to weak news and underreacting to strong
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ews. 1 In other words, when people know the signal’s direction, 
nsensitivity to objective signal strength leads to a pattern of over- 
nd underreaction relative to a full Bayesian. 

In more realistic scenarios, people will have a rough guess of 
he strength of signals they receive. This estimate might be based 

n a simplified model, unconscious approximation, or constrained 

nformation processing given attention to certain aspects of a sig- 
al. Given that the estimate is imperfect, the person should still 
hrink their estimate toward an intermediate strength. While 

ifferent people can have different estimates given the same in- 
ormation, the shrinkage will on average lead to overreaction to 

eak signals and underreaction to strong signals. In Section II , 
e model this intuition formally and show that it holds across a 

eneral set of information structures, estimation strategies, and 

ossibly non-Bayesian updating rules. We then use distributional 
ssumptions to obtain a set of simple parametric updating rules 
hat can be taken to the data. 

Our theory relies throughout on the four high-level assump- 
ions that people (i) pay attention to a given piece of information; 
ii) can easily determine its directional meaning; (iii) form reason- 
ble estimates of its strength; and (iv) are at least partially aware 

hat this estimate is imperfect. We think these assumptions hold 

n many important settings, including the ones we consider in our 
mpirical analysis. There are, however, important cases in which 

ach may be violated, such as when people (i) simply ignore very 

eak information; (ii) are unsure of a signal’s directional mean- 
ng; (iii) form systematically biased strength estimates; or (iv) fail 
o account for estimation noise. These potential violations under- 
core that our theory is not intended to provide a universal ex- 
lanation for all under- and overreaction. Rather, our goal is to 

dentify a single important mediating factor that helps explain 

ehavior parsimoniously across a range of common situations. 
To test our theoretical predictions, we study how people’s re- 

ction to new information varies when signals are weak versus 
1. We largely use the terms “overinfer” and “overreact” interchangeably. How- 
ver, we see a subtle difference: a person “overinfers” if they perceive a signal as 
ore informative than a Bayesian would, whereas “overreaction” is the resultant 

ehavior of reacting too strongly. We generally use “overinfer” when we are clearly 
iscussing overestimating signal strength (such as in our theory), while we gen- 
rally use “overreact” when discussing observable behavior. We only highlight the 
ifference when there is a contaminating force (such as base-rate neglect) that 
ight cause beliefs to react too strongly for a reason other than overinference. 
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strong. To do so, we create three controlled lab experiments (with
preregistered hypotheses) and study two empirical environments
in which signal strengths vary systematically and updating be-
havior can be measured consistently. Although the environments
and methods differ, we find consistent results across each of the
settings. 

The first two experiments (Studies 1a and 1b) use the clas-
sic “bookbag-and-poker-chips” paradigm ( Green, Halbert, and
Robinson 1965 ). This is the most commonly used experimental
setup to study belief updating; for example, Benjamin’s (2019)
survey of the literature includes 500 experimental treatment
blocks across 21 papers that study inference from symmetric bi-
nary signals about a binary state, which is our main focus. Belief
updating in these settings often features underreaction relative
to Bayes’ rule, with Benjamin ’s Stylized Fact 1 stating that “Un-
derinference is by far the dominant direction of bias” (p. 108).
The vast majority of this evidence, though, is on strong signals:
in all of these papers where people receive one symmetric binary
signal, its diagnosticity—the likelihood of seeing a “high” signal
conditional on the “high” state—is never lower than 

3 
5 . Our hy-

pothesis is that people will overinfer given lower signal strengths.
There is a hint of the importance of signal strength for underre-
action in these studies: Benjamin notes that “Underinference . . .
is more severe the larger is the diagnosticity” (p. 118), suggesting
that the pattern may flip. We hypothesize that this is indeed the
case. 

To test our hypothesis, in Study 1a we run this standard ex-
periment with 500 participants using our much wider range of
signal strengths. In the main treatment, participants are pre-
sented with two decks of cards: a green deck containing more
spades than diamonds, and a purple deck with more diamonds
than spades. Participants see a single card drawn from one of the
two decks, and they must then estimate probabilities for which
dec k was c hosen based on the suit of the drawn card. We vary sig-
nal strength by changing the number of spades and diamonds in
eac h dec k. This design broadly aligns with our theoretical setup:
the direction to update is fairly clear (e.g., a spade is evidence for
the green deck), but the correct magnitude is less obvious (requir-
ing clear understanding of the data-generating process, correct
use of Bayes’ rule, and exact calculation of the proportion of suits
in each deck). 
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We find that almost all participants update their beliefs in 

he right direction, but there is substantial heterogeneity in how 

uch they revise their beliefs. We interpret this as showing that 
articipants know to update in a particular direction, but they 

iffer in how they perceive the strength of the signal. Notably, 
articipants’ answers are not random: the average perceived sig- 
al strength rises monotonically with the true strength. Our main 

esult, however, is that this relationship is muted, leading to over- 
eaction to weak signals and underreaction to strong signals in a 

anner consistent with our theory. Reassuringly, our estimates 
f the magnitudes of underinference for the high-strength signals 
re in line with the previous literature. It is only in the previ- 
usly understudied low-strength signals, with diagnosticity below 

3 
5 , that we find overinference: for very weak signals, participants 
ct as if signals are twice as strong as they truly are. 

Study 1a focuses on the case in which both decks are equally 

ikely to be drawn ex ante, so we conduct a follow-up in Study 1b 

n which we systematically vary the prior (considering values of 
1 
4 , 

1 
3 , and 

1 
2 ) in addition to the signal strength. All of our main 

ndings continue to hold. Participants again overreact to weak 

ignals and underreact to strong signals. While we estimate that 
eople exhibit modest base-rate neglect, our core findings about 
nference are not substantially affected. In other words, although 

eople’s biases in using base rates can affect how they react to 

ew information, disentangling these biases from our effects does 
ot impact our conclusion that people overinfer from weak signals 
nd underinfer from strong signals. 

Exploring heterogeneity in updating, both experiments pro- 
ide further evidence in line with the theoretical framework. In- 
uitively, the theory suggests that our effect will be stronger for 
eople with less precise estimates of the signal strength. Con- 
istent with this prediction, we find that our effect is stronger 
or people who exhibit more variance in their level of under- and 

verinference in Study 1a and 1b, have less task experience in 

tudy 1a and 1b, have lower scores on a cognitive reflection test 
adapted from Frederick 2005 ) in Study 1a, and state that they 

re more uncertain about their answers in Study 1b (adapted 

rom Enke and Graeber 2023 ). 
Studies 1a and 1b provide clean evidence for our effect, as 

he bookbags-and-poker-chips setting allows us to manipulate the 

ata-generating process (DGP) and compare people’s behavior to 

n objective benchmark. But this control comes with some costs: 
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the setting is quite abstract, and signals are difficult to under-
stand largely as a result of numerical and calculation-related
complexity. As with many experiments, one may be concerned
that people treat this math exam–like situation in a different way
than in real-life scenarios. 

Given this concern, Study 2 analyzes belief updating in
a more naturalistic setting, where participants are not pro-
vided with precise numbers representing likelihoods or signal
strengths. Because naturalistic DGPs are often highly compli-
cated, it is challenging to find an appropriate environment. Such
an environment must (i) be reasonably understood by partici-
pants, (ii) allow for clean variation in signal strength, and (iii)
allow some way to estimate the correct answer in order to calcu-
late under- and overreaction. To address these challenges, we de-
sign a new experiment in which we ask basketball fans to predict
the outcome of an NBA basketball game given sequences of game
scenarios. For example, we elicit the probability that a team wins
when they are ahead by one point with two minutes left in the
game, and then we elicit it again given a scenario in which they
have just made a shot to go ahead by three points a few seconds
later. Although the DGP itself is complex, (i) the scenario is simple
enough for basketball fans to immediately understand it, (ii) the
strength of the same news (like a scored basket) changes over the
course of the game, and (iii) we can use a data-driven, third-party
benchmark estimate of signal strength. Note again that as in our
theory, the direction of the news is clear (a made shot increases
the probability of winning), but the exact change in probability in
different scenarios is less clear (requiring some estimation pro-
cess given personal experience and understanding of basketball
games). Though there are costs in moving a wa y from a fully con-
trolled DGP, this environment provides a much more naturalistic
source of uncertainty about signal strengths. 

To implement Study 2, we recruited 500 basketball fans, pro-
viding them with sequences of events over the course of four quar-
ters of a hypothetical NB A game . Here , the variation in infor-
mation strength is largely driven by timing: making a basket to
take a lead in the fourth quarter is a much stronger signal than
making a basket in the first quarter. As in the abstract experi-
ments, we find that the vast majority of participants update in the
right direction, but there is dispersion in the perceived strength of
each signal. Crucially, people again are not answering randomly:
on average, a basket is seen as a stronger signal in the fourth
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uarter than in the first. But just as before, the relationship is 
uted, such that people on average overreact to weak signals (in 

he first quarter) and underreact to strong signals (in the fourth 

uarter), switching from over- to underreaction on average in the 

hird quarter. Overall, these findings replicate the core findings 
rom Studies 1a and 1b in a more realistic setting. 

Although Study 2 is more naturalistic than Studies 1a and 

b, it still places participants in a new experimental paradigm 

ith fictional scenarios and relatively low stakes. In light of these 

oncerns, we turn to evidence from more realistic high-stakes set- 
ings by studying the movement of market-implied probability 

istributions in both (i) sports betting markets and (ii) finan- 
ial markets. For (i), we use over 5 million transactions from a 

arge sports prediction market for five major sports, correspond- 
ng to about 260,000 sporting events. The market-implied beliefs 
or these sporting events—particularly the subsample of NBA 

ames—provide an empirical analogue to our Study 2. For (ii), we 

tudy S&P 500 index option markets, using option-implied beliefs 
egarding the future value of the S&P from daily option prices ob- 
erved over a roughly 20-year span. 

These settings allow us to examine external validity but 
ome with their own challenges. Perhaps the most important 
ne is that we can no longer create credible estimates of the 

ayesian probability for a given situation, as we see neither 
he full information set of participants nor the structure of the 

GP. 2 To overcome this challenge, we develop a new empiri- 
al method based on theoretical results from Augenblick and 

abin (2021) and Augenblick and Lazarus (2023) . The core 

ntuition of these papers is that when a Bayesian is chang- 
ng their beliefs over time about some event, they must be 

earning something and thus on average must reduce their 
ncertainty correspondingly. This intuition can be formalized 
2. In our finance data, it is clear that creating a “correct” forecast of the dis- 
ribution of future outcomes is infeasible. In the sports data, one could create a 
easonable forecast given observables (like score and game time), but this would 
ot reflect the observer’s full information set (injury or foul issues, game impor- 
ance, whether Drake is courtside, etc.), and therefore stating that the observer’s 
eliefs are wrong is dubious. This is not an issue in the experiment because partic- 
pants’ information sets are limited and controlled by the experimenter. We also 
ace challenges related to the use of prices (which reflect the marginal trader’s 
eliefs and risk preferences) instead of individual beliefs. We discuss how we deal 
ith these in Section IV . 
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by defining movement as the sum of the squared deviations
of changes in beliefs over time, and uncertainty reduction as the
drop in perceived variance in the outcome. While movement and
uncertainty reduction may differ for a given signal realization,
they must be equal in expectation across signal realizations, re-
gardless of the DGP. This insight allows for a DGP-agnostic test
of Bayesian updating in observational data. And crucially, these
statistics are intuitively and theoretically related to over- and un-
derinference: overinference will lead to positive excess movement
relative to uncertainty reduction on average, while underinfer-
ence will lead to too little movement relative to the reduction in
uncertainty. 

While this allows for an intuitive test of over- vs. underinfer-
ence with an unknown DGP, to test our theory, we also need to
distinguish situations in which signals are weak versus strong.
Given that the signal strength is also unobservable, we turn to
the same separating variable from Study 2: time to resolution. As
in the experiment, our insight is that when a person is predict-
ing the value of the S&P 500 in three months, information today
should generally not lead to much belief movement; meanwhile,
information today is highly informative for the value of the S&P
tomorrow, and we should accordingly observe more movement of
short-horizon beliefs in response to information. 3 Our theory then
intuitively suggests that there should be too much movement (ev-
idence for overinference and overreaction) at long forecast hori-
zons and too little movement (vice versa) at short horizons. 

Turning to the data, we find strong and consistent evidence
for the hypothesized effect in both sports betting and financial
markets. Both uncertainty reduction and movement increase over
time as resolution approaches, but movement is generally higher
than uncertainty reduction early on (i.e., far from resolution), and
lower toward the end of the event. For example, in the options
data, there is very little daily uncertainty reduction until a few
weeks before the contract expires, but beliefs consistently move
back and forth, generating excess movement. In other words,
news today appears to hold relatively little information about
the value of the S&P in multiple months, but the market acts
3. The relationship between the time horizon and signal strength of course 
depends on the exact DGP. We show that the predicted relationship holds strongly 
in simulations of game-like DGPs; it also holds in standard option pricing models. 
More importantly, it clearly holds in our empirical settings. 
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s if it has more diagnosticity. However, within two weeks of a 

ontract’s resolution, the relationship reverses: movement is ei- 
her less than or equal to uncertainty reduction. That is, as sig- 
als become stronger, the market begins to underreact. On net, 
otal movement averaged over an entire option contract is too 

igh, matching the finding of excess movement in Augenblick and 

azarus (2023) . But this overall average masks meaningful het- 
rogeneity as one varies the signal strength, in the manner pre- 
icted by our theory. The same broad pattern holds in the sports 
etting data we consider. In both cases, the results are clear both 

isually and in formal statistical tests on movement and uncer- 
ainty reduction. 

Given that we cannot observe true signal strength, we must 
ely on our indirect measure (time to resolution) to test the re- 
ationship between signal strength and over- versus underreac- 
ion in our two real-world high-stakes settings. The strength of 
ur experimental settings, meanwhile, is that these variables are 

bservable or plausibly constructable, but the experiments are 

ower-stakes and less realistic. The multiple settings thus pro- 
ide complementary evidence for our theory, whose predictions 
lign well with both sets of data. 

Our experimental results relate to a large literature on up- 
ating, including many publications documenting other forms 
f over- and underinference; we provide a brief and incomplete 

eview here. Classically, our article is most closely related to 

hillips and Edwards (1966) and Griffin and Tversky (1992) . 
hillips and Edwards are the first we know of to consider the 

ffect of signal strength on inference, in an unincentivized task 

ith many sequences of signals. Griffin and Tversky’s inference 

xperiments focus on sample proportion and sample size effects 
n updating from multiple signals, but they also show evidence 

or insensitivity to the discriminability of a given signal, which 

orresponds to our definition of signal strength. 
More recently, Gonçalves, Libgober, and Willis (2024) find un- 

erreaction to strong signals but even further underreaction to 

he retraction of those signals, while Kieren, Müller-Dethard, and 

eber (2024) find overreaction to disconfirming signals. Bordalo 

t al. (2023) also document evidence for insensitivity to signal 
trength, along with a range of other results (including multi- 
odality and instability in updating) across tasks; we discuss 

ow our modeling approach complements and contrasts with 

heirs in Section II . Other recent papers ( Bordalo et al. 2020 ; 
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Afrouzi et al. 2023 ; Fan, Liang, and Peng 2024 ) consider forecast-
ing rather than inference behavior; we discuss our framework’s
applicability and connections to this literature in our conclusion.
Ba, Bohren, and Imas (2024) run an experiment confirming many
of the patterns that we originally documented in our Study 1a,
and they argue with additional studies that the patterns they
observe are consistent with a two-stage model of channeled at-
tention, followed by cognitively imprecise updating. We see these
results as complementary. 

Two particularly important recent influences on this paper
are Khaw, Li, and Woodford (2021) and Enke and Graeber (2023) .
Khaw, Li, and Woodford (2021) present a model of cognitive noise
that connects mental errors in perceiving and encoding informa-
tion with insensitivity to information in choice tasks. We build off
the structure of this model to study updating, under the premise
that people form imperfect estimates of a signal’s strength using
multiple possible processes (such as making simplifying assump-
tions about the DGP, attending to certain information, and im-
perfectly processing that information). Enke and Graeber (2023)
present a related model of cognitive uncertainty in which people’s
perception of new information is noisy. This leads people to be in-
sensitive to new information overall and to shade their posterior
toward their prior, such that they underinfer on average. Our ar-
gument follows similar logic with one key distinction: we focus on
settings where people have no issue determining the direction of
the signal, but perceive the strength of the signal imperfectly. Peo-
ple thus do not shade toward their prior belief, but rather toward
the belief given a signal with an “average” strength. The relative
perception of signal strength determines whether people under-
infer or overinfer, and we predict overinference when signals are
weak. 4 

Our results are further related to a large literature using as-
set prices for evidence on beliefs, as surveyed in Barberis (2018) . 5 

For the overall market, a long literature (building from Shiller
4. Enke and Graeber run a variety of experiments, including one mirroring 
our abstract experiment. As in their paper, we also find that cognitive uncertainty 
correlates with insensitivity to signal strength, but here this leads to greater over- 
inference from weak signals (which they did not include in their experiment). 

5. A smaller, growing literature uses sports betting data to similar ends. As 
a relevant example, Moskowitz (2021) shows that betting returns from the open 

of betting to the start of a game predict reversals from there until the end of the 
game. We focus instead on variation within a game. 
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981 , with more recent work including Barberis et al. 2015 and 

iglio and Kelly 2018 ) argues for a link between apparent excess 
olatility and overreaction. For individual firms, earnings news 
eems to provide strong information about near-term firm fun- 
amentals ( Kormendi and Lipe 1987 ; Bouchaud et al. 2019 ), and 

ultiple papers (e.g., Bernard and Thomas 1989 ; DellaVigna and 

ollet 2009 ) provide evidence that post–earnings announcement 
rift arises from the market underreacting to such news. A host 
f other factors, including uninformative news content ( Tetlock 

014 ) and a string of good fundamental news ( Bordalo et al. 2024 ), 
redict apparent overreaction and return reversals. 6 Kwon and 

ang (2024) reconcile some of these findings by considering the 

istribution of past outcomes for the given category of news; they 

rgue that categories with more extreme outliers tend to gen- 
rate greater overreaction. Our focus on the informativeness of 
 given signal is conceptually somewhat different. 7 While signal 
trength is clearly not the only relevant factor for belief behavior, 
e contribute by isolating it as a simple, powerful determinant 

n a range of settings, with complementary evidence from both a 

ew set of experiments and market price data. 
We proceed as follows. Section II provides our theoret- 

cal framework; Section III presents the three experiments; 
ection IV analyzes the sports betting and finance data; and 

ection V discusses and concludes. The Online Appendix contains 
odel proofs, additional empirical details and results, and screen- 

hots of the pages in the experiments. 
6. While we do not provide direct evidence, our theory suggests an interpre- 
ation that earnings surprises are strong news about short-term fundamentals 
generating underreaction), while even a string of news gives fairly weak infor- 
ation about the long-run or aggregate regime (leading to overreaction), loosely 

n the spirit of Barberis et al. (1998) . Separately, Giglio and Shue (2014) docu- 
ent underreaction to the passage of time. We view this as underattentiveness to 

ertain relevant aspects of information, as modeled in Section II.D . 
7. That said, we provide only a high-level theory of what default “intermedi- 

te” signal strength people shrink toward. The results of Kwon and Tang (2024) 
uggest that salience of outliers in past data may be important for determining 
his default strength for a given type of signal. 

  

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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II. THEORY 

We consider a setting in which people can easily under-
stand the direction they should update their beliefs after seeing
a signal, but where it may be challenging to understand the
strength of the signal, even if the signal is perfectly observed.
There are a variety of reasons why a person may find it difficult
to fully comprehend the signal strength. In contexts where the
signal strength and correct posterior can in theory be calculated
directly (e.g., in controlled experiments), the person could have
issues undertaking a set of potentially complex mental calcula-
tions but may nonetheless have the ability to generate a rough
estimate. In real-world settings, the person may not fully under-
stand the exact DGP but may nonetheless have a simplified model
of the process. Similarly, the person may only be able to appreci-
ate parts of a complicated signal and thus generate an incomplete
estimate of its strength. In each case, the person is using a cogni-
tive process—whether conscious and deliberative or unconscious
and automatic—to form an estimate of the signal strength. Our
goal is to provide a framework that is broad enough to capture
these different situations. 

After setting up the model in Section II.A , we show how
overinference from weak signals and underinference from strong
signals arises from a set of simple and intuitive (potentially
non-Bayesian) updating rules. In Section II.B , we study a pa-
rameterized model to derive a more concrete relationship be-
tween strength and reaction, which we then use in our ex-
perimental analysis. In Section II.C , we consider how in-
correct priors, base-rate neglect, or uncertainty about direc-
tion may affect the analysis. In Section II.D , we broaden the
analysis to consider multiple people with possibly correlated
estimates, providing a specific example arising from limited
attention. 

II.A. Setup and Main Results 

1. Setup. We consider a person who receives an arbitrary
signal s about a binary state θ ∈ { 0 , 1 } , with s ∈ S generated ac-
cording to the likelihood function p(s | θ ) . As a benchmark for com-
parison, we denote the correct prior that θ = 1 by π0 and the
Bayesian posterior given s as π1 (s ) , or π1 . 
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To formalize the idea that some aspects of a signal are easier 
o understand than others, we break the signal into two compo- 
ents, s = (s d , s m 

) . The first component, s d , determines the direc-
ion of updating and accordingly can only take two values, “posi- 
ive” or “negative.” Given a positive (negative) directional signal, 
he Bayesian posterior is always above (below) the prior. 8 Given 

he direction, the second component s m 

∈ R determines the mag- 
itude or strength of the signal. We define signal strength S for- 
ally as 

S (s ) ≡
∣∣∣∣log 

(
p(s | θ = 1) 
p(s | θ = 0) 

)∣∣∣∣ , 1) 

hich is the magnitude of the log odds ratio of the signal. Defining 

ogit (x ) ≡ log 

( x 
1 −x 

)
, a Bayesian updates such that 

logit ( π1 ( s )) ︸ ︷︷ ︸ 
Logit of 

Posterior 

= logit (π0 ) ︸ ︷︷ ︸ 
Logit of 

Prior 

±︸︷︷︸ 
Signal 

Direction 
(from s d ) 

S (s ) ︸︷︷︸ 
Signal 

Strength 
(from s m | s d ) 

. 2) 

onsequently, fixing π0 , a signal s with a greater signal strength 

 (s ) will lead to a larger absolute change in beliefs | π1 (s ) − π0 | . 

2. Estimates of Signal Strength. Our main behavioral as- 
umption is that a person fully understands the direction of the 

ignal but does not fully understand the magnitude. Instead, we 

ssume that people use some internal process to form a guess 
bout S , which we call an estimate e ∈ R . While the Bayesian uses 
he information in the signal s = (s d , s m 

) , the person we consider 
ses the information in 

ˆ s ≡ (s d , e ) . 
We consider the behavior of the person’s perceived signal 

trength given S , as the perceived signal strength determines the 

erson’s inference from the signal. In Section II.B , we take the 

raditional approach of assuming that the person is a constrained 

ayesian: they only receive a noisy estimate of the strength, 
nd they update correctly given the joint distribution of signal 
trengths and estimates. From these assumptions, we derive the 

arameterized relationship between signal strength and reac- 
ion. Our initial goal in this section, however, is to demonstrate 
8. Formally, s d is such that π1 (s d = positive , s m 

) � π0 � π1 (s d = negative , s ′ m 

) 
or any s m 

and s ′ m 

. Note also that all p(·) can be understood either as mass func- 
ions or densities, while P(·) refers to a probability. 
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the generality of our main effect given very minimal assump-
tions on the distribution of e and assuming intuitive (and poten-
tially non-Bayesian) updating rules. That is, rather than deriv-
ing updating rules under specific (and likely unrealistic) Bayesian
assumptions, we show how our effect occurs under a broad class
of updating rules. 

3. Reasonable Estimates and Updating Rules. We start with
a minimal set of restrictions on the distribution of estimates given
a signal strength, requiring that the estimate be a well-ordered
approximation of the true strength: 

ASSUMPTION 1. For each direction s d , 9 estimates are formed such
that: 

(i) e is unbiased: E [ e | S ] = S . 
(ii) e is well-ordered: p(e | S = S 2 ) 

p(e | S = S 1 ) 
strictly increases in e for all

S 2 > S 1 . 
(iii) e is imperfect: there is no pair (e, S ) such that P( S | e ) = 1 . 

Part (i) is effectively a normalization such that the estimate is
centered around the correct signal strength. Part (ii) assumes the
strict monotone likelihood ratio property (MLRP) on estimates.
This commonly used property implies that higher estimates are
associated with higher levels of S ; under Bayesian updating, this
implies that posteriors for S are monotonic in e ( Milgrom 1981 ). In
our case, we impose MLRP to ensure that the distribution of es-
timates is well-behaved enough to be able to make general state-
ments even in cases of non-Bayesian updating. Part (iii) rules out
trivial cases in which e fully reveals the signal strength S . This
implies that the set of feasible signal strengths is nondegenerate.

Next we consider the person’s prior perceptions of signal
strength. Before observing any information, the person has some
subjective expectation 

ˆ S 0 of signal strength S . After observing if
s d is positive or negative (but before incorporating the estimate
e ), the person updates this expectation to 

ˆ S (s d ) . We do not require
these expectations to be correct, but we do require the minimal as-
sumption that they be within the feasible set of signal strengths: 
9. We allow all statements to potentially condition on s d , but we leave this 
conditioning implicit to ease notation for the distribution of e . That is , p (e | S ) is 
shorthand for p(e | s d , S ) , and so on for related expressions. 
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SSUMPTION 2. ˆ S (s d ) is strictly between min s m S (s d , s m 

) and 

max s m S (s d , s m 

) . 

Given the expectation 

ˆ S (s d ) of S , the person then generates 
n estimate e following Assumption 1 . How will the person up- 
ate given their prior expectation and this new signal? Instead 

f requiring Bayesian updating, we assume only that the person’s 
osterior expectation of signal strength 

ˆ S ( ̂  s ) = 

ˆ E [ S | s d , e ] will move
rom 

ˆ S (s d ) toward e : 

SSUMPTION 3. For all ˆ s , the posterior ˆ S ( ̂  s ) is strictly between 

the prior ˆ S (s d ) and estimate e . 

Crucially, given that the estimate is noisy, we assume that 
he person will not update all the way to e . This intuitive property 

s referred to as “updating toward the signal” (UTS) by Chambers 
nd Healy (2012) , who show that it is satisfied in many commonly 

tudied updating environments. 10 We are, in effect, assuming im- 
licitly that the person is aware that their internal estimate is 
oisy and therefore shades their signal strength belief toward 

heir prior. Note that we place no further restriction on how much 

he person updates from a given e : for all ˆ s , there exists some 
∈ (0 , 1) such that ˆ S ( ̂  s ) = αe + (1 − α) ̂  S (s d ) , but the signal weight
need not be constant and may vary with e (and with s d ). 

To summarize, the person observes a signal s = (s d , s m 

) con- 
aining both directional and magnitude information. A Bayesian 

ould correctly interpret this signal as having strength S (s ) . In 

ontrast, the person in our model understands s d but doesn’t fully 

nderstand s m 

and therefore cannot fully resolve S (s ) . Instead, 
he forms a reasonable, well-ordered, but noisy estimate e of S (s ) . 
he then uses a very general and intuitive updating rule using 

ˆ 
 = (s d , e ) to form her expectation of signal strength 

ˆ S ( ̂  s ) . 

4. Overinference and Underinference. Our primary objec- 
ive is to study whether a person is over- or underinferring 

elative to the full (signal-understanding) Bayesian benchmark. 
hile the Bayesian’s view of the signal strength is fixed at S (s ) 
10. As Chambers and Healy note, some papers assume UTS directly (e.g., 
hapiro 1986 ; Moore and Healy 2008 ), as we do. Note that we assume strict UTS, 
ather than a weaker version in which 

ˆ S (s d ) � ̂

 S ( ̂ s ) � e . 
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given a signal s , a person’s perceived 

ˆ S ( ̂  s ) depends on their es-
timate e , which is stochastic. Consequently, we focus on the ex-
pected perception E [ ̂  S ( ̂  s ) | s ] , and we define over- and underinfer-
ence in the following natural way. 11 

DEFINITION 1. The person overinfers from s if E [ ̂  S ( ̂  s ) | s ] > S (s )
and underinfers from s if E [ ̂  S ( ̂  s ) | s ] < S (s ) . 

Our main result is that this person is biased in their percep-
tion of signal strength: 

PROPOSITION 1 (OVER- AND UNDERINFERENCE). The person over-
infers from weak signals and underinfers from strong signals:
there exists a unique switching point S 

∗ such that they overin-
fer from s if S (s ) < S 

∗ and underinfer if S (s ) > S 

∗. 

The proof, provided in Online Appendix A.1, involves express-
ing E [ ̂  S ( ̂  s ) | s ] − S (s ) as an expectation of a single-crossing func-
tion g(e ) with respect to the conditional distribution p( e | S ( s )) .
Then, using a well-known result (formalized by Karlin 1968 ,
among others) referred to as the variation diminishing property,
the fact that p( e | S ( s )) satisfies the MLRP (by Assumption 1 ) im-
plies that E [ ̂  S ( ̂  s ) | s ] − S (s ) is single-crossing as well: in particular,
E [ ̂  S ( ̂  s ) | s ] − S (s ) > 0 for small S (s ) and E [ ̂  S ( ̂  s ) | s ] − S (s ) < 0 for large
S (s ) , with a unique interior switching point S 

∗. 
Although this proof is slightly involved, the results are

intuitive. First, consider the extreme case in which the per-
son places no weight on their strength estimate e (because
the estimate is extremely noisy, for example). The person will
effectively be fully insensitive to signal strength, such that
they expect the same intermediate strength ( ̂  S (s d ) ) regardless
of actual strength S . This leads to overinference when S is
11. Given our focus on inference from signals of varying strengths, we directly 
define over- and underinference in terms of mean perceived signal strength. Fix- 
ing π0 , this intuitively corresponds to over- and underreaction in beliefs, as belief 
changes | logit ( ̂  π1 (s )) − logit (π0 ) | are generally monotonic in perceived strength 

ˆ S ( ̂ s ) . This connection can fail given the nonlinear mapping from signal strength to 
beliefs, but it will hold to first order (e.g., in a small-noise limit, as in Khaw, Li, 
and Woodford 2021 , Appendix G). We can also simply modify Assumptions 1 –3 to 
focus on beliefs (so e is an estimate of the correct π1 ), in which case our results 
will hold for beliefs. Unless stated otherwise, we assume throughout that belief 
changes are monotonic in 

ˆ S ( ̂ s ) with the correct direction. 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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ow and underinference when S is high. As the weight on 

 rises, the person will still shrink toward an intermediate 

trength as compared to a full Bayesian. The resulting par- 
ial insensitivity to signal strength leads to overinference from 

eak signals and underinference from strong signals on aver- 
ge. 

Note that under our general assumptions, it is not neces- 
arily the case that a person’s expected signal strength 

ˆ S ( ̂  s ) is 
onotonic in e or that the amount of over- or underinference 

 [ ̂  S ( ̂  s ) | s ] − S (s ) is monotonic in S (s ) . 12 Online Appendix A.1 pro-
ides conditions under which these additional monotonicity re- 
ults will hold. As long as the weight placed on the estimate does 
ot fall dramatically given small increases in 

∣∣e − ˆ S (s d ) 
∣∣, then 

ˆ 
 ( ̂  s ) will be monotonic in e , and as long as the weight does not

ncrease strongly in e , then E [ ̂  S ( ̂  s ) | s ] − S (s ) will be monotonic in
 (s ) . 

I.B. Parametric Example: Updating with Log-Normal Estimates 

In the previous subsection, we showed how a person follow- 
ng a set of intuitive (but potentially non-Bayesian) updating as- 
umptions will overinfer from weak signals and underinfer from 

trong signals. We now specialize the model to show that a quasi- 
ayesian facing log-normal distributions will also update follow- 

ng the predictions in Proposition 1 , with the updating rule taking 

 particularly simple form that will then guide our experimental 
nalysis. 13 

First, we assume that signal strength is log-normally 

istributed with log S ∼ N (μS , σ
2 
S ) , regardless of direction. A 

ayesian’s expectation of signal strength after seeing either direc- 
ion is thus ˆ S (s d ) ≡ E [ S | s d ] = exp (μS + 

σ 2 
S 
2 ) . Next, given a specific

trength S , we assume that the person’s estimate e is log-normally 

istributed, log e ∼ N ( log S − σ 2 
e 
2 , σ

2 
e ) . The correction − σ 2 

e 
2 ensures 

hat the estimate is centered around the true signal strength: 
 [ e | S ] = S . 
12. For example, if a person updates from their prior ˆ S (s d ) strongly toward 
he estimate e 1 but very weakly toward the estimate e 2 = e 1 + ε, the person can 

ave a large drop in 

ˆ S ( ̂ s ) from a small increase in e . 
13. The updating rule is similar to one obtained from different foundations 

based on Khaw, Li, and Woodford 2021 and Woodford 2020 ) in a previous version 

f this article ( Augenblick, Lazarus, and Thaler 2023 ). 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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How will a Bayesian then react to e ? Using standard results
given a log-normal likelihood and conjugate prior, the updating
rule for expected signal strength is 

ˆ S ( ̂  s ) ︸︷︷︸ 
Posterior 

Expectation 

= exp 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
1 − σ 2 

S 

σ 2 
e + σ 2 

S 

)
︸ ︷︷ ︸ 

Weight on 
Prior 

· log 

ˆ S (s d ) ︸ ︷︷ ︸ 
(Log Adjusted) 

Prior Expectation 

+ 

(
σ 2 

S 

σ 2 
e + σ 2 

S 

)
︸ ︷︷ ︸ 

Weight on 
Estimate 

·
(

log e + 

σ 2 
e 

2 

)
︸ ︷︷ ︸ 

(Log Adjusted) 
Estimate 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (3) 

Intuitively, the Bayesian will take a weighted average of the ad-
justed prior and estimate in log space, then exponentiate to form
their posterior expectation of strength. The weight on the imper-
fect strength estimate depends on the relative precision of the es-
timate versus the prior: as the precision of the estimate rises, the
weight on the estimate rises; as the precision of the prior rises,
the weight on the estimate falls. 

Given this updating rule, people will overinfer from weak sig-
nals and underinfer from strong signals on average, with a simple
and estimable functional form for the effect. In particular, the ex-
pectation of ˆ S ( ̂  s ) = 

ˆ S (s d , e ) over the distribution of estimates is 

E [ ̂  S ( ̂  s ) | s ] = k S 

β, (4) 

where β ≡ σ 2 
S 

σ 2 
S + σ 2 

e 
∈ (0 , 1) and k ≡ exp ( β

2 σ 2 
e 

2 ) ̂  S (s d ) 1 −β . Note that

E [ ̂  S ( ̂  s ) | s ] � S if and only if S � S 

∗ ≡ k 

1 
1 −β . That is, as in

Proposition 1 , people overinfer from signal strengths below S 

∗ and
underinfer above S 

∗. 
The relationship between reaction and signal strength given

this setup can be represented and visualized in a number of ways.
Taking logs of equation (4) yields 

log ( E [ ̂  S ( ̂  s ) | s ]) = log (k ) + β log ( S ) , (5) 

such that there is a log-linear relationship between the expected
and true signal strength, with a positive intercept and a muted
slope between zero and one. The left panel of Figure I plots this
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FIGURE I 

Theoretical Predictions of Over- and Underinference by Signal Strength 

These figures provide two representations of the core deviation in our model. 
Solid lines correspond to Bayesian updating (correct perception of signal strength 

S ), dotted dashed lines to underinference (with perceived signal strength 0 . 8 · S ), 
short dashed lines to overinference (perceived signal strength 1 . 2 · S ), and darker 
dashed lines to the over- and underinference behavior in the parametric version 

of our model (perceived signal strength k · S 

β with k = 0 . 88 and β = 0 . 76 , as esti- 
mated from Study 1a). The left panel plots signal strength perception as a function 

of signal strength on a log-log scale. The right panel plots the weight put on sig- 
nals as a function of the true precision. Both panels show that our model predicts 
overweighting of weak signals and underweighting of strong signals. 
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elationship given the parameters k and β we estimate from our 
rst experiment (discussed further in Section III ). For compari- 
on, we also plot the relationship for a Bayesian (for which they 

re equal), a person who exhibits constant underinference, and a 

erson who exhibits constant overinference. 
This relationship can also be represented in terms of the ef- 

ective weight a person places on a signal with strength S . While a 

ayesian observing the full signal will update following equation 

2) using S , a person in our model updates as if the signal strength 

s, on average, ˆ w ( S ) S for some weight function ˆ w ( S ) . The full 
ayesian effectively uses w( S ) = 1 , while for our model, 

ˆ w ( S ) = k S 

−(1 −β ) . 6) 

his weight is greater than one for weak signals and less than 

ne for strong signals. Note that ˆ w ( S ) approaches one as β → 1 , 
o the degree of over- and underinference shrinks as the person’s 
stimation process becomes more precise. 

Rather than using the relationship in equation (6) directly, 
e often follow past literature ( Benjamin 2019 ) and focus on 

he relationship between the inference weight and signal di- 
gnosticity or precision ρ(s ) . For a symmetric signal (where 

art/qjae032_f1.eps
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p(s | θ = 1) = 1 − p(s | θ = 0) ), signal precision is ρ(s ) ≡
max { p (s | θ = 1) , p (s | θ = 0) } = logit −1 ( S (s )) , which is a mono-
tonically increasing transformation of strength S (s ) . 14 The
qualitative relationship between weight and precision matches
the relationship between weight and strength. In particular, the
weight ˆ w (s ) is above one for low precisions and below one for high
precisions: 

ˆ w (s ) = ( logit (ρ∗)) −(1 −β ) 
∣∣logit (ρ(s )) 

∣∣−(1 −β ) 
, (7) 

where ρ∗ ≡ (
1 + exp (−k 

− 1 
1 −β ) 

)−1 is the switching point. The right
panel of Figure I plots this relationship, again using parameters
k and β estimated from the experiment and again as compared
with Bayesian updating, underinference, and overinference. We
return to these graphs in Section III . 

II.C. Relaxing Assumptions 

1. Prior Belief Distortions. We have assumed to this point
that the person starts with a correct prior, ˆ π0 = π0 . If the person
has an incorrect prior that is observable (and otherwise updates
according to the assumptions in Section II.A ), it is straightfor-
ward to correct for the distortion induced by ˆ π0 	 = π0 in our empiri-
cal analysis. Rather than estimating perceived signal strength us-
ing 

∣∣logit ( ̂  π1 (s )) − logit (π0 ) 
∣∣from equation (2) , the incorrect prior

can be controlled for by using 

∣∣logit ( ̂  π1 (s )) − logit ( ̂  π0 ) 
∣∣. The per-

son uses their perceived signal strength to update from their
prior to their posterior, so perceived strength can be backed out
from the posterior and prior, and Proposition 1 continues to pro-
vide testable predictions. Note that this is true even if the per-
son’s prior ˆ π0 arose after updating from an estimate of the previ-
ous period’s signal. In this case, even though the person used a
noisy estimate and was insensitive to the past signal strength,
ˆ π0 incorporates this uncertainty. See Online Appendix A.3 for
details. 

This analysis becomes more complicated if the person’s prior
is not observed, or if the person uses their prior in a nonstandard
w ay (e .g., with base-rate neglect). For example , suppose that an
experiment provides a person with both an endowed prior π0 and
14. Signal precision is by definition between 

1 
2 and 1. When π0 = 

1 
2 (as in our 

first experimental study), the Bayesian posterior after a positive signal is equal to 
the signal precision, π1 (s ) = ρ(s ) . 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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 signal s simultaneously, and asks for a single updated posterior. 
f people are unsure how to use both the prior and the signal, or 
se a distorted version of the prior due to base-rate neglect, their 
ingle answer will reflect both their prior distortion and our ef- 
ect. Online Appendix A.3 discusses in more detail how these prior 
istortions contaminate people’s reactions and when they poten- 
ially overwhelm our effect. We use two approaches in our exper- 
ments to control for this issue. In Study 1a, we focus on uninfor- 

ative priors π0 = 0 . 5 , where biases like base-rate neglect have 

o impact. In Studies 1b and 2, we vary the prior and then con- 
rol for potential base-rate neglect using a regression approach 

ollowing Grether (1980) . 

2. Uncertainty about the Direction. Our theory is geared to 

ituations in which people know the correct direction to update 

ut are unclear about the signal strength. In this case, imper- 
ect estimates lead to insensitivity to strength, which leads to our 

ain effect. We can extend the model to situations in which the 

erson is unsure about both the direction and strength of the sig- 
al (such that the person forms an estimate e of signed signal 
trength S signed ≡ log 

(
p(s | θ=1) 
p(s | θ=0) 

)
and does not observe the direction 

irectly). This version of the model is closely related to that of 
nke and Graeber (2023) (except that we work in signal-strength 

pace instead of probability space), and we also predict that in- 
ensitivity without directional information generally leads to un- 
erinference. 15 Intuitively, if people do not know the directional 
eaning of a signal, they shade toward a reaction of zero. See 

nline Appendix A.3 for details. 

I.D. Multiple People, Limited Attention, and Correlated 

Estimates 

The analysis thus far has focused on the expected reaction 

f a single person. In this section, we instead consider the aver- 
ge response across different people i = 1 , . . . , N (where N should 

e thought of as large). A natural preliminary way to extend 
15. That said, our definition of underinference becomes strained in this con- 
ext, so we are reluctant to make strong statements. For example, suppose the 
orrect signed signal strength is 2, but a person perceives it to be −1. Is this an 

nder- or overinference? In our main model, this issue does not arise because we 
ssume that the correct updating direction is known, which we believe is typically 
he case in our empirical settings. 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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our analysis to this case is to assume that each person under-
stands the direction s d and generates a mutually independent
strength estimate e i . That is, people see the same signal and
agree on its direction, but there is diversity in people’s estimated
signal strengths due to different interpretations, models, or
perceptions of the problem. Under this assumption, our results
(immediately) continue to hold across people. Specifically, define
the expectation over people given s as E i [ ·| s ] and the person-
specific strength perception as ˆ S i ( ̂  s i ) . Then, rather than focusing
on expected perceived strength of an individual across potential
estimates E [ ̂  S ( ̂  s ) | s ] as in Proposition 1 , the same results hold tak-
ing the expectation across people E i [ ̂  S i ( ̂  s i ) | s ] (see Online Appendix
A.4 for a more formal discussion). Intuitively, under the assump-
tion that estimates are independent across people, there is no for-
mal distinction between taking the expectation with respect to
the distribution of estimates and taking a cross-sectional expec-
tation across people. 

The assumption of independent estimates is appropriate for
some situations. For example, in Study 2, we ask people to up-
date their subjective probability of a team winning a basketball
game after observing a made or missed basket in simple situa-
tions. We find that people’s perceptions of the strength of a given
signal tend to be diverse and smooth, presumably because people
have different ways of using their knowledge and experiences to
estimate its effect. Similarly, in Studies 1a and 1b, signals are pre-
sented in a computationally challenging form (e.g., a signal with
conditional likelihood 202/337). We again find similar diversity
and smoothness in responses, likely because people have differ-
ent estimates of the precise value of this number and how to use it
to form a posterior. However, there are also natural situations in
which people might form correlated estimates of a given signal’s
strength. For example, people may have similar simplified models
of a given DGP or similar strategies for combining available infor-
mation to determine a signal’s meaning. Similarly, some dimen-
sions of a piece of information may be more salient than others,
such that people incorporate similar dimensions in forming their
estimate of signal strength. These cases will lead to correlated
estimates across people and potentially non-smooth multimodal
posterior belief distributions, as in Bordalo et al. (2023) . 

1. Example: Limited Attention. To study correlated esti-
mates more formally, we consider a case in which the signal’s

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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trength component (the second entry in s = (s d , s m 

) ) has multi- 
le dimensions: s m 

= (s m, 1 , . . . , s m,n ) . While a Bayesian uses all 
omponents to determine signal strength, people in our model 
ave limited attention, have limited processing ability, or attend 

pecifically to certain features of the signal, such that they only 

ppreciate a subset of components. Correlation in estimates will 
ccur if people focus on the same components. 

Specifically, we assume that regardless of direction, the 

omponents s m, j are independently and identically distributed 

 (μS , σ
2 
m 

) , and the true log signal strength is the average of these 

omponents: 

log S = 

1 

n 

n ∑ 

j=1 

s m, j . 

onsequently, signal strength is log-normally distributed, log S ∼
 (μS , σ

2 
S ) , with σ 2 

S = 

σ 2 
m 
n . While a Bayesian uses all n components 

nd can determine S , person i only attends to n i � n of the compo- 
ents, captured in a fixed person-specific vector a i ∈ { 0 , 1 } n , where 

 i, j = 1 if the person attends to component j. Given this setup, 
erson i ’s best (log) estimate of S is 

log e i = 

1 

n i 

n ∑ 

j=1 

1 (a i, j = 1) · s m, j −
σ 2 

e,i 

2 

, 

here σ 2 
e,i = 

n −n i 
n ·n i σ

2 
m 

= 

n −n i 
n i 

σ 2 
S (with the term − σ 2 

e,i 
2 again included 

o that E [ e i | S ] = S ). The estimate e i is log-normally distributed 

onditional on S , log e i ∼ N ( log S − σ 2 
e,i 
2 , σ

2 
e,i ) . This setting thus 

aps to the one in Section II.B , with σ 2 
S = 

σ 2 
m 
n and σ 2 

e = σ 2 
e,i = 

n −n i 
n ·n i σ

2 
m 

. That is, that model can be microfounded with people 

ho only consider a subset of the full signal. 16 Crucially, though, 
his multicomponent model produces correlated updating behav- 
or across people, governed by the overlap in a i across i . 

This correlation can create a specific type of violation of 
roposition 1 . That result says that all signals s of a given 

trength S (s ) will lead to over- or underinference in the same way 

n average. But in this setting, the same is not necessarily true. 
16. The strength sensitivity parameter β in equation (4) becomes βi = 

n i 
n . So 

xing n , an increase in n i (e.g., due to greater sophistication) leads to less noisy 
stimates and less insensitivity to true strength for person i . An increase in n (e.g., 
rom a more complicated signal) generates the opposite behavior for all i . 
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To take an extreme example, if everyone focuses on the same com-
ponents, then they will have the same estimate e i for a given sig-
nal s . While this estimate is random conditional on S (it is drawn
from a distribution with mean S ), it is not random conditional on
the full signal s (since s contains the entries that will be used to
determine log e i ). This suggests a simple adjustment under which
our results do apply: when over- and underinference are defined
conditional on S rather than s , then a version of the proposition
holds (see Online Appendix A.4). That is, our results hold when
averaging over signals of the same strength. 

Finally, as we discuss in Online Appendix A.4, it is possible
to obtain more precise predictions about the correlation in updat-
ing behavior under different sets of assumptions about the signal
components or attention vectors. If there are few components or
all people are drawn to a small set of salient components, people’s
estimates will be correlated, and we may see multimodality in re-
sponses. 17 If people must estimate a probability given a complex
DGP and a rich signal, or if the main salient part of a signal is the
direction s d (as may sometimes apply in time-series settings), we
might expect more independent strength estimates and smoother
distributions of resulting strength perceptions. 

To summarize, we model an updating environment in which a
person knows the directional meaning of signals but only forms a
rough estimate of the exact strength. Because this estimate is im-
perfect, the person shades their perceived strength toward some
intermediate value, which leads to overinference from weak sig-
nals and underinference from strong signals on average. In the
following sections, we test this core prediction for updating in
a range of environments. We also predict that the effect will be
dampened as a person’s estimate becomes more precise. Estima-
tion precision will increase with more thought or sophistication,
more experience, or attending to more components in a multidi-
mensional problem. While estimation precision is not directly ob-
servable, we test this relationship using a variety of proxies in
our experiments. 
17. For example, if an abstract problem only includes a few numbers rep- 
resenting the “prior” and a “signal,” we might see some people focusing on the 
prior, some on the signal, and some on both. Bordalo et al. (2023) provide a richer 
foundation and set of predictions for this form of behavior arising from bottom-up 
attention to salient features, which further speaks to instability across problems 
with the same correct answer. 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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III. EXPERIMENTAL EVIDENCE 

To test our core prediction that people overinfer from weak 

ignals and underinfer from strong signals, we design and con- 
uct three experiments. Each experiment studies the causal ef- 
ect of varying signal strengths on participants’ updating behav- 
or and, by implication, the level of over- and underinference. The 

rst experiment (Study 1a) adapts a classic belief-updating de- 
ign from Green, Halbert, and Robinson (1965) . The next experi- 
ent (Study 1b) replicates the first one and expands the analysis 

y varying the prior and eliciting a more direct proxy for pre- 
ision in signal strength estimates. The final experiment (Study 

) uses a novel naturalistic design in which participants predict 
he win probability of basketball games. Each study was pre- 
egistered, 18 and we largely follow the preregistration plans, al- 
hough some of the estimated results from the first study appear 
n Online Appendix B to conserve space. We note these cases in 

he main text. 

II.A. Study 1a: Abstract Updating Experiment 

1. Design. The design of the first experiment follows the 

road “bookbag-and-poker-chips” (or “balls-and-urns”) paradigm, 
hich is a benchmark design for measuring underinference and 

verinference in past literature ( Benjamin 2019 ). Participants are 

old that there are two card decks, each with N cards. One deck is 
abeled Green, and the other is labeled Purple. Each deck is com- 
osed of Diamond cards and Spade cards, with the Green deck 

aving D 1 Diamonds and N − D 1 Spades and the Purple deck 

aving D 2 Diamonds and N − D 2 Spades. 
In the main treatment, the computer chooses either the 

reen or Purple deck with equal probability. Participants do not 
bserve the color. Instead, participants are shown the suit of a 

ingle card drawn from the chosen deck. Given this signal, par- 
icipants are asked to provide a percentage chance that the cho- 
en deck is Purple or Green. These probabilities are restricted to 

e between 0% and 100% and must sum to 100. In addition to 

he main treatment, there are treatments with multiple draws 
f cards, elicitation of willingness to pay for drawing cards, and 

here the signal precision is unknown. The timing of the treat- 
18. Study 1a: https://aspredicted.org/ax4wg.pdf ; Study 1b: https://aspredicted. 
rg/8Q4 _ 6Y9 ; Study 2: https://aspredicted.org/SYW _ QWF . 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://aspredicted.org/ax4wg.pdf
https://aspredicted.org/8Q4_6Y9
https://aspredicted.org/SYW_QWF
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ments and more details are described in Online Appendix B.1.
Screenshots of the experimental interface are in Online Appendix
C. 

The relative proportion of suits in each deck determines the
signal strength of observing a card. For example, if the Purple
deck contains a large proportion ρ1 = 

D 1 
N 

of Diamonds, while the
Green deck contains a very small portion ρ2 of Diamonds, a Di-
amond card is a strong signal that the chosen deck is Purple.
Given our core prediction, we vary these proportions to vary sig-
nal strength. Following the literature, we largely focus on sym-
metric signal structures, in which ρ ≡ ρ1 = 1 − ρ2 . We choose 32
possible values of ρ within the range [0.047, 0.495] or [0.505,
0.953]. These values correspond to 16 possible signal strengths
( S = 

∣∣logit ρ
∣∣) in the range S ∈ [0 . 02 , 3 . 00] . 19 On each question, we

randomized whether the Green deck or Purple deck had more Di-
amonds or Spades, which suit was chosen, and whether the num-
ber of cards in a deck N was 1,665 or 337. 20 

We use monetary incentives to elicit participants’ beliefs, as
incentives have been shown to improve decision making in these
settings (e.g., Grether 1992 ). We implement a version of the bi-
narized scoring rule ( Hossain and Okui 2013 ) that is easier for
participants to comprehend: paired-uniform scoring ( Vespa and
Wilson 2017 ). 21 Participants’ answers determine the probability
that they win a high bonus as opposed to a low bonus. 

2. Implementation. Study 1a was conducted in March 2021.
Participants were recruited from the online platform Prolific
( prolific.co ). Prolific was designed by social scientists in order to
attain more representative samples online; it has been shown to
perform well relative to other participant pools ( Rigotti, Wilson,
and Gupta 2023 ). Five hundred participants completed the ex-
periment and passed the attention c hec k, of whom five were ran-
domly chosen to win bonuses (either a high bonus of $100, or a
19. More specifically, we choose whole numbers of cards such that signal 
strengths would be closest to the following values: { 0 . 02 , 0 . 05 , 0 . 10 , 0 . 15 , 0 . 20 , 
0 . 30 , 0 . 40 , 0 . 50 , 0 . 75 , 1 . 00 , 1 . 25 , 1 . 50 , 1 . 75 , 2 . 00 , 2 . 50 , 3 . 00 } . 

20. The deck sizes are intentionally large and irregular to allow for a wide 
range of signal strengths, remove clear anchor points for people’ s answers , and 
induce some uncertainty in mental calculations. 

21. In general, binarized scoring rules have been argued to better account 
for risk aversion and hedging than other incentive rules ( Azrieli, Chambers, and 
Healy 2018 ). 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://prolific.com
file:prolific.co
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ow bonus of $10). All participants received a $3 show-up fee, and 

he average bonus earnings for the selected participants was $82. 
Participants play 12 rounds in the main part of the study, in 

ach of which they observe one draw of a card. We elicit 6,000 pre- 
ictions in this part: 4,036 from one symmetric signal, and 1,964 

rom one asymmetric signal. To test that participants have a 

asic understanding of the setting, we randomly make 72 signals 
ully uninformative. 22 The rest of the study includes an atten- 
ion c hec k, multiple draws of cards, demand for information, and 

ignals with ambiguous strength. Given space constraints and to 

mphasize our core results, we largely focus on the main treat- 
ent, where people see one symmetric signal and signal strength 

oes not depend on the signal realization. Details for the addi- 
ional treatments are in Online Appendix B and a previous work- 
ng paper version of this article ( Augenblick, Lazarus, and Thaler 
023 , hereafter ALT 2023 ). 

3. Main Results. In the main condition where signals are 

ymmetric, the signal precision from learning the suit of one 

rawn card is ρ = ρ1 = ρ2 . Given that the prior is 1 
2 (both decks 

re equally likely to be chosen), a Bayesian will place probability 

that the card was drawn from the deck that contains more of 
hat card’s suit. 

We used Figure I in the theory section to visually represent 
ur core predictions under the log-normal parameterization of our 
odel. Figure II presents the same graphs with the addition of 

he actual data from the experiment, where we back out partic- 
pants’ perception of signal strength from their posterior (given 

 fixed prior of 1 
2 ). We compare our estimates for each condi- 

ion (black circles) and the fitted predictions of the parameterized 

odel (dashed lines) with Bayesian updating (solid lines). The 

eft panel shows that participants’ behavior is not purely random: 
hey qualitatively understand that stronger signals are in fact 
tronger, as average perceived signal strength rises monotonically 

ith true strength. But this relationship is quantitatively muted, 
o participants systematically overinfer from weak signals and 

nderinfer from strong signals. As in the parameterized model, 
his relationship between true and perceived signal strength is 
lose to linear in logs. 
22. That is, both decks have exactly the same composition, so the correct up- 
ate is to stay at 50%. Reassuringly, 96% of participants answer exactly 50%. 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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FIGURE II 

Study 1a: Over- and Underinference by Signal Strength 

The left panel plots the perceived signal strength (the logit belief change) as a 
function of true signal strength on a log-log scale. The right panel plots the aver- 
age weight participants put on signals relative to a Bayesian for whom the weight 
is one. In both panels, black markers plot the data (with 95% confidence inter- 
vals). Observations are winsorized for each signal strength category at the 5% 

and 95% levels. Dashed lines fit the data using the power weighting function from 

equation (6) , estimating parameters using nonlinear least squares. Thicker solid 
lines indicate Bayesian behavior. Both panels show that participants overweight 
weak signals and underweight strong signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
The right panel presents the same information in a different
way, showing that people are effectively overweighting weak sig-
nals and underweighting strong signals, with a shape that again
largely hews to the predictions of the parameterized model. For
very weak signals, participants are acting as if signals are more
than twice as strong as they truly are; for very strong signals,
they are acting as if signals are roughly two-thirds as strong as
they truly are. 

The parametric curves in Figure II are obtained by estimat-
ing the model parameters k and β from equation (6) , ˆ w ( S ) =
k · S 

−(1 −β ) , using nonlinear least squares. The estimated value for
k is 0.88 (std. err. 0.02) and for β is 0.76 (std. err. 0.03). The value
of β is statistically significantly less than one ( p < .001), as pre-
dicted. These values correspond to an estimate for the switching
point ρ∗ of 0.64 (std. err. 0.01). 23 All standard errors are clustered
by participant. 

Experiments using this paradigm have been run many times
in the past, largely focusing on higher signal strengths. In
Online Appendix Figure A1, we compare our estimates to the
23. Equivalently, people are updating as if the distribution of strengths is 
such that S 

∗ = logit (0 . 64) = 0 . 58 . 

art/qjae032_f2.eps
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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any studies discussed in Benjamin (2019) . Our results line up 

ith past studies’ estimates for these higher signal strengths. In 

articular, we match the literature in finding underinference for 
ignals with precision at or above 

2 
3 . It is only for signals with 

recision below 0.6 that we see overinference, and this is a range 

hat the previous literature had not explored. 
To explore our main results more formally in a consistent 

ay across studies, Table I presents the results of regressions for 
he weight on the signal, ˆ w ( S ) , on a constant and the true sig- 
al strength S . Bayes’ rule would predict a constant of one and 

lope of zero on S in such a regression, while our theory predicts 
 constant above one (indicating overinference for very weak sig- 
als) and a slope below zero (indicating that people are partially 

nsensitive to signal strength, and switch to underinference for 
trong signals). 24 Column (1) confirms the relationship suggested 

y Figure II for Study 1a: the constant is above one, the slope is 
elow zero, and both effects are precisely estimated and strongly 

ignificant. 

4. Heterogeneity. The theory assumes that people use a ran- 
omly drawn estimate of signal strength to form their beliefs. 
onsequently, it predicts that our main effect occurs on av- 
rage, but also that there will be heterogeneity: some people 

ill overreact and some will underreact to any given signal. 
nline Appendix Figure A2 plots the raw cumulative distribution 

nd probability density functions at the individual level for strong 

nd weak signals. Nearly everyone updates in the right direction, 
nd the distributions are centered in accordance with our main 

ffect. But given the nontrivial spread in the distributions, there 

s clear heterogeneity in perceived signal strength and associated 

pdating behavior. 
The model also makes the prediction that the core effect will 

e larger as a person’s estimate of signal strength becomes less 
recise. Naturally, we cannot observe the precision of a person’s 
nternal estimates of strength, and therefore must rely on a set of 
roxies. To estimate heterogeneity in treatment effects, we then 
24. Both our model and Figure II suggest a nonlinear relationship between 

eight and strength. We thus see the linear specification in Table I as provid- 
ng a clean hypothesis test of the key effect predicted by our theory, rather than 

dentifying model parameters directly (which we do separately via nonlinear least 
quares). 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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nteract these proxies with the signal strength in regressions for 
he weight placed on the signal, with results presented in Table II . 

Our first proxy for (im)precision uses the standard deviation 

n a person’s implied signal weights across the experiment. In- 
uitively, a person whose estimates have very high precision will 
ave low variance in these weights, since most weights will be 

round one; meanwhile, a person whose estimates have low pre- 
ision will have high variance in weights. 25 As shown in Table II , 
olumn (1), our effect is stronger (i.e., the interaction term is 
egative) for people who have higher standard deviation of their 
eights on other questions. 

Our second proxy for estimation precision is task experience: 
f people become better at understanding and estimating signal 
trength as they get more practice, then they will be less precise 

arlier in the experiment (and our core effect will be stronger). As 
hown in Table II , column (2), consistent with this idea, people 

verweight weak signals and underweight strong signals by more 

n earlier rounds of the experiment. 
In addition to these two proxies, we also preregistered cor- 

elating our effects with performance on a three-item cognitive 

eflection test (CRT; Frederick 2005 ). In Table II , column (3), we 

nd that people with lower CRT scores show the core effect sig- 
ificantly more. We also preregistered looking at an additional 
eterogeneity by self-reported news consumption, and indeed find 

hat less experience with news consumption is correlated with our 
ore effect (see ALT 2023 ). 

5. Extensions: Asymmetric, Multiple, and Ambiguous Sig- 
als, and Other Concerns. The main treatment of the experiment 

ocuses on how people respond to one symmetric signal with a de- 
erministic signal strength. The experiment included additional 
reatments in which we relax each of these features. We report 
ome key takea wa ys here. 

First, we consider asymmetric signals such that one deck has 
 similar share of Spades and Diamonds, but the other deck does 
ot. We find that our main results continue to hold for these asym- 
etric signals, and as suggested by our theory, the more compli- 
25. There is a small endogeneity issue in using the same observation both 

o measure a person’s reaction and to calculate a person’s weight variance across 
hoices. As a result, we relate a person’s reaction in one decision to the standard 
eviation in their weights for all other decisions on similar problems. 
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ated problem leads to a stronger effect. Using the same nonlin- 
ar least squares estimation as before, we estimate a value for 
 of 0.84 (std. err. 0.03) and for β of 0.56 (std. err. 0.04), with a 

imilar estimated switching point ρ∗ of 0.66 (std. err. 0.01). 
Second, in Online Appendix Figure A.3, we replicate the 

nding in Griffin and Tversky (1992) that people react less to 

ultiple signals than a single signal with the same overall 
trength; in Griffin and Tversky’s language, participants are un- 
erattentive to the weight of evidence. The reduction in reaction 

o multiple signals is essentially constant for all strengths, so this 
ffect is orthogonal to our main effect. Third, we consider ambigu- 
us signals by telling participants that the share of suits in each 

eck is equal to one of two possible values (high or low). Our main 

ffect continues to hold, and results suggest that people first esti- 
ate each possible signal strength, and then average these esti- 
ates, to form their overall expected strength (see ALT 2023 for 

urther details). 
Finally, we consider a set of alternative hypotheses for our 

esults that are unrelated to over- or underinference. Our re- 
ults are not explained by participants being averse to not up- 
ating when signals are not informative; they also cannot be ex- 
lained by reactions to particular components of the experiment, 
or example, being influenced by the relative salience of the first 
eck or the second deck (or the Green and Purple color), positive 

r negative signal, the suit of the signal, or the particular deck 

ize. 26 

II.B. Study 1b: Follow-Up Experiment 

1. Design. To probe the robustness of the results from Study 

a, we run a follow-up using the same general design but now 

onsidering asymmetric prior beliefs. Given our focus on the ro- 
ustness of the main results, Study 1b drops the additional treat- 
26. Ninety-six percent of participants who see a completely uninformative 
ignal say exactly 50%. We also see below that results are very similar when the 
rior is equal to 33 . 3 % , suggesting that results are not driven by a preference for 
tating the closest round number above/below the prior given a weak signal. We 
nd a tightly estimated null effect of color and suit asymmetry, and only mod- 
st differences when the deck size varies between 1,665 and 337. Again see ALT 

2023) for further details and discussion. 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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ments in the original study and focuses on the reaction to a single
symmetric signal. 

To allow for asymmetric prior beliefs, we vary the probabil-
ity that the first (Green) deck is chosen. In the original study,
the chosen deck is picked randomly from two decks, such that the
likelihood of picking the Green deck is 1 

2 . To vary this prior like-
lihood in a salient way, Study 1b includes treatments in which
there are two, three, or four decks, and each deck is chosen with
equal probability ( 1 2 , 

1 
3 , or 1 

4 , respectively). As in the original study,
the first deck is labeled as Green and has D 1 Diamonds and
N − D 1 Spades. The other decks are labeled as different shades
of Blue and have identical compositions of N − D 1 Diamonds and
D 1 Spades. Given this setup, the signal strength matches that of
the original study, but the person’s prior that the Green deck is
chosen is either 1 

2 , 
1 
3 , or 1 

4 . 
27 After the suit of the drawn card is

shown to the participant, we elicit the probability that each deck
was chosen. Our analysis considers the stated probability for the
Green deck as the belief outcome of interest. 

2. Implementation. Study 1b was conducted in March 2024.
Participants were again recruited on Prolific. As preregistered,
500 participants completed the experiment and passed an at-
tention c hec k. Ten participants were randomly c hosen to win
bonuses. If they won the high bonus, they received $50; if not,
they received no bonus. All participants received a $3.60 show-up
fee, and the average bonus earnings for the selected participants
was $35. Participants played 15 rounds in the study, in each of
which they received one draw of a card. The experiment involved
three blocks of five rounds. Each block gave participants a differ-
ent prior, in which the Green deck, as above, had either a 

1 
2 , 

1 
3 , or

1 
4 probability of being chosen. 

3. Results. We first visually present the main results in
Figure III , which replicates Figure II using the new data from
27. Another way to vary the prior would have been to continue to use 
two decks but to tell participants that the Green deck would be chosen with 

some specific probability. We instead chose the multideck design because it 
makes the change in the prior more clear and, from our perspective, easier to 
understand. 
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FIGURE III 

Study 1b: Over- and Underinference by Signal Strength 

The left panel plots the logit belief change (equal to perceived strength in our 
theory) as a function of true signal strength on a log-log scale. The right panel 
plots the average implied weight participants put on signals relative to a Bayesian 

for whom the weight is one. In both panels, black markers plot the data (with 

95% confidence intervals). Observations are winsorized for each category of signal 
strength and prior at the 5% and 95% levels. Dashed lines fit the data using the 
power weighting function from equation (6) , estimating parameters using non- 
linear least squares. Thicker solid lines indicate Ba yesian beha vior. Both panels 
show that participants overweight weak signals and underweight strong signals. 
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tudy 1b. We find that the broad patterns in the logit belief 
hanges (in the left panel) and resulting implied signal weights 
re very similar to those from Study 1a, even when allowing for 
symmetric priors. 

Next we replicate the regression from Study 1a for the im- 
lied weight on the signal, with results shown in Table I , col- 
mn (2). Since ˆ w ( S ) is measured from the logit belief change, 
his analysis implicitly assumes that people correctly incorpo- 
ate the prior probability. As discussed in Section II.C , these re- 
ults may be contaminated if people do not appreciate or mis- 
eight the prior (as is true with base-rate neglect). As such, col- 
mn (3) estimates and controls for the effect of misweighted pri- 
rs. In particular, it includes the additional regressor logit π0 

logit π1 −logit π0 

n the regression, which (omitting the error term and fixed effects) 
s now 

ˆ w ( S (s )) = γ0 + γ1 · S (s ) ︸ ︷︷ ︸ 
Previous Terms 

+ ( α − 1) · logit π0 

logit π1 − logit π0 ︸ ︷︷ ︸ 
Base-Rate Neglect Term 

, 8) 

art/qjae032_f3.eps
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and an estimated α < 1 represents base-rate neglect. 28 Control-
ling for misweighted priors does not affect our main results: the
estimated constant and slope on strength in columns (2) and (3)
are close to identical, and we continue to strongly reject the
Bayesian null in the manner predicted by our theory. If any-
thing, comparing the columns for this study with column (1) for
Study 1a, asymmetric priors seem to strengthen our effects, po-
tentially because signal strength estimation is more challenging
when there are more decks. That said, the estimates across the
two studies may not be directly comparable, as Study 1b uses a
more limited set of signal strengths. 

We also analyze the effects of asymmetric priors in a specifi-
cation that follows the Grether (1980) regression approach more
directly: 

logit ̂  π1 (s ) = α · logit π0 ± γ · S (s ) . (9) 

To allow for differences in inference in response to signals of dif-
ferent strengths, we estimate equation (9) separately for each sig-
nal strength S (s ) . The results are presented in Online Appendix
Table A1, and they align with those in Table I , albeit with differ-
ent interpretation for the strength coefficient γ . We find that par-
ticipants significantly overweight weak signals ( ̂  γ > 1 ) and un-
derweight strong signals ( ̂  γ < 1 ). We find that there is significant
base-rate neglect for strong signals but none for weak signals, in-
dicating that the modest estimates for overall base-rate neglect
may partly reflect the inclusion of the weak-signal treatments. 29 

In the rightmost columns of Table II , we examine heterogene-
ity in our main treatment effect by interacting signal strength
28. The regressor’s denominator logit π1 − logit π0 is included to make α

here match its typical interpretation in a Grether (1980) regression. The typi- 
cal Grether regression is logit ̂  π1 = α logit π0 + γ ( logit π1 − logit π0 ) , or logit ̂  π1 −
logit π0 = (α − 1) logit π0 + γ ( logit π1 − logit π0 ) . Our regression sets γ = γ0 + 

γ1 S (s ) and uses ˆ w (s ) = 

logit ̂ π1 −logit π0 
logit π1 −logit π0 

as the outcome variable. So dividing both 

sides of the Grether equation by logit π1 − logit π0 , we obtain equation (8) , with α

having the same interpretation as in Grether’s case. Intuitively, base-rate neglect 
matters more for the estimated weight the greater the distance of π0 from 0.5 (the 
regressor’s numerator) relative to the signed signal strength (its denominator). 

29. The table also presents a set of additional analyses. Column (1) consid- 
ers only the π0 = 0 . 5 treatment, finding our usual results. Column (2) replicates 
the analysis for all priors, imposing α = 1 , and finds slightly stronger results. Col- 
umn (3) allows for separate γ across strengths but sets α to be constant, with 

similar results and mild base-rate neglect. Column (4) presents the full set of α
and γ estimates described in the text. 

  

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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ith proxies for estimation precision (or imprecision), control- 
ing for base-rate neglect as in equation (8) . Column (4) considers 
he same noise proxy from Study 1a, finding again that people 

ho have higher variance in weights exhibit stronger effects. Col- 
mn (5) considers how our effect correlates with task experience, 
gain finding that people exhibit a stronger effect earlier in the 

xperiment. 
We also elicit one additional measure to proxy for partici- 

ants’ estimation precision, based on the elicitation procedure 

sed by Enke and Graeber (2023) . In particular, we ask people, 
How certain are you that the optimal guess is somewhere be- 
ween x − 1 % and x + 1 %?” on a scale from 0 to 100. We ask peo-
le this question three separate times during the experiment and 

verage their answers to get an additional measure of a person’s 
stimation precision. Intuitively, a person with low precision will 
eport higher subjective uncertainty than a person with high pre- 
ision (as shown by Enke and Graeber 2023 and Enke, Graeber, 
nd Oprea 2024 ). Column (6) suggests that this new proxy of cog- 
itive uncertainty is also associated with our effect in the direc- 
ion predicted by the theory: people with more stated uncertainty 

bout their answer seem to exhibit our core effect more strongly. 
Finally, we again estimate k and β from equation (6) . The 

stimated value for k is 0.89 (std. err. 0.02) and for β is 0.61 (std. 
rr. 0.02). The value of β is statistically significantly less than one 

 p < .001). These values correspond to an estimate for ρ∗ of 0.68 

std. err. 0.01). Allowing for base-rate neglect in the model gives 
n estimate of 0.94 for the weight on the prior, and leads to little 

hange in the other estimates ( k = 0 . 87 and β = 0 . 69 ). 

II.C. Study 2: Naturalistic Experiment 

1. Overview. The benefit of the abstract DGP in Studies 
a and 1b is that it is cleanly and fully defined. This con- 
trained structure allows for straightforward manipulation of sig- 
al strength and calculation of a precise Bayesian benchmark, 
hich is a key reason this paradigm is so widely used. But one 

ossible concern is that this abstract, numerically oriented envi- 
onment is unnatural for most people, more closely mirroring a 

ath exam than a real-life updating situation. If people solve ab- 
tract inference problems differently than more naturalistic prob- 
ems, our results might not generalize to real-life behavior. 
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Given this concern, our next experiment attempts to study
updating behavior in a more naturalistic environment. In partic-
ular, we analyze how NBA basketball fans update their beliefs
that a team wins a game given information that they make or
miss a shot in different situations. This environment provides an
experimental parallel to one of the observational data settings
considered in Section IV . We choose to focus on it here because
while the DGP is naturalistic and complex, fans intuitively un-
derstand this process well and can easily make reasonable pre-
dictions. A made basket is almost always a positive signal, and a
missed basket is a negative signal, but the exact strength of this
signal is unclear. 

This last feature also represents the main chal-
lenge in analyzing a naturalistic setting: not having ex-
act knowledge of the signal strength would seem to
make it difficult to test for over- and underreaction. Cru-
cially, however, this environment is one where we can
obtain credible estimates of the correct probabilities in dif-
ferent situations using historical game data. We do so using an
online win probability calculator from Inpredictable, a sports
analytics site that provides estimates for different game situa-
tions. 30 To provide participants signals with varying strength,
we vary the game situation. As detailed shortly, the key source
of signal strength variation across scenarios is similar to the one
we use later in our analysis of sports betting data: the timing
of the event. NBA basketball games have four quarters, and a
basket made in the fourth quarter is a stronger signal of the
game’s winner than is a basket made in the first quarter. Our
core prediction, therefore, is that people will overreact to made
or missed shots in early quarters (when signals are weaker)
and underreact to made or missed shots in late quarters (when
signals are stronger). 
30. Our estimates were taken from https://stats.inpredictable.com/nba/ 
wpCalc.php ( Beuoy 2024 ) in April 2024. This calculator takes as input the current 
score differential, time remaining, and which team has possession and outputs a 
win probability based on historical data. To c hec k whether this calculator gives 
reasonable estimates, we also created our own simple calculator based on more, 
or fewer, years of data; the estimates from our versions of the calculator and the 
online calculator are extremely similar. We tie our hands by using this third-party 
tool. 

https://stats.inpredictable.com/nba/wpCalc.php
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2. Design. Participants are told that they will see a vari- 
ty of simple scenarios in an NBA game (which include the score 

ifferential, time remaining, and which team has possession) be- 
ween two unnamed teams (e.g., T eam A and T eam B), and that 
heir goal is to estimate the probability that each team wins the 

asketball game in that scenario. Participants are sequentially 

iven four sets of scenarios, with each scenario set starting with 

:40 left in one of the four quarters and the time decreasing by 

0–15 seconds after each event. The order of the sets is random. 
In each scenario set, the person is first given a base scenario. 

hey are told the actual calculated probability of the base sce- 
ario, such that all participants have the same prior. To provide 

ariation in priors within a quarter, we randomize whether the 

ead in the base scenario is one or five. The participants are then 

old the outcome of the next possession. This signal is equally 

ikely to be good news for the team on offense (a made two-point 
asket) or good news for the team on defense (a missed basket 
hat leads to the defensive team getting possession). They are 

hen asked for the probability that a given team will win after 
bserving this event. We again elicit beliefs using the paired- 
niform scoring version of the binarized scoring rule ( Hossain 

nd Okui 2013 ; Vespa and Wilson 2017 ), with participants’ an- 
wers determining the probability that they win a high bonus. 31 

After the person enters their answers, they go through this 
rocess for three more consecutive possessions in the same quar- 
er. For each possession in this scenario set, they see the sequence 

f previous events in the quarter, as well as the answers they en- 
ered. After completing a scenario set, they move on to the next 
cenario set in a different quarter, where they are again told a 

ase scenario and shown a series of signals. Figure IV shows a 

creenshot with an example of the page participants see after the 

ase scenario and one event; a full set of screenshots of the study 

ages are again in Online Appendix C. 
We identify our core effect by exploiting variation in sig- 

al strength across these scenarios. Interestingly, the empirical 
ariation in signal strength in these scenarios is driven almost 
31. Our study instructions include the following: “We have used a model based 
n a database of regular-season NBA games with several years of pla y-by-pla y 
ata to estimate the likelihoods of each team winning in these scenarios. The 
loser your answer is to the likelihood, the more likely you are to win the $50 
onus.”

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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FIGURE IV 

Study 2: Example of an Information Page Participants See 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
entirely from variation in the amount of time left rather than
the event or score differential. 32 This motivates us to group our
estimates by quarter when visually presenting our results, to see
whether we indeed observe overreaction on average in response
to the weak signals in early quarters, and underreaction given
the strong signals in late quarters. 

3. Implementation. Study 2 was conducted in April 2024.
Participants were recruited from Prolific from a sample of Amer-
icans who reported that they were basketball fans. As preregis-
tered, 500 participants completed the experiment, passed an at-
tention c hec k, and stated that they followed the NBA. Ten partici-
pants were randomly chosen to win bonuses. If they won the high
bonus, they received $50; if not, they received no bonus. All partic-
ipants received a $2.50 show-up fee, and the average bonus earn-
ings for the selected participants was $25. Participants played
32. Fixing time and initial score difference, our events (made and missed 
two-point shots) have similar strengths, as NBA teams average close to one point 
per possession. Similarly, fixing time, baskets have surprisingly similar strengths 
given different initial score differences. Intuitively, while a basket shifts probabil- 
ity when tied more than when up by 10 (say, 50% to 60% versus 90% to 93%), these 
have virtually the same signal strength S given the different base probabilities. 
Quantitatively, using past game data and regressing estimated strength on time 
remaining yields an R 

2 of about 55%, and adding the score margin only improves 
this to 57%. 

art/qjae032_f4.eps
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6 rounds in the study (four possessions in a given quarter’s sce- 
ario set, and four quarters). 

4. Results. To study the relationship between participant’s 
erceived signal strength and the true signal strength, we first 
ack out a participant’s perceived signal strength from their be- 
iefs before and after an event as follows: 

logit ( ̂  πt+1 (s t+1 )) ︸ ︷︷ ︸ 
Logit of 
Guess 

= logit ( ̂  πt ) ︸ ︷︷ ︸ 
Logit of 

Prior 

±︸︷︷︸ 
Signal 

Direction 

ˆ S (s t+1 ) ︸ ︷︷ ︸ 
Perceived 

Signal Strength 

. 10) 

or the base scenario ( t = 0 ) in a given set, we set the prior ˆ π0 
o the calculator-estimated π0 , as we give this win probability to 

he participant at the beginning of a set. We then provide signals 
events) s t+1 and elicit ˆ πt+1 (s t+1 ) for each t = 0 , 1 , 2 , 3 , backing out
ˆ 
 (s t+1 ) from ˆ πt+1 (s t+1 ) and their previous ˆ πt (which they still see 

nscreen); one benefit of giving a sequence of signals is our ability 

o observe the previous ˆ πt in backing out ˆ S (s t+1 ) . We back out 
rue signal strength S (s t+1 ) in a similar manner but using the 

alculator’s estimated πt+1 (s t+1 ) after each signal. Following the 

revious studies, we then compare 

ˆ S (s t+1 ) to S (s t+1 ) . 
We visually present our main results in Figure V , averag- 

ng perceived and true signal strength across all events in each 

uarter. The left panel shows that, as in the previous studies, the 

elationship between perceived and true signal strength is ap- 
roximately linear in logs, with a positive intercept and a muted 

lope. The dots are ordered by quarter from left to right: the first 
uarter has the lowest true signal strength, the fourth quarter 
as the highest, and participants understand this ordering. But 
hile average perceived signal strength does rise over quarters, 
articipants are insensitive to how much true signal strength is 
ncreasing, such that they overreact early and underreact late 

switching around the third quarter). This can also be seen in the 

ight panel, which plots the implied weights placed on events by 

uarter. People weight first-quarter events by about 1.6 times as 
uch as the win probability estimates suggest and weight fourth- 

uarter events by less than 

2 
3 as much. 

We then conduct regressions for the estimated signal weights 
s in the previous studies, with results shown in the last two 

olumns of Table I . As usual, we estimate these regressions at the 

ndividual observation level and thus do not group by quarter 
or this analysis. In column (4), we regress ˆ w ( S ) only on a con- 
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FIGURE V 

Study 2: Over- and Underinference by Quarter 

The left panel plots the logit belief change (our measure of perceived strength, 
as in equation (10) ) as a function of true signal strength on a log-log scale, where 
true signal strength is based on the Inpredictable win probability calculator. The 
right panel plots the average weight participants put on signals relative to a 
Bayesian for whom the weight is one, also against true signal strength (rather 
than precision, since signals are not necessarily symmetric). In both panels, black 
markers plot the data (with 95% confidence intervals), averaged by quarter; signal 
strengths increase in each quarter. Observations are winsorized for each category 
of quarter and score differential at the 5% and 95% levels. Dashed lines fit the data 
using the power weighting function from equation (6) , estimating parameters us- 
ing nonlinear least squares. Thicker solid lines indicate Ba yesian beha vior based 
on the calculator’s average change. Both panels show that participants overweight 
weak signals (in earlier quarters of the game) and underweight strong signals (in 

the fourth quarter of the game). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
stant and S , implicitly assuming that people correctly incorporate
their prior beliefs. We find the same qualitative patterns as in
the abstract experiments. Quantitatively, we see greater insen-
sitivity to signal strength than in the abstract studies, possibly
because this is a more complex environment. In column (5), we
allow for misweighting prior beliefs, with estimation proceeding
from equation (8) . We find modest base-rate neglect but minimal
change in our main coefficients of interest. 

We also run a Grether-style regression in Online Appendix
Table A2, again following equation (9) and now estimated sepa-
rately for each quarter. We again find that participants overinfer
from events in the first half, underinfer from events in the second
half, and exhibit modest base-rate neglect overall. This modest
base-rate neglect may be because the sequential setting makes
the prior belief more salient than in some other contexts, leading
participants to internalize their prior. But mimicking the results
in Study 1b, the last column of that table shows that priors are
appropriately weighted for weak signals (in early quarters), but

art/qjae032_f5.eps
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hat there is statistically significant base-rate neglect for stronger 
ignals (in later quarters). 

Finally, we estimate k and β from equation (6) , again using 

onlinear least squares. The estimated value for k is 0.40 (std. err. 
.02) and for β is 0.41 (std. err. 0.02). The value of β is statisti- 
ally significantly less than one ( p < .001). Allowing for base-rate 

eglect in the model gives an estimate of 0.976 (std. err. 0.06) for 
he weight on the prior and leads to little change in the other 
stimates ( k = 0 . 42 and β = 0 . 44 ). 

II.D. Discussion 

Across the three experiments, we find robust evidence that 
eople overinfer from weak signals and underinfer from strong 

ignals. Our findings hold in both abstract decision problems 
Studies 1a and 1b) and naturalistic ones (Study 2), as well as 
ith fixed symmetric priors (Study 1a), exogenously varied asym- 
etric priors (Study 1b), and endogenous priors based on pre- 

ious belief-updating questions (Study 2). While prior weighting 

iases like base-rate neglect can theoretically contaminate our 
redictions of overreaction and underreaction, in our data they 

ave little impact on our main estimated effect. 
We find that these observed patterns of over- and underinfer- 

nce are consistent with people understanding the direction they 

hould update their beliefs, but only imperfectly estimating the 

trength of the signals they receive. Our heterogeneity analyses 
rovide suggestive evidence of this as well: greater answer preci- 
ion, subjective confidence, task experience, and cognitive reflec- 
ion are all correlated with greater sensitivity to signal strength 

nd belief-updating patterns that are closer to Bayes’ rule. 

IV. EVIDENCE FROM FINANCE AND SPORTS BETTING 

To build on our experimental evidence and test our theory in 

elevant observational settings, we now consider evidence from 

 set of sports betting markets and financial markets. Depart- 
ng from the lab setting comes with multiple costs: (i) it is gen- 
rally infeasible for us to estimate the true conditional probabil- 
ty of an outcome or true signal informativeness, as we no longer 
ave knowledge of the true DGP (as we did in Studies 1a and 1b) 
or the full information set available to participants over time 

as we did in Study 2); and (ii) measuring subjective beliefs and 
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perceived signal informativeness is also less straightforward. To
overcome these issues, we apply new theoretical tools that allow
us to proxy for signal informativeness and to test updating be-
havior, given a set of beliefs data. We then choose a set of mar-
kets from which to measure price-implied beliefs: we consider
the prices of different bets (with payouts of either $0 or $1) with
known terminal dates. By considering price movements across in-
formativeness regimes, we test whether the patterns of over- and
underinference documented in the experiments apply in these
real-world settings. We first describe our theoretical approach in
more detail before turning to our empirical data and results. 

IV.A. Conceptual Framework and Approach 

Our conceptual framework for testing the behavior of be-
liefs builds closely on Augenblick and Rabin (2021) (hereafter AR
2021 ) and Augenblick and Lazarus (2023) (hereafter AL 2023 ).
Whereas Section II provided a model of over- and underinference
from signals, our goal here is different. Rather than a full alter-
native model of inference, we aim to characterize the Bayesian
null in a way that allows for empirically implementable hypoth-
esis tests. But while our starting point is someone who updates
according to Bayes’ rule, our tests are designed such that rejec-
tions are consistent with over- or underinference and therefore
speak to the patterns predicted from Section II . We build on that
section’s notation where appropriate, generalizing it to a dynamic
setting with arbitrary signal structures. 

Time is discrete, t = 0 , 1 , 2 , . . . , T , and there is again a binary
state θ ∈ { 0 , 1 } . Each period, a person observes a signal s t from
an arbitrary distribution p(s t | θ, H t−1 ) , where H t ≡ { s τ } t τ=1 is the
history of signal realizations. The person’s prior belief in state 1
is denoted by π0 , and their belief at time t given the DGP (i.e.,
their prior and p(·) ) and history H t is πt (H t ) , or πt for short. The
belief stream π refers to the collection of the person’s beliefs over
time. 

While we cannot directly test for overinference versus un-
derinference without knowledge of the DGP, keeping track of
the following two objects will allow for well-motivated indirect
tests. First, define the movement of a belief stream from period
t 1 to t 2 > t 1 as the sum of squared changes of beliefs over these
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eriods: 

m t 1 ,t 2 ( π) ≡
t 2 −1 ∑ 

τ= t 1 

(πτ+1 − πτ ) 2 . 

hen, defining the uncertainty of the belief in period t as u t ( π) ≡
1 − πt ) πt , we define uncertainty reduction from period t 1 to pe- 
iod t 2 > t 1 as: 

r t 1 ,t 2 ( π) ≡
t 2 −1 ∑ 

τ= t 1 

( u τ ( π) − u τ+1 ( π)) = u t 1 ( π) − u t 2 ( π) . 

or each variable, we define the concomitant random variable in 

apital letters (e.g., M t 1 ,t 2 ). 
Our null model will be that the person fully understands the 

eaning of all signals and updates according to Bayes’ rule. Un- 
er this null, beliefs satisfy πt (H t ) = E t [ θ ] ≡ E [ θ | H t ] for all H t ,
here E is the expectation under the true (physical) measure. 

1. The Equality of Movement and Uncertainty Reduction. 
s in AR (2021) , the martingale property of beliefs under the 

ull implies that regardless of the DGP, expected Bayesian be- 
ief movement from any period t 1 to period t 2 must equal expected 

ncertainty reduction: 

ROPOSITION 2 (MOVEMENT AND UNCERTAINTY REDUC- 
TION). Assume πt (H t ) = E t [ θ ] . For any DGP and for any 

periods t 1 and t 2 , E t 1 [ M t 1 ,t 2 ] = E t 1 [ R t 1 ,t 2 ] . 

This result formalizes the “correct” amount of belief volatil- 
ty (or movement) under rationality, without the need to know 

he true unobservable DGP. (We provide a review of the proof in 

nline Appendix A.5.) One can then follow AR (2021) to use this 
s the basis for a statistical test for Bayesian updating: given a set 
f belief streams, one can calculate the difference between move- 
ent and uncertainty reduction (which they call “excess move- 
ent”) and then apply a means test to see if the average differ- 

nce is statistically different from zero. If so, one can reject—with 

 certain confidence level—that the beliefs arose from Bayesian 

pdating. 
The result thus provides a testable link between belief move- 

ent, uncertainty reduction, and signal strength: when we ob- 
erve a Bayesian person’s beliefs moving, this must (on average) 
ean that she is receiving informative signals and reducing her 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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uncertainty accordingly . 33 Crucially , this test (i) is valid regard-
less of the DGP and (ii) can be applied to arbitrary belief sub-
streams (from period t 1 to t 2 ), as Proposition 2 applies ex ante in
all cases . Thus , given some ex ante known and observable sort-
ing variable related to signal strength, we can test whether ex-
cess movement is related to signal strength. We will use time to
resolution ( T − t) as our separating variable, and we discuss its
relation to signal strength—and the relation of excess movement
to over- and underinference—below. 

2. Excess Movement and Over- and Underinference. We now
consider what kinds of non-Bayesian behavior generate differ-
ent violations of the equality in Proposition 2 . Most importantly
for us, there is a natural positive connection between excess
movement and overinference: people who overinfer are intuitively
changing their beliefs “too much” relative to the informativeness
of signals on average, generating E t 1 [ M t 1 ,t 2 − R t 1 ,t 2 ] > 0 . The oppo-
site is true in the case of underinference. 

AR (2021) formalize this connection. First, in a two-period
environment, a person with a correct prior who overinfers from
signals will exhibit a positive excess movement statistic, while a
person who underinfers will exhibit a negative statistic. Second,
they show that the same relationship holds over many periods in
a symmetric binary-signal environment, despite the complication
that the person’s prior may not be correct in later periods. 34 We
suspect that the same relationship between inference and excess
movement applies quite generally, but it is difficult to character-
ize other DGPs analytically. We therefore turn to simulations to
verify that the same intuitive relationships hold under our updat-
33. Formally, note from equation (2) that for any πt , belief movement 
( πt+1 ( S ( s t+1 )) − πt ) 2 is increasing in signal strength S (s t+1 ) . So if we are in 

a regime with high signal strength ex ante, E t [ M t ,t +1 ] will be high, and by 
Proposition 2 , so will E t [ R t ,t +1 ] . We will verify that both of these increase with 

our informativeness proxy. 
34. Specifically, the article considers a specification of over- or underinference 

equivalent to equation (9) , in which logit ( ̂  πt+1 ) = logit ( ̂  πt ) ± γ S (s t+1 ) . Their Propo- 
sition 6 states that a person with ˆ πt = πt and γ > 1 will have E [ M t ,t +1 ] > E [ R t ,t +1 ] 
(and the opposite if γ < 1) . Proposition 7 states that given a DGP with a con- 
stant signal strength and π0 = 

1 
2 , a person with ˆ π0 = 

1 
2 and γ > 1 will have 

E [ M t 1 ,t 2 ] > E [ R t 1 ,t 2 ] given any history H t 0 (and the opposite if γ < 1 ). One quarter 
of a basketball game very roughly approximates such a binary symmetric envi- 
ronment, to take an example (see note 32 ). 
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ng model in environments that more closely map to our empirical 
etting. We also use our simulations for further verification that 
ur time-based measure of signal strength is a good proxy in this 
etting. 

As a caveat, note that while overinference (underinference) 
enerates positive (negative) excess movement both analytically 

nd in simulations, there could be other drivers of excess move- 
ent that we cannot rule out in observational beliefs data: we 

nly observe overall reactions. 35 But given that the patterns we 

bserve in the data end up aligning closely with the predictions 
f our model, we view the data as providing supporting evidence 

longside our experimental results (in which we can isolate infer- 
nce behavior more directly). 

3. Simulated Belief Streams. We now consider patterns in 

ovement and uncertainty reduction for a person who updates 
ccording to our model in Section II , as well as a person who 

xhibits constant over- or underinference, when forming beliefs 
bout the outcome of a sporting event or the future level of the 

tock market in simulated data. Empirically, these settings fea- 
ure similar random walk–like DGPs with signals (points scored, 
aily returns) received in each period, with the aggregate of that 
nformation determining the final state. To transparently model 
uch situations in our simulated economy, we consider a simple 

andom walk–like DGP in which there are two “teams” repre- 
enting the two states, exactly one team scores in each of T peri- 
ds, each team has equal probability of scoring in each period, 
nd the final state is which team has the highest score after 
he final period. For example, if a team is leading by one score 

ith two periods left, they have a 75% chance of being the fi- 
al winner because they win if they score in one of the final two 

eriods. 
We conduct 1 million simulations of this DGP, and we present 

verage results by time period in Figure VI . The top left panel 
hows the expected movement and uncertainty reduction statis- 
ics over time for a Bayesian. First, following Proposition 2 , the 
35. Base-rate neglect, for example, tends to generate positive excess move- 
ent ( AR 2021 ). Another bias, probability weighting, effectively matches the re- 

ults from constant underinference. In fact, given a prior of 50%, the classic sym- 
etric functional form for probability weighting from Gonzalez and Wu (1999) is 

xactly equivalent to a person who constantly underinfers from all signals. 
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FIGURE VI 

Simulated Movement and Uncertainty Reduction over Time: Different Models 

This figure shows the average belief movement (thic ker blac k line) and uncer- 
tainty reduction (thinner light line) statistics over time for four different models, 
averaged over 1 million simulations of the game-like DGP discussed in the text 
with T = 27 . We drop the first and last period, as they always have zero excess 
movement given this DGP, and plot the remaining 24 periods. The updating mod- 
els are (i) Bayesian updating (correct perception of signal strength S ), (ii) underin- 
ference (with perceived signal strength 0 . 8 · S ), (iii) overinference (with perceived 
signal strength 1 . 2 · S ), and (iv) our model (perceived signal strength k · S 

β with 

k = 0 . 88 and β = 0 . 76 ). For Bayesian updating, these statistics are always equal. 
For underinference, movement is always less than uncertainty reduction; the op- 
posite is true for overinference. For our model, movement is greater than uncer- 
tainty reduction in early time periods (when signals are generally weak) and lower 
in later time periods close to resolution (when signals are generally strong). 

 

 

 

 

 

 

 

  
statistics must be equal at each period. Second, both statistics
are rising as the resolution of the game approaches. Initial peri-
ods always contain very little information, whereas the later pe-
riods sometimes convey no information (because one team has an
insurmountable lead) and sometimes convey strong information
(because the scores are close). Overall, though, signal strength
rises over time, and average movement and uncertainty reduc-

art/qjae032_f6.eps
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ion increase accordingly. This is intuitive theoretically. 36 As we 

how shortly, it also applies in all of our empirical settings; impor- 
antly, we consider settings where all uncertainty will be resolved 

y some fixed end period, and as a result strength increases closer 
o that expiration. 

What do the statistics look like for people who over- or un- 
erinfer from signals? Following intuition and the theoretical re- 
ults from simpler DGPs, overinference (top right panel) leads 
o positive excess movement in every period, whereas the oppo- 
ite is true for underinference (bottom left panel). The bottom 

ight panel displays the results for our model, with parameters 
stimated from our Study 1a. In the early periods, average signal 
trength is low, leading to overinference, which in turn generates 
xcess movement. In later periods, the amount of information re- 
ealed is higher, leading to underinference. Belief movement in- 
reases, but not in line with the increase in uncertainty reduction. 
here is therefore a switching period at which average movement 
rosses below uncertainty reduction. This switching is in effect 
he signature pattern for our model, as it does not occur under 
ayesian updating or when there is universal overinference or 
nderinference. We proceed to test whether the same patterns 
old empirically. 

V.B. Sports Betting Data 

1. Data Description. We start with data on sports betting. 
ur data comes from Betfair, which operates a large prediction 

arket in which individuals are matched on an exchange to make 

pposing financial bets about the outcome of a sporting event. We 

bserve time-stamped transaction prices for a contract in which 

ne party pays another party a set amount given a particular re- 
lized outcome of the game (e.g., Team A beats Team B). Prices 
re quoted as fractional odds; for example, a transaction for the 

eam A contract might occur at 3 
1 odds, meaning the person buy- 
36. For example, for option prices, the Blac k-Sc holes model predicts that the 
ensitivity of an option price to the same change in the underlying price (i.e., 
ption delta) decreases exponentially with time to maturity, and the same applies 
in fact more strongly) for the option spreads used to construct option-implied 
eliefs . That is , the same underlying price change rationally generates a bigger 
hange in beliefs about the option payoff closer to maturity. Our simulated random 

alk is in fact a discrete-time approximation of a Blac k-Sc holes economy, but the 
ame logic will hold in practically any option-pricing model beyond this one. 
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ing one unit of it will receive $4 if Team A wins and lose $1 if
Team A loses. These odds can then be normalized to obtain an
implied probability (in this case, 1 

4 ). As in a standard centralized
exchange, contract prices (and implied beliefs) change with sup-
ply and demand. 

These are the same data used in AR (2021) , and we use the
same 2006–2014 sample and similar data filters as in that paper.
In particular, we focus on markets for five major sports—soccer,
basketball, baseball, ice hockey, and American football—and we
consider only contracts over the final winner of the game. We thus
omit more exotic contracts, such as which team will be winning
at the midpoint or number of goals scored. There are generally
two contracts per game (e.g., one paying off if Team A wins, an-
other if Team B wins); we use the contract for which the start-
ing beliefs are closest to 0.5. We use observations only when the
game is being played. To remove high-frequency noise, we follow
AR (2021) and keep only the first transaction in a given minute
increment. We also drop trades with less than 1% of the overall
average transacted amount. Finally, we attempt to have similar
timing in events by dropping less common events in a category for
which the timing of the game is different (such as WNBA games,
which are shorter than NBA games). We are left with more than
5 million transaction prices from about 260,000 sporting events
over the sample. 

Given our focus on equilibrium bet-price data here, we follow
the literature that interprets these prices as “market beliefs.”37 

A test based on Proposition 2 can thus be viewed as a test of the
joint null that market prices may be interpreted as beliefs and
that these beliefs are Bayesian. But while this might affect the
interpretation of full-sample excess movement tests, it poses less
of a problem for our purposes. We are fixing the environment (i.e.,
the particular betting market in question) and comparing excess
movement as one varies the signal strength (proxied by time to
maturity) within this environment. If we assume that the map-
37. The interpretation of market prices as averages of individual beliefs has 
been studied in a range of work. In standard Bayesian settings with complete 
markets, this interpretation is straightforward (see AL 2023 ). With heterogeneity, 
Gjerstad (2005) and Wolfers and Zitzewitz (2006) show the interpretation is valid 
when traders have log utility and trade statically (see also Manski 2006 ). But with 

speculative trading, prices often react more to new information than individual 
beliefs ( Martin and Papadimitriou 2022 ). 
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ing from individual to market beliefs does not change systemati- 
ally within a stream as one moves closer to maturity, our findings 
re at minimum directionally informative about both individual- 
nd market-level reactions to information across signal-strength 

egimes. 

2. Graphs of Movement and Uncertainty Reduction. 
igure VII shows average movement and uncertainty reduc- 
ion (as well as confidence intervals) across time for each sport. 
bservations occur in continuous time and therefore must be 

ggregated in some way. Our data contain observations in c loc k 

ime (“1:31 pm”) rather than game time (“4:50 through the 

hird quarter”); we therefore consider average movement and 

ncertainty reduction for observations within 24 time windows, 
ach of which corresponds to 

1 
24 the length of an average game. 38 

s in the simulations, average movement and uncertainty re- 
uction are generally increasing over time (with the exception 

f mid-period breaks). As discussed in Section III.C , signals in 

asketball games increase in strength strongly over time; the 

ncrease in both movement and uncertainty reduction over time 

hows that the same pattern applies for all sports. 39 

The relative patterns of the two series, though, follow the pre- 
ictions of our model of over- and underinference. Early in games 
or each sport, movement is greater than uncertainty reduction, 
nd for each sport there is a time at which movement drops below 

ncertainty reduction. For four of the five sports, movement then 

ontinues to be lower than uncertainty reduction after this time 

for hockey, movement stays lower than uncertainty until the final 
eriod). The market accordingly appears to overreact to the less 
nformative signals at the beginning of a game and underreact to 

he more informative signals at the end of a game. Interestingly, 
or basketball (in the top right panel), excess movement switches 
rom positive to negative around the end of the third quarter, pre- 
38. For example, as the average basketball game lasts around 132 minutes, 
asketball games are broken into 24 chunks of 5.5 minutes. The final chunk then 

ncludes all observations that occur after 132 minutes. Results are similar if we 
se different numbers of chunks. Separately, in constructing confidence intervals 
or this figure (but not for the regressions), we assume observations are uncorre- 
ated across contracts. 

39. This follows unless markets completely misunderstand directional 
hanges in signal strength (thinking stronger signals are weaker), seemingly 
ounter to all available evidence (e.g., Croxson and Reade 2013 ). 



386 THE QUARTERLY JOURNAL OF ECONOMICS 

FIGURE VII 

Movement and Uncertainty Reduction over Time for Sports Betting Data 

This figure shows average belief movement (thicker black line) and uncertainty 
reduction (thinner light line) statistics over time for the beliefs implied by betting 
prices for five different sports (with 95% confidence intervals). Minute 0 is the be- 
ginning of the game, and the last minute is the end of the game. Each estimated 
point is the summed movement or uncertainty reduction within one of 24 equal- 
length time windows, averaged over all the games in the sample. In each case, 
movement is greater than uncertainty reduction in early time periods (when sig- 
nals are generally weak), and it is lower than uncertainty reduction close to the 
end of the game (when signals are generally strong), as predicted by the model. 

 

 

 

  
cisely mirroring the switch from over- to underinference observed
in our experimental basketball setting in Study 2 (see Figure V ). 

3. Statistical Tests. Are the patterns in the figures statisti-
cally meaningful? To answer this question, we require a test to
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etermine if there is overreaction (captured by expected move- 
ent being greater than uncertainty reduction) when signals are 

eak (captured by low uncertainty reduction) and underreaction 

hen signals are strong. But we cannot simply sort observations 
y realized uncertainty reduction (or some ex post proxy for sig- 
al strength) and then test how excess movement changes across 
his sort. Instead, Proposition 2 tells us that we must test whether 
xpected movement E t [ M t ,t +1 ] equals expected uncertainty reduc- 
ion E t [ M t ,t +1 ] ex ante. We must therefore consider an ex ante sort 
ariable and analyze the relationship between average movement 
nd uncertainty reduction across settings with different strength. 

As we have seen, time to resolution is a strong such ex ante 

ariable separating low (early) from high (late) signal strength 

eriods. For each sport, we therefore regress average movement 
n each time window on average uncertainty reduction in the 

ame time window. Under the null of Bayesian updating, the con- 
tant will be equal to zero and the slope coefficient equal to one, as 
verage movement should be equal to average uncertainty reduc- 
ion in every period. However, for a person who updates according 

o our model, average movement will be higher than average un- 
ertainty reduction when reduction is low, but lower than uncer- 
ainty reduction when reduction is high, such that the constant 
ill be positive and the slope coefficient will be less than one. 

The results for these regressions are shown in the first five 

olumns of Table III . Each regression is run on 24 collapsed ob- 
ervations, where each observation contains the average move- 
ent and uncertainty reduction in a given time window. The use 

f these calculated averages introduces a generated-regressor is- 
ue for inference, so we bootstrap standard errors by resampling 

vents (games) with replacement and recalculating averages and 

egression coefficients 10,000 times. 40 For each sport in the first 
ve columns, the constant and slope coefficients are highly sta- 
istically significantly different from the Bayesian benchmark in 

he direction predicted by the theory: in all cases, the positive con- 
tant and slope below one are consistent with overinference from 

eak signals (when average uncertainty reduction is low) and un- 
erinference from strong signals (when uncertainty reduction is 
igh). 
40. OLS standard errors are very similar. 
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To understand the magnitude of the estimates, note that be- 
iefs moving 3 percentage points up and then 3 points down would 

roduce movement of 0.0018 (close to the average constant coeffi- 
ient) and no uncertainty reduction. Given this average constant, 
he average slope coefficient then implies that movement will 
ross uncertainty reduction when both are around 0.014, which 

ccurs before the end of the game for all the sports in Figure VII . 
A potential concern when testing for a one-to-one slope is 

easurement error in the regressor and resulting attenuation 

ias. This would be a meaningful concern if, instead of follow- 
ng Proposition 2 , we regressed period by period realized m t ,t +1 
n r t ,t +1 . 41 But because we take averages over thousands of belief 
hanges at a given time horizon, we are able to estimate expected 

ncertainty reduction at that time plus a tiny error term. In our 
ase, the estimated variance of the error term at each period is 
ore than 100,000 times smaller than the estimated variance of 

he regressor, so any resulting attenuation bias is negligible. 42 

ote that the R 

2 values in all cases are very close to one: average 

ovement and uncertainty reduction move very closely together, 
ut with a muted slope. 

V.C. Index Options Data 

1. Data Description. The sports betting data provide a use- 
ul lab for studying beliefs in an incentivized setting similar to the 

ne in our experimental Study 1b. We now consider whether simi- 
ar patterns apply to a large-scale financial market, where beliefs 
re expressed over outcomes of first-order macroeconomic impor- 
ance. In particular, we consider options on the S&P 500 index, 
hich are effectively bets on the value of the market index as of a 

xed future expiration date. 43 We use the OptionMetrics database 
41. For a Bayesian, E t [ M t ,t +1 ] = E t [ R t ,t +1 ] , but r t ,t +1 is equal to that expecta- 
ion plus a mean-zero error. 

42. By averaging the movement and uncertainty reduction statistics over time 
hunks, we do face the subjective question of how many chunks to use. We show in 

nline Appendix Tables A.3 and A.4 (with accompanying figures) that estimated 
lopes change slightly (differently across sports) when using 12 or 36 chunks, but 
 -values remain highly significant in all cases aside from hockey with 12 chunks 
nd football with 36. 

43. An option contract specifies an expiration date T and strike price K, which 

ogether with the realized value of the S&P ( V T ) determine the payoff to the buyer 
f the contract. If V T > K, then the holder of a call option receives $ V T − K; oth- 
rwise they receive $0. They pay c t for the option upfront, and the seller receives 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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to obtain option price quotes for S&P index options traded on the
Chicago Board Options Exchange (CBOE), which is the largest
U.S. exchange. We observe the best posted bid and ask quotes at
the end of every day for each strike price and expiration date, and
we take the average of these two and use this as our end-of-day
price. 

These are the same data as used in AL (2023) , and we
use the same sample (1996–2018) and similar filters as in
that paper. Because our list of filters is somewhat long, we
relegate details to Online Appendix B.2. After filters, we are
left with more than 4 million option prices corresponding to
about 955 option expiration dates (the analogue of a single
event in the betting data) and 5,500 trading dates. To ensure
that prices are liquid, AL (2023) consider options expiring at
most one year a wa y from the trading date. For our purposes,
we cut off the analysis at 100 trading days from expiration
(in calendar time, roughly 4.5 months). This somewhat arbi-
trary choice is largely so that our movement and uncertainty
reduction figures are easily readable, and our results continue to
hold when using longer-horizon options. 

2. Converting Option Prices to Market-Implied Beliefs. On
any given trading date t, there are prices for a range of S&P op-
tions with the same expiration date T . They differ only in their
strike prices K (for a call option, the minimum S&P index value at
which the option will obtain a positive payoff at expiration). Using
minimal assumptions (following Breeden and Litzenberger 1978 ),
the set of option prices for such a (t, T ) pair can be translated into
a market-implied (or risk-neutral) probability distribution over
the future S&P price on the option expiration date. Intuitively, by
buying a set of options, one can construct a strategy that pays off
$1 if, say, the S&P is between 5,500 and 6,000 on September 30,
and $0 otherwise. The market price of constructing such a binary
bet can be read as an option-implied probability that the S&P will
indeed be in this range. 

Unlike with the sports betting data, index options have pay-
offs that are tied (by construction) to the value of aggregate
wealth. Option prices therefore reflect risk aversion in addition to
subjective probability assessments about the future index value.
the negative of the buyer’s payoff. (For a put option, the holder instead receives 
max (K − V T , 0) .) 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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his is the main complication in using option-implied probability 

istributions: they do not, in general, correspond to any notion 

f aggregate subjective beliefs. (They are equivalent to subjective 

eliefs only in the case of risk neutrality over the index value, 
hich motivates referring to them as risk-neutral beliefs.) For 

xample, suppose that there are two possible date- T macroeco- 
omic states that are perceived by investors as equally likely. If 

nvestors value a marginal dollar in the “bad” state (when the 

arket is low) more than in the “good” state (when the market 
s high), they will be willing to pay more for the option that pays 
ff in that state. If these risk preferences are not taken into ac- 
ount, one will (falsely) conclude that investors believe that the 

ad state is more likely. 
Addressing this issue is the main theoretical task taken up 

n AL (2023) . That paper shows that under certain assumptions, 
ne can place a bound on excess movement in risk-neutral (RN) 
eliefs under the null that underlying subjective beliefs are ra- 
ional. The bound is tight in the space of possible DGPs—that 
s, one can construct a DGP under which it holds exactly—
ut it is not necessarily tight under the true real-world DGP. 44 

e therefore provide two sets of results in the current analy- 
is, (i) using the raw (unadjusted) RN beliefs, and alternatively 

ii) translating these beliefs to a set of physical (subjective, risk- 
djusted) beliefs under an assumption on risk aversion. For (ii), 
e consider many possible assumptions in translating from risk- 
eutral to physical beliefs, detailed in Online Appendix B.2. While 

he dozens of possible assumptions and parameterizations af- 
ect the physical belief estimated for a given risk-neutral be- 
ief, it turns out their effect on our movement and uncertainty 

eduction statistics is so small as to be nearly indetectable. 45 

e thus report results here under our main translation, which 

ssumes a representative investor with power utility over the 

erminal index value. We present estimates under a wide range 

f alternative parameterizations in Online Appendix Figure A9, 
44. While the bound is sufficient for the full-stream tests considered in that 
aper, it might not be here: we wish to understand how “true” excess movement 
volves with signal informativeness within a stream. 

45. The brief intuition is that risk aversion is unlikely to be changing mean- 
ngfully from day to day. But the main point of interest for this analysis is that 
he basic patterns found in the experimental data and in the sports betting data 
re also observed in the finance data, regardless of the RN beliefs correction used. 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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which shows that these choices have little effect on our re-
sults. 

To implement our measurement of RN beliefs empirically, we
need a set of discrete possible outcomes as of date T . In partic-
ular, we must partition the set of possible date- T index values
into discrete ranges (in the example above, the single range con-
sidered was from 5,500 to 6,000). To maintain the same set of
possible outcomes across different expiration dates, we set these
states to correspond to ranges for the log excess return on the
S&P 500 from the first observable option trading date to the ex-
piration date. In particular, we define 10 potential return out-
comes θ j , each of which (aside from the two tails) corresponds to a
5 percentage point range for the S&P’s log return in excess of the
risk-free rate: state θ1 is realized if the S&P’s log excess return
is below −0.2 (i.e., roughly −20%) from date 0 to date T ; state θ2
is realized if the log excess return is in the range (−0 . 2 , −0 . 15]
(between −20% and −15%); θ3 if (−0 . 15 , −0 . 10] ; and so on, up to
θ9 = (0 . 15 , 0 . 2] and θ10 above 0.2. 

We then use options to measure RN beliefs π∗
t, j for each state

j over trading days t = 0 , 1 , . . . , 99 . 46 For example, π∗
t, 3 is the

option-implied belief, as of t, that the S&P’s excess return from
0 to T will end up being between −15% and −10%. At T = 100 ,
we assign probability one to the actual realized return state. Note
that unlike with the sports betting data, we no longer have only
two possible states. Instead, we are using the full histogram of
beliefs over 10 possible return outcomes. This departs from AL
(2023) , where the histogram is converted into a set of binarized
conditional beliefs. We keep the full histogram here in order to
minimize the potential effects of noisy prices, which AL (2023)
show can induce meaningful measurement error in the binarized

47 
statistics. 

46. Full details on how we construct the risk-neutral belief distribution are 
again provided in Online Appendix B.2. Given π∗

t, j , we then also calculate the cor- 
responding risk-adjusted physical belief πt, j using the power-utility risk adjust- 
ment described already, and all the calculations for movement and uncertainty 
reduction are then duplicated for these adjusted beliefs. 

47. They also provide and estimate a correction for this error on the binarized 
statistics (which are used in that paper given their theoretical setting). We show 

in Online Appendix Figure A10 that their noise-corrected, binarized RN beliefs 
exhibit very similar patterns in movement and uncertainty reduction as in our 
histogram data. The Online Appendix also includes figures and tables showing 

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://qje.oxfordjournals.org
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For each trading day and expiration date, we calculate the 

elief movement and uncertainty reduction statistics for each 

tate’s RN belief ( m t ,t +1 , j,T and r t ,t +1 , j,T ) and then average the re- 
ulting statistics across all 10 states ( m t ,t +1 ,T = 

1 
10 

∑ 10 
j=1 m t ,t +1 ,T , 

nd similarly for r t ,t +1 ,T ). Given that each belief has an interpre- 
ation as a binary belief over whether the given state will be real- 
zed or not, Proposition 2 still applies to these aggregated statis- 
ics (see AR 2021 , Proposition 3). Finally, as before, after calcu- 
ating these values, we then break the data into 24 equal-length 

ime windows sorted by trading days to expiration. Within each 

uc h c hunk (for trading days t 1 through t 2 ), we calculate average 

verall movement and uncertainty reduction over all events T 

e.g., 1 
955 

∑ 955 
T =1 m t 1 ,t 2 ,T ) as our empirical measures of E [ M t 1 ,t 2 ] and 

 [ R t 1 ,t 2 ] . 

3. Graphs of Movement and Uncertainty Reduction. 
igure VIII shows average movement and uncertainty re- 
uction over time in the options data, analogous to Figure VII . 
ate 0 is again 100 trading days from expiration, and date 100 

s expiration. The left panel shows the average movement and 

ncertainty reduction statistics for the raw RN beliefs, and the 

ight panel shows the statistics for physical beliefs obtained un- 
er the main risk adjustment procedure. In both cases, movement 
s consistently above uncertainty reduction relatively far from 

xpiration, when signals are only very weakly informative and 

ncertainty reduction is statistically indistinguishable from zero. 
ncertainty reduction increases dramatically closer to expiration 

when market movements are more informative regarding the 

rue index value at the expiration date). And while option-implied 

elief movement increases alongside uncertainty reduction, it 
ppears to do so less than one for one, with uncertainty reduction 

rossing above movement roughly 10 days from expiration. 
The patterns observed in this high-stakes financial market 

re similar to those in the sports betting data for many sports 
lotted in Figure VII . They are also similar to the simulated re- 
ults from our theoretical framework plotted in the bottom right 
anel of Figure VI . Recall that these simulations are parameter- 
zed using the estimates from our experimental data, so the the- 
hat results are unchanged with different numbers of time windows, as well as in 

ubsamples of the option data (post-2000 and post-2010). 
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FIGURE VIII 

Movement and Uncertainty Reduction over Time for Finance Data 

This figure shows the average belief movement (thic ker blac k line) and uncer- 
tainty reduction (thinner light line) statistics over time for the beliefs implied 
by option data (with 95% confidence intervals). Trading day 0 corresponds to 
100 days from expiration, and the last trading day is the expiration date. Each 

estimated point is the summed movement or uncertainty reduction within a 
four-trading-da y window, a veraged over all option expiration dates in the sample 
(1996–2018). The left panel uses the unadjusted (risk-neutral) beliefs implied by 
options. The right panel uses a risk adjustment described in the text. Movement 
is greater than uncertainty reduction far from expiration (when signals are gen- 
erally weak), and it is lower than uncertainty reduction close to expiration (when 

signals are generally strong), as predicted by the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
ory accordingly helps unify the evidence obtained in both the lab
and real-world data. 

4. Statistical Tests. We conclude this analysis by conducting
the same formal tests as in the previous case, regressing average
movement on average uncertainty reduction in each time win-
dow. The results are shown in the final two columns of Table III .
For both the raw and risk-adjusted data, the estimated slope and
constant are again highly statistically significantly different from
the Bayesian benchmark in the direction predicted by our theory.
The positive constant again indicates overreaction when signal
informativeness (uncertainty reduction) is low, as movement is
significantly positive in these cases; meanwhile, the slope being
less than one (and numerically nearly identical to the estimated
slope in the sports betting data) indicates underreaction for high
enough levels of signal informativeness. The market therefore ap-
pears to over- and underreact in the way predicted for individuals
modeled in Section II . More broadly, the consistent results from

art/qjae032_f8.eps
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he lab and from observational data indicate a key determinant 
or this updating behavior that applies across settings. 

V. DISCUSSION AND CONCLUSION 

We provide evidence that people overinfer from weak signals 
nd underinfer from strong signals. We demonstrate this phe- 
omenon using three tightly controlled experiments and using a 

ew empirical method applied to betting and financial markets. 
n each setting, beliefs appear to move in the correct direction and 

hift more when signals are stronger. But perceptions of signal 
trengths appear consistently anchored toward some intermedi- 
te level; in other words, people act as if they are partially insen- 
itive to the objective signal strength, leading on average to over- 
nference from weak signals, underinference from strong signals, 
nd corresponding over- and underreaction in beliefs. This par- 
ial insensitivity to signal strength is well captured by a model in 

hich a person understands the directional meaning of a signal 
ut is less certain about the strength of the information. These 

ndings help unify seemingly contradictory results in past litera- 
ure and data on inference behavior. 

Naturally, we view this as one of many possible reasons peo- 
le may react to information in a non-Bayesian manner. Our the- 
ry directly applies when a person pays attention to a discrete sig- 
al, easily determines its directional meaning, has a reasonable 

ut imperfect estimate of its strength, and partially corrects for 
his imperfection. We take these conditions as given, but it would 

e fruitful to unpack them and study when they do or do not 
old. For instance, if attention is endogenous to signal strength 

n certain situations, people may not attend to (and therefore un- 
erinfer from) some weak signals. Similarly, people may estimate 

trength in a systematically biased way, such that they overin- 
er from some strong signals. The limited-attention version of our 
odel in Section II.D —in which people focus on a subset of entries 

n the signal-strength vector—provides a possible framework for 
xploring these issues. Finally, for some predictions, people may 

e naive about the imperfection in their estimate. Consequently, 
e see modeling the different stages of the estimation process—

ncluding how people form simple models of situations, attend to 

nd process information through these models, and correct for 
stimation errors—in more detail, and understanding how these 

hange across decision environments, as important next steps. 
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We see several additional paths for potential future research.
First, although we find similar main results in our abstract ex-
periments and our more naturalistic experiment, it is worth un-
derstanding better whether participants facing math test–like ex-
perimental environments use different decision-making processes
and heuristics than they do in naturalistic environments. Us-
ing abstract environments has huge benefits—better control and
mapping to abstract models—but may come at the cost of only ob-
serving a very particular class of behaviors. For example, our the-
ory and results suggest that estimates of base-rate neglect might
depend on whether the experiment uses abstract “endowed” pri-
ors versus a naturalistic “internalized” prior; telling people that
their prior should be 80% may generate different findings than
a person genuinely believing 80% from previous experience and
updating. Relatedly, our work suggests that some standard re-
sults (like underinference) may be limited to classic parameters
(like strong signals) used in past experiments, an insight also ob-
served in work by Blavatskyy, Panchenko, and Ortmann (2023)
and McGranaghan et al. (2024) . Although there are benefits in us-
ing experimental designs and parameter values known to “work,”
these choices may limit external validity. 

Second, our results suggest future directions to study the de-
mand for news in the real world. There has been a shift in news
provision and consumption a wa y from traditional news outlets
and toward other platforms ( Liedke and Gottfried 2022 ), despite
concerns about these platforms’ low-quality news and misinfor-
mation ( Allcott and Gentzkow 2017 ). One potential explanation
is that people respond to news in general, but are insufficiently
sensitive to the quality of the information source. In our Study 1a,
we in fact find some suggestive evidence for this: we ask people to
decide how many signals to purchase (related to Ambuehl and Li
2018 ) and find that people purchase too many weak signals and
too few strong signals relative to the instrumental value of the
information ( Online Appendix Figure A4). It would be valuable
to empirically understand whether these effects generalize out-
side the lab in a way that might help explain the prevalence of
lower-quality news sources. 

Finally, while our results speak most directly to inference be-
havior, we see natural connections to the behavior of forecasts—
stated expectations, rather than beliefs—at different horizons.
Afrouzi et al. (2023) and Fan, Liang, and Peng (2024) find evi-
dence for overreaction to news in a set of experimental forecast-

https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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ng tasks, as well as a selection of survey data. But there is con- 
istent evidence in recent work that such overreaction decreases 
trongly with the persistence of the given series in a range of set- 
ings, in many cases switching to underreaction as a series ap- 
roaches unit-root persistence. 48 A model in which the conditional 
ean (rather than πt ) is the object of interest may speak to these 

atterns: if forecasters understand a shock’s directional effect on 

he future conditional mean but do not perfectly understand how 

uch it should change, then stronger signals will take the form of 
ore persistent shocks, potentially generating the observed pat- 

erns of over- and underreaction. 49 Given the importance of fore- 
ast behavior for macroeconomic and financial market contexts 
utside of the ones we consider here, it would be useful to explore 

his connection theoretically and empirically. We leave these, and 

ther potential applications of our findings, for future work. 

SUPPLEMENT ARY MA TERIAL 

An Online Appendix for this article can be found at 
he Quarterly Journal of Economics online. 

DA T A AVAILABILITY 

The data underlying this article are available in the Harvard 

ataverse , https://doi.org/10.7910/D VN/EGLSZC ( Augenblick, 
azarus, and Thaler 2024 ). 
48. Among others, Reimers and Harvey (2011) and Afrouzi et al. (2023) pro- 
ide evidence in the lab, and Bordalo et al. (2020) provide evidence in survey data. 
sing both options and stock-return surveys, Gandhi, Gormsen, and Lazarus 

2023) show evidence for overreaction in forecasts of the future equity premium, 
hich is a moderately persistent series. For the Treasury yield curve, Wang (2021) 
nd Farmer, Nakamura, and Steinsson (2024) show evidence for effective under- 
eaction (e.g., positive coefficients in regressions of survey-based forecast errors on 

orecast revisions) for the short-horizon interest rate, which is a very persistent 
eries with an annualized autocorrelation of above 0.9. Gabaix (2019) provides a 
eview and further discussion. 

49. In a simple setting with two possible values for the conditional mean at a 
iven future date, our results can be applied immediately. But it would be useful to 
xplore richer generalizations of our framework in dynamic forecasting settings. 
e think these settings are particularly well suited for further applications of 

ur general framework, as they often feature news that is clearly “good” or “bad”
elative to a previous expectation, but with some uncertainty as to its precise 
eaning. 
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