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When people receive new information, sometimes they revise their beliefs too
much, and sometimes too little. We show that a key driver of whether people over-
infer or underinfer is the strength of the information. Based on a model in which
people know which direction to update in, but not exactly how much to update,
we hypothesize that people will overinfer from weak signals and underinfer from
strong signals. We then test this hypothesis across four different environments:
abstract experiments, a naturalistic experiment, sports betting markets, and fi-
nancial markets. In each environment, our consistent and robust finding is over-
inference from weak signals and underinference from strong signals. Our frame-
work and findings can help harmonize apparently contradictory results from the
experimental and empirical literatures. JEL codes: C91, D83, D91, G14, G41.

I. INTRODUCTION

How do people update their beliefs given new informa-
tion? This important question has spawned a vast experimental
and empirical literature, with seemingly contradictory results.
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A common finding in the experimental literature is that people
often underreact to information in standard updating tasks. But
this is seemingly at odds with observational evidence from real-
world settings, such as excess volatility in asset prices, which
often appears more consistent with overreaction. Updating be-
havior is clearly context-dependent, but what specific mediating
factors help explain how people will respond to a given piece of
information?

This article hypothesizes that people commonly overinfer
from weak information and underinfer from strong information.
We start with a theoretical framework in which we formalize
these concepts and provide simple but general conditions under
which the effect will arise. We then use a classic experimental
paradigm to show that while people do underinfer when provided
with strong signals (as commonly studied in the lab), they over-
infer from sufficiently weak signals (which have been previously
understudied). After replicating and extending this result in a
follow-up study, we demonstrate that this effect is not an arti-
fact of the abstract environment by showing the same results in a
novel experiment with more naturalistic information. Finally, we
use two empirical settings to show that betting markets and asset
prices exhibit excess volatility when information is weak, but this
effect reverses with sufficiently strong information.

To understand the intuition for our hypothesis, consider the
constant stream of information faced by people every day. Peo-
ple might read a new poll about an election, have a conversation
with their boss at work, or see news about daily stock market
movements. In many cases, people understand the directional im-
pact this news should have on their beliefs, but are less certain
about the strength of the information. That is, they know that
better polling raises a candidate’s election chances, managerial
praise raises promotion chances, and positive stock returns raise
early retirement chances, but they don’t know exactly how much
their beliefs should move. How will a person update in this sit-
uation? Consider the extreme case in which the person knows
that a signal is positive but is completely unsure about the sig-
nal’s strength. The person only knows that beliefs should rise and
therefore updates as if the news has “intermediate” strength. But
if a person is always updating an intermediate amount, then they
will be overreacting to weak news and underreacting to strong
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news.! In other words, when people know the signal’s direction,
insensitivity to objective signal strength leads to a pattern of over-
and underreaction relative to a full Bayesian.

In more realistic scenarios, people will have a rough guess of
the strength of signals they receive. This estimate might be based
on a simplified model, unconscious approximation, or constrained
information processing given attention to certain aspects of a sig-
nal. Given that the estimate is imperfect, the person should still
shrink their estimate toward an intermediate strength. While
different people can have different estimates given the same in-
formation, the shrinkage will on average lead to overreaction to
weak signals and underreaction to strong signals. In Section II,
we model this intuition formally and show that it holds across a
general set of information structures, estimation strategies, and
possibly non-Bayesian updating rules. We then use distributional
assumptions to obtain a set of simple parametric updating rules
that can be taken to the data.

Our theory relies throughout on the four high-level assump-
tions that people (i) pay attention to a given piece of information;
(ii) can easily determine its directional meaning; (iii) form reason-
able estimates of its strength; and (iv) are at least partially aware
that this estimate is imperfect. We think these assumptions hold
in many important settings, including the ones we consider in our
empirical analysis. There are, however, important cases in which
each may be violated, such as when people (i) simply ignore very
weak information; (ii) are unsure of a signal’s directional mean-
ing; (iii) form systematically biased strength estimates; or (iv) fail
to account for estimation noise. These potential violations under-
score that our theory is not intended to provide a universal ex-
planation for all under- and overreaction. Rather, our goal is to
identify a single important mediating factor that helps explain
behavior parsimoniously across a range of common situations.

To test our theoretical predictions, we study how people’s re-
action to new information varies when signals are weak versus

1. We largely use the terms “overinfer” and “overreact” interchangeably. How-
ever, we see a subtle difference: a person “overinfers” if they perceive a signal as
more informative than a Bayesian would, whereas “overreaction” is the resultant
behavior of reacting too strongly. We generally use “overinfer” when we are clearly
discussing overestimating signal strength (such as in our theory), while we gen-
erally use “overreact” when discussing observable behavior. We only highlight the
difference when there is a contaminating force (such as base-rate neglect) that
might cause beliefs to react too strongly for a reason other than overinference.
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strong. To do so, we create three controlled lab experiments (with
preregistered hypotheses) and study two empirical environments
in which signal strengths vary systematically and updating be-
havior can be measured consistently. Although the environments
and methods differ, we find consistent results across each of the
settings.

The first two experiments (Studies 1la and 1b) use the clas-
sic “bookbag-and-poker-chips” paradigm (Green, Halbert, and
Robinson 1965). This is the most commonly used experimental
setup to study belief updating; for example, Benjamin’s (2019)
survey of the literature includes 500 experimental treatment
blocks across 21 papers that study inference from symmetric bi-
nary signals about a binary state, which is our main focus. Belief
updating in these settings often features underreaction relative
to Bayes’ rule, with Benjamin’s Stylized Fact 1 stating that “Un-
derinference is by far the dominant direction of bias” (p. 108).
The vast majority of this evidence, though, is on strong signals:
in all of these papers where people receive one symmetric binary
signal, its diagnosticity—the likelihood of seeing a “high” signal
conditional on the “high” state—is never lower than % . Our hy-
pothesis is that people will overinfer given lower signal strengths.
There is a hint of the importance of signal strength for underre-
action in these studies: Benjamin notes that “Underinference . . .
is more severe the larger is the diagnosticity” (p. 118), suggesting
that the pattern may flip. We hypothesize that this is indeed the
case.

To test our hypothesis, in Study la we run this standard ex-
periment with 500 participants using our much wider range of
signal strengths. In the main treatment, participants are pre-
sented with two decks of cards: a green deck containing more
spades than diamonds, and a purple deck with more diamonds
than spades. Participants see a single card drawn from one of the
two decks, and they must then estimate probabilities for which
deck was chosen based on the suit of the drawn card. We vary sig-
nal strength by changing the number of spades and diamonds in
each deck. This design broadly aligns with our theoretical setup:
the direction to update is fairly clear (e.g., a spade is evidence for
the green deck), but the correct magnitude is less obvious (requir-
ing clear understanding of the data-generating process, correct
use of Bayes’ rule, and exact calculation of the proportion of suits
in each deck).
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We find that almost all participants update their beliefs in
the right direction, but there is substantial heterogeneity in how
much they revise their beliefs. We interpret this as showing that
participants know to update in a particular direction, but they
differ in how they perceive the strength of the signal. Notably,
participants’ answers are not random: the average perceived sig-
nal strength rises monotonically with the true strength. Our main
result, however, is that this relationship is muted, leading to over-
reaction to weak signals and underreaction to strong signals in a
manner consistent with our theory. Reassuringly, our estimates
of the magnitudes of underinference for the high-strength signals
are in line with the previous literature. It is only in the previ-
ously understudied low-strength signals, with diagnosticity below
%, that we find overinference: for very weak signals, participants
act as if signals are twice as strong as they truly are.

Study 1a focuses on the case in which both decks are equally
likely to be drawn ex ante, so we conduct a follow-up in Study 1b
in which we systematically vary the prior (considering values of
%, %, and %) in addition to the signal strength. All of our main
findings continue to hold. Participants again overreact to weak
signals and underreact to strong signals. While we estimate that
people exhibit modest base-rate neglect, our core findings about
inference are not substantially affected. In other words, although
people’s biases in using base rates can affect how they react to
new information, disentangling these biases from our effects does
not impact our conclusion that people overinfer from weak signals
and underinfer from strong signals.

Exploring heterogeneity in updating, both experiments pro-
vide further evidence in line with the theoretical framework. In-
tuitively, the theory suggests that our effect will be stronger for
people with less precise estimates of the signal strength. Con-
sistent with this prediction, we find that our effect is stronger
for people who exhibit more variance in their level of under- and
overinference in Study la and 1b, have less task experience in
Study 1la and 1b, have lower scores on a cognitive reflection test
(adapted from Frederick 2005) in Study 1la, and state that they
are more uncertain about their answers in Study 1b (adapted
from Enke and Graeber 2023).

Studies 1a and 1b provide clean evidence for our effect, as
the bookbags-and-poker-chips setting allows us to manipulate the
data-generating process (DGP) and compare people’s behavior to
an objective benchmark. But this control comes with some costs:
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the setting is quite abstract, and signals are difficult to under-
stand largely as a result of numerical and calculation-related
complexity. As with many experiments, one may be concerned
that people treat this math exam-like situation in a different way
than in real-life scenarios.

Given this concern, Study 2 analyzes belief updating in
a more naturalistic setting, where participants are not pro-
vided with precise numbers representing likelihoods or signal
strengths. Because naturalistic DGPs are often highly compli-
cated, it is challenging to find an appropriate environment. Such
an environment must (i) be reasonably understood by partici-
pants, (i) allow for clean variation in signal strength, and (iii)
allow some way to estimate the correct answer in order to calcu-
late under- and overreaction. To address these challenges, we de-
sign a new experiment in which we ask basketball fans to predict
the outcome of an NBA basketball game given sequences of game
scenarios. For example, we elicit the probability that a team wins
when they are ahead by one point with two minutes left in the
game, and then we elicit it again given a scenario in which they
have just made a shot to go ahead by three points a few seconds
later. Although the DGP itselfis complex, (i) the scenario is simple
enough for basketball fans to immediately understand it, (ii) the
strength of the same news (like a scored basket) changes over the
course of the game, and (iii) we can use a data-driven, third-party
benchmark estimate of signal strength. Note again that as in our
theory, the direction of the news is clear (a made shot increases
the probability of winning), but the exact change in probability in
different scenarios is less clear (requiring some estimation pro-
cess given personal experience and understanding of basketball
games). Though there are costs in moving away from a fully con-
trolled DGP, this environment provides a much more naturalistic
source of uncertainty about signal strengths.

To implement Study 2, we recruited 500 basketball fans, pro-
viding them with sequences of events over the course of four quar-
ters of a hypothetical NBA game. Here, the variation in infor-
mation strength is largely driven by timing: making a basket to
take a lead in the fourth quarter is a much stronger signal than
making a basket in the first quarter. As in the abstract experi-
ments, we find that the vast majority of participants update in the
right direction, but there is dispersion in the perceived strength of
each signal. Crucially, people again are not answering randomly:
on average, a basket is seen as a stronger signal in the fourth
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quarter than in the first. But just as before, the relationship is
muted, such that people on average overreact to weak signals (in
the first quarter) and underreact to strong signals (in the fourth
quarter), switching from over- to underreaction on average in the
third quarter. Overall, these findings replicate the core findings
from Studies 1a and 1b in a more realistic setting.

Although Study 2 is more naturalistic than Studies la and
1b, it still places participants in a new experimental paradigm
with fictional scenarios and relatively low stakes. In light of these
concerns, we turn to evidence from more realistic high-stakes set-
tings by studying the movement of market-implied probability
distributions in both (i) sports betting markets and (ii) finan-
cial markets. For (i), we use over 5 million transactions from a
large sports prediction market for five major sports, correspond-
ing to about 260,000 sporting events. The market-implied beliefs
for these sporting events—particularly the subsample of NBA
games—provide an empirical analogue to our Study 2. For (ii), we
study S&P 500 index option markets, using option-implied beliefs
regarding the future value of the S&P from daily option prices ob-
served over a roughly 20-year span.

These settings allow us to examine external validity but
come with their own challenges. Perhaps the most important
one is that we can no longer create credible estimates of the
Bayesian probability for a given situation, as we see neither
the full information set of participants nor the structure of the
DGP.2 To overcome this challenge, we develop a new empiri-
cal method based on theoretical results from Augenblick and
Rabin (2021) and Augenblick and Lazarus (2023). The core
intuition of these papers is that when a Bayesian is chang-
ing their beliefs over time about some event, they must be
learning something and thus on average must reduce their
uncertainty correspondingly. This intuition can be formalized

2. In our finance data, it is clear that creating a “correct” forecast of the dis-
tribution of future outcomes is infeasible. In the sports data, one could create a
reasonable forecast given observables (like score and game time), but this would
not reflect the observer’s full information set (injury or foul issues, game impor-
tance, whether Drake is courtside, etc.), and therefore stating that the observer’s
beliefs are wrong is dubious. This is not an issue in the experiment because partic-
ipants’ information sets are limited and controlled by the experimenter. We also
face challenges related to the use of prices (which reflect the marginal trader’s
beliefs and risk preferences) instead of individual beliefs. We discuss how we deal
with these in Section IV.
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by defining movement as the sum of the squared deviations
of changes in beliefs over time, and uncertainty reduction as the
drop in perceived variance in the outcome. While movement and
uncertainty reduction may differ for a given signal realization,
they must be equal in expectation across signal realizations, re-
gardless of the DGP. This insight allows for a DGP-agnostic test
of Bayesian updating in observational data. And crucially, these
statistics are intuitively and theoretically related to over- and un-
derinference: overinference will lead to positive excess movement
relative to uncertainty reduction on average, while underinfer-
ence will lead to too little movement relative to the reduction in
uncertainty.

While this allows for an intuitive test of over- vs. underinfer-
ence with an unknown DGP, to test our theory, we also need to
distinguish situations in which signals are weak versus strong.
Given that the signal strength is also unobservable, we turn to
the same separating variable from Study 2: time to resolution. As
in the experiment, our insight is that when a person is predict-
ing the value of the S&P 500 in three months, information today
should generally not lead to much belief movement; meanwhile,
information today is highly informative for the value of the S&P
tomorrow, and we should accordingly observe more movement of
short-horizon beliefs in response to information.? Our theory then
intuitively suggests that there should be too much movement (ev-
idence for overinference and overreaction) at long forecast hori-
zons and too little movement (vice versa) at short horizons.

Turning to the data, we find strong and consistent evidence
for the hypothesized effect in both sports betting and financial
markets. Both uncertainty reduction and movement increase over
time as resolution approaches, but movement is generally higher
than uncertainty reduction early on (i.e., far from resolution), and
lower toward the end of the event. For example, in the options
data, there is very little daily uncertainty reduction until a few
weeks before the contract expires, but beliefs consistently move
back and forth, generating excess movement. In other words,
news today appears to hold relatively little information about
the value of the S&P in multiple months, but the market acts

3. The relationship between the time horizon and signal strength of course
depends on the exact DGP. We show that the predicted relationship holds strongly
in simulations of game-like DGPs; it also holds in standard option pricing models.
More importantly, it clearly holds in our empirical settings.
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as if it has more diagnosticity. However, within two weeks of a
contract’s resolution, the relationship reverses: movement is ei-
ther less than or equal to uncertainty reduction. That is, as sig-
nals become stronger, the market begins to underreact. On net,
total movement averaged over an entire option contract is too
high, matching the finding of excess movement in Augenblick and
Lazarus (2023). But this overall average masks meaningful het-
erogeneity as one varies the signal strength, in the manner pre-
dicted by our theory. The same broad pattern holds in the sports
betting data we consider. In both cases, the results are clear both
visually and in formal statistical tests on movement and uncer-
tainty reduction.

Given that we cannot observe true signal strength, we must
rely on our indirect measure (time to resolution) to test the re-
lationship between signal strength and over- versus underreac-
tion in our two real-world high-stakes settings. The strength of
our experimental settings, meanwhile, is that these variables are
observable or plausibly constructable, but the experiments are
lower-stakes and less realistic. The multiple settings thus pro-
vide complementary evidence for our theory, whose predictions
align well with both sets of data.

Our experimental results relate to a large literature on up-
dating, including many publications documenting other forms
of over- and underinference; we provide a brief and incomplete
review here. Classically, our article is most closely related to
Phillips and Edwards (1966) and Griffin and Tversky (1992).
Phillips and Edwards are the first we know of to consider the
effect of signal strength on inference, in an unincentivized task
with many sequences of signals. Griffin and Tversky’s inference
experiments focus on sample proportion and sample size effects
in updating from multiple signals, but they also show evidence
for insensitivity to the discriminability of a given signal, which
corresponds to our definition of signal strength.

More recently, Goncalves, Libgober, and Willis (2024) find un-
derreaction to strong signals but even further underreaction to
the retraction of those signals, while Kieren, Miiller-Dethard, and
Weber (2024) find overreaction to disconfirming signals. Bordalo
et al. (2023) also document evidence for insensitivity to signal
strength, along with a range of other results (including multi-
modality and instability in updating) across tasks; we discuss
how our modeling approach complements and contrasts with
theirs in Section II. Other recent papers (Bordalo et al. 2020;
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Afrouzi et al. 2023; Fan, Liang, and Peng 2024) consider forecast-
ing rather than inference behavior; we discuss our framework’s
applicability and connections to this literature in our conclusion.
Ba, Bohren, and Imas (2024) run an experiment confirming many
of the patterns that we originally documented in our Study 1la,
and they argue with additional studies that the patterns they
observe are consistent with a two-stage model of channeled at-
tention, followed by cognitively imprecise updating. We see these
results as complementary.

Two particularly important recent influences on this paper
are Khaw, Li, and Woodford (2021) and Enke and Graeber (2023).
Khaw, Li, and Woodford (2021) present a model of cognitive noise
that connects mental errors in perceiving and encoding informa-
tion with insensitivity to information in choice tasks. We build off
the structure of this model to study updating, under the premise
that people form imperfect estimates of a signal’s strength using
multiple possible processes (such as making simplifying assump-
tions about the DGP, attending to certain information, and im-
perfectly processing that information). Enke and Graeber (2023)
present a related model of cognitive uncertainty in which people’s
perception of new information is noisy. This leads people to be in-
sensitive to new information overall and to shade their posterior
toward their prior, such that they underinfer on average. Our ar-
gument follows similar logic with one key distinction: we focus on
settings where people have no issue determining the direction of
the signal, but perceive the strength of the signal imperfectly. Peo-
ple thus do not shade toward their prior belief, but rather toward
the belief given a signal with an “average” strength. The relative
perception of signal strength determines whether people under-
infer or overinfer, and we predict overinference when signals are
weak.*

Our results are further related to a large literature using as-
set prices for evidence on beliefs, as surveyed in Barberis (2018).5
For the overall market, a long literature (building from Shiller

4. Enke and Graeber run a variety of experiments, including one mirroring
our abstract experiment. As in their paper, we also find that cognitive uncertainty
correlates with insensitivity to signal strength, but here this leads to greater over-
inference from weak signals (which they did not include in their experiment).

5. A smaller, growing literature uses sports betting data to similar ends. As
a relevant example, Moskowitz (2021) shows that betting returns from the open
of betting to the start of a game predict reversals from there until the end of the
game. We focus instead on variation within a game.
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1981, with more recent work including Barberis et al. 2015 and
Giglio and Kelly 2018) argues for a link between apparent excess
volatility and overreaction. For individual firms, earnings news
seems to provide strong information about near-term firm fun-
damentals (Kormendi and Lipe 1987; Bouchaud et al. 2019), and
multiple papers (e.g., Bernard and Thomas 1989; DellaVigna and
Pollet 2009) provide evidence that post—earnings announcement
drift arises from the market underreacting to such news. A host
of other factors, including uninformative news content (Tetlock
2014) and a string of good fundamental news (Bordalo et al. 2024),
predict apparent overreaction and return reversals.® Kwon and
Tang (2024) reconcile some of these findings by considering the
distribution of past outcomes for the given category of news; they
argue that categories with more extreme outliers tend to gen-
erate greater overreaction. Our focus on the informativeness of
a given signal is conceptually somewhat different.” While signal
strength is clearly not the only relevant factor for belief behavior,
we contribute by isolating it as a simple, powerful determinant
in a range of settings, with complementary evidence from both a
new set of experiments and market price data.

We proceed as follows. Section II provides our theoret-
ical framework; Section III presents the three experiments;
Section IV analyzes the sports betting and finance data; and
Section V discusses and concludes. The Online Appendix contains
model proofs, additional empirical details and results, and screen-
shots of the pages in the experiments.

6. While we do not provide direct evidence, our theory suggests an interpre-
tation that earnings surprises are strong news about short-term fundamentals
(generating underreaction), while even a string of news gives fairly weak infor-
mation about the long-run or aggregate regime (leading to overreaction), loosely
in the spirit of Barberis et al. (1998). Separately, Giglio and Shue (2014) docu-
ment underreaction to the passage of time. We view this as underattentiveness to
certain relevant aspects of information, as modeled in Section II.D.

7. That said, we provide only a high-level theory of what default “intermedi-
ate” signal strength people shrink toward. The results of Kwon and Tang (2024)
suggest that salience of outliers in past data may be important for determining
this default strength for a given type of signal.
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II. THEORY

We consider a setting in which people can easily under-
stand the direction they should update their beliefs after seeing
a signal, but where it may be challenging to understand the
strength of the signal, even if the signal is perfectly observed.
There are a variety of reasons why a person may find it difficult
to fully comprehend the signal strength. In contexts where the
signal strength and correct posterior can in theory be calculated
directly (e.g., in controlled experiments), the person could have
issues undertaking a set of potentially complex mental calcula-
tions but may nonetheless have the ability to generate a rough
estimate. In real-world settings, the person may not fully under-
stand the exact DGP but may nonetheless have a simplified model
of the process. Similarly, the person may only be able to appreci-
ate parts of a complicated signal and thus generate an incomplete
estimate of its strength. In each case, the person is using a cogni-
tive process—whether conscious and deliberative or unconscious
and automatic—to form an estimate of the signal strength. Our
goal is to provide a framework that is broad enough to capture
these different situations.

After setting up the model in Section II.A, we show how
overinference from weak signals and underinference from strong
signals arises from a set of simple and intuitive (potentially
non-Bayesian) updating rules. In Section II.B, we study a pa-
rameterized model to derive a more concrete relationship be-
tween strength and reaction, which we then use in our ex-
perimental analysis. In Section II.C, we consider how in-
correct priors, base-rate neglect, or uncertainty about direc-
tion may affect the analysis. In Section II.D, we broaden the
analysis to consider multiple people with possibly correlated
estimates, providing a specific example arising from limited
attention.

II.A. Setup and Main Results

1. Setup. We consider a person who receives an arbitrary
signal s about a binary state 0 € {0, 1}, with s € S generated ac-
cording to the likelihood function p(s|0). As a benchmark for com-
parison, we denote the correct prior that 6 =1 by 7y and the
Bayesian posterior given s as 71(s), or my.
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To formalize the idea that some aspects of a signal are easier
to understand than others, we break the signal into two compo-
nents, s = (sq, S» ). The first component, s;, determines the direc-
tion of updating and accordingly can only take two values, “posi-
tive” or “negative.” Given a positive (negative) directional signal,
the Bayesian posterior is always above (below) the prior.® Given
the direction, the second component s,, € R determines the mag-
nitude or strength of the signal. We define signal strength S for-
mally as

’

1) 5(s) = ‘log <M>

p(slo =0)

which is the magnitude of the log odds ratio of the signal. Defining
logit(x) = log (1% ), a Bayesian updates such that

(2) logit(m1(s)) = logit(mg) + S(s)
—————— —— ~—— ——
Logit of Logit of Signal Signal
Posterior Prior Direction Strength
(from s,) (from s, |s4)

Consequently, fixing 7, a signal s with a greater signal strength
S(s) will lead to a larger absolute change in beliefs |71(s) — 7g].

2. Estimates of Signal Strength. Our main behavioral as-
sumption is that a person fully understands the direction of the
signal but does not fully understand the magnitude. Instead, we
assume that people use some internal process to form a guess
about S, which we call an estimate e € R. While the Bayesian uses
the information in the signal s = (s4, s,,), the person we consider
uses the information in § = (s4, e).

We consider the behavior of the person’s perceived signal
strength given S, as the perceived signal strength determines the
person’s inference from the signal. In Section II.B, we take the
traditional approach of assuming that the person is a constrained
Bayesian: they only receive a noisy estimate of the strength,
and they update correctly given the joint distribution of signal
strengths and estimates. From these assumptions, we derive the
parameterized relationship between signal strength and reac-
tion. Our initial goal in this section, however, is to demonstrate

8. Formally, sy is such that 7 (sy = positive, sp,) > 7o > 71(sg = negative, s},)
for any s,, and s),. Note also that all p(-) can be understood either as mass func-
tions or densities, while P(-) refers to a probability.
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the generality of our main effect given very minimal assump-
tions on the distribution of e and assuming intuitive (and poten-
tially non-Bayesian) updating rules. That is, rather than deriv-
ing updating rules under specific (and likely unrealistic) Bayesian
assumptions, we show how our effect occurs under a broad class
of updating rules.

3. Reasonable Estimates and Updating Rules. We start with
a minimal set of restrictions on the distribution of estimates given
a signal strength, requiring that the estimate be a well-ordered
approximation of the true strength:

AssuMPTION 1. For each direction s;,° estimates are formed such
that:

(i) e is unbiased: E[e|S] = gs. )
.. . . ¢]5=S
(ii) e is well-ordered: ZZ =2

S2 > Sl.
(iil) e is imperfect: there is no pair (e, S) such that P(Sle) = 1.

strictly increases in e for all

Part (i) is effectively a normalization such that the estimate is
centered around the correct signal strength. Part (ii) assumes the
strict monotone likelihood ratio property (MLRP) on estimates.
This commonly used property implies that higher estimates are
associated with higher levels of S; under Bayesian updating, this
implies that posteriors for S are monotonic in e (Milgrom 1981). In
our case, we impose MLRP to ensure that the distribution of es-
timates is well-behaved enough to be able to make general state-
ments even in cases of non-Bayesian updating. Part (iii) rules out
trivial cases in which e fully reveals the signal strength S. This
implies that the set of feasible signal strengths is nondegenerate.

Next we consider the person’s prior perceptions of signal
strength. Before observing any information, the person has some
subjective expectation 5, of signal strength S. After observing if
sq 1s positive or negative (but before incorporating the estimate
e), the person updates this expectation to S(s;). We do not require
these expectations to be correct, but we do require the minimal as-
sumption that they be within the feasible set of signal strengths:

9. We allow all statements to potentially condition on sy, but we leave this
conditioning implicit to ease notation for the distribution of e. That is, p(e|S) is
shorthand for p(e|s;,5), and so on for related expressions.
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AssUMPTION 2. S(s;) is strictly between ming S(sq, s,) and
max;, S(Sq, Sm).

Given the expectation S(s;) of S, the person then generates
an estimate e following Assumption 1. How will the person up-
date given their prior expectation and this new signal? Instead
of requiring Bayesian updating, we assume only that the person’s
posterior expectation of signal strength 5(§) = E[S|s,, e] will move
from S(s;) toward e:

ASSUMPTIOI\i 3. For all §, the posterior 5(§) is strictly between
the prior S(s;) and estimate e.

Crucially, given that the estimate is noisy, we assume that
the person will not update all the way to e. This intuitive property
is referred to as “updating toward the signal” (UTS) by Chambers
and Healy (2012), who show that it is satisfied in many commonly
studied updating environments.'® We are, in effect, assuming im-
plicitly that the person is aware that their internal estimate is
noisy and therefore shades their signal strength belief toward
their prior. Note that we place no further restriction on how much
the person updates from a given e: for all §, there exists some
a € (0, 1) such that 5($) = we + (1 — @)S(sy), but the signal weight
o need not be constant and may vary with e (and with sg).

To summarize, the person observes a signal s = (sg4, s;,) con-
taining both directional and magnitude information. A Bayesian
would correctly interpret this signal as having strength S(s). In
contrast, the person in our model understands s; but doesn’t fully
understand s,, and therefore cannot fully resolve S(s). Instead,
she forms a reasonable, well-ordered, but noisy estimate e of S(s).
She then uses a very general and intuitive updating rule using
§ = (s4, e) to form her expectation of signal strength 5($).

4. Qverinference and Underinference. Our primary objec-
tive is to study whether a person is over- or underinferring
relative to the full (signal-understanding) Bayesian benchmark.
While the Bayesian’s view of the signal strength is fixed at S(s)

10. As Chambers and Healy note, some papers assume UTS directly (e.g.,
Shapiro 1986; Moore and Healy 2008), as we do. Note that we assume strict UTS,
rather than a weaker version in which $(sz) <8($) <e.
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given a signal s, a person’s perceived 5($) depends on their es-
timate e, which is stochastic. Consequently, we focus on the ex-
pected perception E[5($)|s], and we define over- and underinfer-
ence in the following natural way.!!

DEFINITION 1. The person overinfers from s if E[S(§)|s] > S(s)
and underinfers from s if E[S5(8)|s] < S(s).

Our main result is that this person is biased in their percep-
tion of signal strength:

PROPOSITION 1 (OVER- AND UNDERINFERENCE). The person over-
infers from weak signals and underinfers from strong signals:
there exists a unique switching point $* such that they overin-
fer from s if S(s) < $* and underinfer if S(s) > 5*.

The proof, provided in Online Appendix A.1, involves express-
ing E[5($)|s] — S(s) as an expectation of a single-crossing func-
tion g(e) with respect to the conditional distribution p(e|S(s)).
Then, using a well-known result (formalized by Karlin 1968,
among others) referred to as the variation diminishing property,
the fact that p(e|S(s)) satisfies the MLRP (by Assumption 1) im-
plies that E[5(8)|s] — S(s) is single-crossing as well: in particular,
E[S($)Is] — S(s) > 0 for small S(s) and E[S(3)|s] — S(s) < 0 for large
S(s), with a unique interior switching point S*.

Although this proof is slightly involved, the results are
intuitive. First, consider the extreme case in which the per-
son places no weight on their strength estimate e (because
the estimate is extremely noisy, for example). The person will
effectively be fully insensitive to signal strength, such that
they expect the same intermediate strength (S(s;)) regardless
of actual strength S. This leads to overinference when S is

11. Given our focus on inference from signals of varying strengths, we directly
define over- and underinference in terms of mean perceived signal strength. Fix-
ing 7y, this intuitively corresponds to over- and underreaction in beliefs, as belief
changes |logit(#1(s)) — logit(my)| are generally monotonic in perceived strength
§(8). This connection can fail given the nonlinear mapping from signal strength to
beliefs, but it will hold to first order (e.g., in a small-noise limit, as in Khaw, Li,
and Woodford 2021, Appendix G). We can also simply modify Assumptions 1-3 to
focus on beliefs (so e is an estimate of the correct 71), in which case our results
will hold for beliefs. Unless stated otherwise, we assume throughout that belief
changes are monotonic in 5($) with the correct direction.
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low and underinference when S is high. As the weight on
e rises, the person will still shrink toward an intermediate
strength as compared to a full Bayesian. The resulting par-
tial insensitivity to signal strength leads to overinference from
weak signals and underinference from strong signals on aver-
age.

Note that under our general assumptions, it is not neces-
sarily the case that a person’s expected signal strength 5(3) is
monotonic in e or that the amount of over- or underinference
E[5($)|s] — S(s) is monotonic in S(s).!2 Online Appendix A.1 pro-
vides conditions under which these additional monotonicity re-
sults will hold. As long as the weight placed on the estimate does
not fall dramatically given small increases in |e — S(sq)|, then
§(8) will be monotonic in e, and as long as the weight does not
increase strongly in e, then E[5($)|s] — S(s) will be monotonic in
S(s).

I1.B. Parametric Example: Updating with Log-Normal Estimates

In the previous subsection, we showed how a person follow-
ing a set of intuitive (but potentially non-Bayesian) updating as-
sumptions will overinfer from weak signals and underinfer from
strong signals. We now specialize the model to show that a quasi-
Bayesian facing log-normal distributions will also update follow-
ing the predictions in Proposition 1, with the updating rule taking
a particularly simple form that will then guide our experimental
analysis.!?

First, we assume that signal strength is log-normally
distributed with logS ~ N(us,02), regardless of direction. A
Bayesian’s expectation of signal strength after seeing either direc-
tion is thus S(sy) = E[S|sy] = exp(us + %?). Next, given a specific
strength S, we assume that the person’s estimate e is log-normally
distributed, loge ~ N (log$S — %, 02). The correction —g ensures
that the estimate is centered around the true signal strength:
Ele|S] = S.

12. For example, if a person updates from their prior 5(sy) strongly toward
the estimate e; but very weakly toward the estimate es = e1 + ¢, the person can
have a large drop in 5($) from a small increase in e.

13. The updating rule is similar to one obtained from different foundations
(based on Khaw, Li, and Woodford 2021 and Woodford 2020) in a previous version
of this article (Augenblick, Lazarus, and Thaler 2023).
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How will a Bayesian then react to e? Using standard results
given a log-normal likelihood and conjugate prior, the updating
rule for expected signal strength is

2
A/ A [of A
56 =exp|(1-—5—=)  log&Gsa)
~—~— (o —+ O’S ———
Posterior ‘— ———  (Log Adjusted)
Expectation Weight on Prior Expectation
Prior
2 2
[ef o
(3) —+ 3 S 5 ) loge + _e
o, + 08 2
Weight on (Log Adjusted)
Estimate Estimate

Intuitively, the Bayesian will take a weighted average of the ad-
justed prior and estimate in log space, then exponentiate to form
their posterior expectation of strength. The weight on the imper-
fect strength estimate depends on the relative precision of the es-
timate versus the prior: as the precision of the estimate rises, the
weight on the estimate rises; as the precision of the prior rises,
the weight on the estimate falls.

Given this updating rule, people will overinfer from weak sig-
nals and underinfer from strong signals on average, with a simple
and estimable functional form for the effect. In particular, the ex-
pectation of 5(§) = S(sy, e) over the distribution of estimates is
(4) EIS$)s] = kS,
where f= 7> €(0,1) and k= exp(“75)5(ss)!#. Note that
E[8G))s] =S if and only if S<S* =k That is, as in
Proposition 1, people overinfer from signal strengths below 5* and
underinfer above S*.

The relationship between reaction and signal strength given
this setup can be represented and visualized in a number of ways.
Taking logs of equation (4) yields

(5) log(E[5(8)|s]) = log(k) + Blog(5),

such that there is a log-linear relationship between the expected
and true signal strength, with a positive intercept and a muted
slope between zero and one. The left panel of Figure I plots this




OVER- AND UNDERINFERENCE FROM SIGNALS 353

——— Our Model (Parametric)
----- Constant Overinference

|
o b | e Constant Underinference
\

Bayesian

Perceived Strength
Weight on Signal
&
-~

.03 1 3 1 3 5 .6 7 8 9 1
True Signal Strength Signal Precision

FI1GURE I
Theoretical Predictions of Over- and Underinference by Signal Strength

These figures provide two representations of the core deviation in our model.
Solid lines correspond to Bayesian updating (correct perception of signal strength
S), dotted dashed lines to underinference (with perceived signal strength 0.8 - S5),
short dashed lines to overinference (perceived signal strength 1.2 - 5), and darker
dashed lines to the over- and underinference behavior in the parametric version
of our model (perceived signal strength % - 5# with 2 = 0.88 and g = 0.76, as esti-
mated from Study 1a). The left panel plots signal strength perception as a function
of signal strength on a log-log scale. The right panel plots the weight put on sig-
nals as a function of the true precision. Both panels show that our model predicts
overweighting of weak signals and underweighting of strong signals.

relationship given the parameters 2 and g we estimate from our
first experiment (discussed further in Section III). For compari-
son, we also plot the relationship for a Bayesian (for which they
are equal), a person who exhibits constant underinference, and a
person who exhibits constant overinference.

This relationship can also be represented in terms of the ef-
fective weight a person places on a signal with strength S. While a
Bayesian observing the full signal will update following equation
(2) using S, a person in our model updates as if the signal strength
is, on average, w(S)S for some weight function @(S). The full
Bayesian effectively uses w(S) = 1, while for our model,

(6) W(8) = kS~ 1A,

This weight is greater than one for weak signals and less than
one for strong signals. Note that @(S) approaches one as 8 — 1,
so the degree of over- and underinference shrinks as the person’s
estimation process becomes more precise.

Rather than using the relationship in equation (6) directly,
we often follow past literature (Benjamin 2019) and focus on
the relationship between the inference weight and signal di-
agnosticity or precision p(s). For a symmetric signal (where
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psl0=1)=1—p(s|p =0)), signal precision is p(s)=
max{p(s|d = 1), p(s|6 =0)} = 1ogit_1(S(s)), which is a mono-
tonically increasing transformation of strength S(s).!* The
qualitative relationship between weight and precision matches
the relationship between weight and strength. In particular, the
weight @ (s) is above one for low precisions and below one for high
precisions:

™ in(s) = (logit(p"))" " [logit(p(s))| ",

where p* = (1 + exp(—k*ﬁ))*1 is the switching point. The right
panel of Figure I plots this relationship, again using parameters
k and B estimated from the experiment and again as compared
with Bayesian updating, underinference, and overinference. We
return to these graphs in Section III.

I1.C. Relaxing Assumptions

1. Prior Belief Distortions. We have assumed to this point
that the person starts with a correct prior, 7y = 7. If the person
has an incorrect prior that is observable (and otherwise updates
according to the assumptions in Section II.A), it is straightfor-
ward to correct for the distortion induced by 7 # 7y in our empiri-
cal analysis. Rather than estimating perceived signal strength us-
ing [logit(#1(s)) — logit(mo)|from equation (2), the incorrect prior
can be controlled for by using [logit(#(s)) — logit(#o)|. The per-
son uses their perceived signal strength to update from their
prior to their posterior, so perceived strength can be backed out
from the posterior and prior, and Proposition 1 continues to pro-
vide testable predictions. Note that this is true even if the per-
son’s prior 7y arose after updating from an estimate of the previ-
ous period’s signal. In this case, even though the person used a
noisy estimate and was insensitive to the past signal strength,
7o incorporates this uncertainty. See Online Appendix A.3 for
details.

This analysis becomes more complicated if the person’s prior
is not observed, or if the person uses their prior in a nonstandard
way (e.g., with base-rate neglect). For example, suppose that an
experiment provides a person with both an endowed prior 7y and

14. Signal precision is by definition between % and 1. When 7y = % (as in our
first experimental study), the Bayesian posterior after a positive signal is equal to
the signal precision, m1(s) = p(s).
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a signal s simultaneously, and asks for a single updated posterior.
If people are unsure how to use both the prior and the signal, or
use a distorted version of the prior due to base-rate neglect, their
single answer will reflect both their prior distortion and our ef-
fect. Online Appendix A.3 discusses in more detail how these prior
distortions contaminate people’s reactions and when they poten-
tially overwhelm our effect. We use two approaches in our exper-
iments to control for this issue. In Study 1a, we focus on uninfor-
mative priors 7y = 0.5, where biases like base-rate neglect have
no impact. In Studies 1b and 2, we vary the prior and then con-
trol for potential base-rate neglect using a regression approach
following Grether (1980).

2. Uncertainty about the Direction. Our theory is geared to
situations in which people know the correct direction to update
but are unclear about the signal strength. In this case, imper-
fect estimates lead to insensitivity to strength, which leads to our
main effect. We can extend the model to situations in which the
person is unsure about both the direction and strength of the sig-

nal (such that the person forms an estimate e of signed signal

p(slo=1)
p(s]6=0)

directly). This version of the model is closely related to that of
Enke and Graeber (2023) (except that we work in signal-strength
space instead of probability space), and we also predict that in-
sensitivity without directional information generally leads to un-
derinference.’® Intuitively, if people do not know the directional
meaning of a signal, they shade toward a reaction of zero. See
Online Appendix A.3 for details.

strength Sy = log ( ) and does not observe the direction

II1.D. Multiple People, Limited Attention, and Correlated
Estimates

The analysis thus far has focused on the expected reaction
of a single person. In this section, we instead consider the aver-
age response across different peoplei =1, ..., N (where N should
be thought of as large). A natural preliminary way to extend

15. That said, our definition of underinference becomes strained in this con-
text, so we are reluctant to make strong statements. For example, suppose the
correct signed signal strength is 2, but a person perceives it to be —1. Is this an
under- or overinference? In our main model, this issue does not arise because we
assume that the correct updating direction is known, which we believe is typically
the case in our empirical settings.
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our analysis to this case is to assume that each person under-
stands the direction s; and generates a mutually independent
strength estimate e;. That is, people see the same signal and
agree on its direction, but there is diversity in people’s estimated
signal strengths due to different interpretations, models, or
perceptions of the problem. Under this assumption, our results
(immediately) continue to hold across people. Specifically, define
the expectation over people given s as [;[-|s] and the person-
specific strength perception as §;($;). Then, rather than focusing
on expected perceived strength of an individual across potential
estimates E[5($)|s] as in Proposition 1, the same results hold tak-
ing the expectation across people E;[5;($;)|s] (see Online Appendix
A4 for a more formal discussion). Intuitively, under the assump-
tion that estimates are independent across people, there is no for-
mal distinction between taking the expectation with respect to
the distribution of estimates and taking a cross-sectional expec-
tation across people.

The assumption of independent estimates is appropriate for
some situations. For example, in Study 2, we ask people to up-
date their subjective probability of a team winning a basketball
game after observing a made or missed basket in simple situa-
tions. We find that people’s perceptions of the strength of a given
signal tend to be diverse and smooth, presumably because people
have different ways of using their knowledge and experiences to
estimate its effect. Similarly, in Studies 1a and 1b, signals are pre-
sented in a computationally challenging form (e.g., a signal with
conditional likelihood 202/337). We again find similar diversity
and smoothness in responses, likely because people have differ-
ent estimates of the precise value of this number and how to use it
to form a posterior. However, there are also natural situations in
which people might form correlated estimates of a given signal’s
strength. For example, people may have similar simplified models
of a given DGP or similar strategies for combining available infor-
mation to determine a signal’s meaning. Similarly, some dimen-
sions of a piece of information may be more salient than others,
such that people incorporate similar dimensions in forming their
estimate of signal strength. These cases will lead to correlated
estimates across people and potentially non-smooth multimodal
posterior belief distributions, as in Bordalo et al. (2023).

1. Example: Limited Attention. To study correlated esti-
mates more formally, we consider a case in which the signal’s
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strength component (the second entry in s = (s4, s,,)) has multi-
ple dimensions: s, = (.1, - - -, Sm.n). While a Bayesian uses all
components to determine signal strength, people in our model
have limited attention, have limited processing ability, or attend
specifically to certain features of the signal, such that they only
appreciate a subset of components. Correlation in estimates will
occur if people focus on the same components.

Specifically, we assume that regardless of direction, the
components s, ; are independently and identically distributed
N(us, 02), and the true log signal strength is the average of these
components:

1n
logS = — _—
og ngs J

Consequently, signal strength is log-normally distributed, log S ~
N(us, 02), with 02 = % While a Bayesian uses all n components
and can determine S, person i only attends to n; < n of the compo-
nents, captured in a fixed person-specific vector a; € {0, 1}, where
a;j = 1 if the person attends to component j. Given this setup,
person i’s best (log) estimate of S is

1 o2
loge; = — Zl(ai,j =1)-5p,;— 7’,
1 ]=1

2
2 n-n; 2 n-n; 2 ; e.i S
where o7, = =0y, = **og (with the term ——5* again included

so that Ele;|S] = S). The estimate e; is log-normally distributed
conditional on S, loge; ~ N(log$S — %,Ufi). This setting thus

maps to the one in Section II.B, with o2 = % and o} = o =

';:—:i"a,i. That is, that model can be microfounded with people
who only consider a subset of the full signal.'® Crucially, though,
this multicomponent model produces correlated updating behav-
ior across people, governed by the overlap in a; across i.

This correlation can create a specific type of violation of
Proposition 1. That result says that all signals s of a given
strength S(s) will lead to over- or underinference in the same way
on average. But in this setting, the same is not necessarily true.

16. The strength sensitivity parameter g in equation (4) becomes f; = % So
fixing n, an increase in n; (e.g., due to greater sophistication) leads to less noisy
estimates and less insensitivity to true strength for person i. An increase in n (e.g.,
from a more complicated signal) generates the opposite behavior for all i.
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To take an extreme example, if everyone focuses on the same com-
ponents, then they will have the same estimate e; for a given sig-
nal s. While this estimate is random conditional on S (it is drawn
from a distribution with mean 35), it is not random conditional on
the full signal s (since s contains the entries that will be used to
determine loge;). This suggests a simple adjustment under which
our results do apply: when over- and underinference are defined
conditional on S rather than s, then a version of the proposition
holds (see Online Appendix A.4). That is, our results hold when
averaging over signals of the same strength.

Finally, as we discuss in Online Appendix A.4, it is possible
to obtain more precise predictions about the correlation in updat-
ing behavior under different sets of assumptions about the signal
components or attention vectors. If there are few components or
all people are drawn to a small set of salient components, people’s
estimates will be correlated, and we may see multimodality in re-
sponses.!” If people must estimate a probability given a complex
DGP and a rich signal, or if the main salient part of a signal is the
direction s; (as may sometimes apply in time-series settings), we
might expect more independent strength estimates and smoother
distributions of resulting strength perceptions.

To summarize, we model an updating environment in which a
person knows the directional meaning of signals but only forms a
rough estimate of the exact strength. Because this estimate is im-
perfect, the person shades their perceived strength toward some
intermediate value, which leads to overinference from weak sig-
nals and underinference from strong signals on average. In the
following sections, we test this core prediction for updating in
a range of environments. We also predict that the effect will be
dampened as a person’s estimate becomes more precise. Estima-
tion precision will increase with more thought or sophistication,
more experience, or attending to more components in a multidi-
mensional problem. While estimation precision is not directly ob-
servable, we test this relationship using a variety of proxies in
our experiments.

17. For example, if an abstract problem only includes a few numbers rep-
resenting the “prior” and a “signal,” we might see some people focusing on the
prior, some on the signal, and some on both. Bordalo et al. (2023) provide a richer
foundation and set of predictions for this form of behavior arising from bottom-up
attention to salient features, which further speaks to instability across problems
with the same correct answer.
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III. EXPERIMENTAL EVIDENCE

To test our core prediction that people overinfer from weak
signals and underinfer from strong signals, we design and con-
duct three experiments. Each experiment studies the causal ef-
fect of varying signal strengths on participants’ updating behav-
ior and, by implication, the level of over- and underinference. The
first experiment (Study la) adapts a classic belief-updating de-
sign from Green, Halbert, and Robinson (1965). The next experi-
ment (Study 1b) replicates the first one and expands the analysis
by varying the prior and eliciting a more direct proxy for pre-
cision in signal strength estimates. The final experiment (Study
2) uses a novel naturalistic design in which participants predict
the win probability of basketball games. Each study was pre-
registered,'® and we largely follow the preregistration plans, al-
though some of the estimated results from the first study appear
in Online Appendix B to conserve space. We note these cases in
the main text.

III.A. Study 1a: Abstract Updating Experiment

1. Design. The design of the first experiment follows the
broad “bookbag-and-poker-chips” (or “balls-and-urns”) paradigm,
which is a benchmark design for measuring underinference and
overinference in past literature (Benjamin 2019). Participants are
told that there are two card decks, each with NV cards. One deck is
labeled Green, and the other is labeled Purple. Each deck is com-
posed of Diamond cards and Spade cards, with the Green deck
having D; Diamonds and N — D; Spades and the Purple deck
having Dy Diamonds and N — Dy Spades.

In the main treatment, the computer chooses either the
Green or Purple deck with equal probability. Participants do not
observe the color. Instead, participants are shown the suit of a
single card drawn from the chosen deck. Given this signal, par-
ticipants are asked to provide a percentage chance that the cho-
sen deck is Purple or Green. These probabilities are restricted to
be between 0% and 100% and must sum to 100. In addition to
the main treatment, there are treatments with multiple draws
of cards, elicitation of willingness to pay for drawing cards, and
where the signal precision is unknown. The timing of the treat-

18. Study 1a: https://aspredicted.org/ax4wg.pdf; Study 1b: https:/aspredicted.
org/8Q4_6Y9; Study 2: https:/aspredicted.org/SYW_QWF.
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ments and more details are described in Online Appendix B.1.
Screenshots of the experimental interface are in Online Appendix
C.

The relative proportion of suits in each deck determines the
signal strength of observing a card. For example, if the Purple
deck contains a large proportion p; = % of Diamonds, while the
Green deck contains a very small portion py of Diamonds, a Di-
amond card is a strong signal that the chosen deck is Purple.
Given our core prediction, we vary these proportions to vary sig-
nal strength. Following the literature, we largely focus on sym-
metric signal structures, in which p = p; = 1 — ps. We choose 32
possible values of p within the range [0.047, 0.495] or [0.505,
0.953]. These values correspond to 16 possible signal strengths
(S = |logit p|) in the range S € [0.02, 3.00].1° On each question, we
randomized whether the Green deck or Purple deck had more Di-
amonds or Spades, which suit was chosen, and whether the num-
ber of cards in a deck N was 1,665 or 337.20

We use monetary incentives to elicit participants’ beliefs, as
incentives have been shown to improve decision making in these
settings (e.g., Grether 1992). We implement a version of the bi-
narized scoring rule (Hossain and Okui 2013) that is easier for
participants to comprehend: paired-uniform scoring (Vespa and
Wilson 2017).2! Participants’ answers determine the probability
that they win a high bonus as opposed to a low bonus.

2. Implementation. Study la was conducted in March 2021.
Participants were recruited from the online platform Prolific
(prolific.co). Prolific was designed by social scientists in order to
attain more representative samples online; it has been shown to
perform well relative to other participant pools (Rigotti, Wilson,
and Gupta 2023). Five hundred participants completed the ex-
periment and passed the attention check, of whom five were ran-
domly chosen to win bonuses (either a high bonus of $100, or a

19. More specifically, we choose whole numbers of cards such that signal
strengths would be closest to the following values: {0.02,0.05,0.10, 0.15, 0.20,
0.30, 0.40, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00}.

20. The deck sizes are intentionally large and irregular to allow for a wide
range of signal strengths, remove clear anchor points for people’s answers, and
induce some uncertainty in mental calculations.

21. In general, binarized scoring rules have been argued to better account
for risk aversion and hedging than other incentive rules (Azrieli, Chambers, and
Healy 2018).


https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
https://prolific.com
file:prolific.co
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low bonus of $10). All participants received a $3 show-up fee, and
the average bonus earnings for the selected participants was $82.

Participants play 12 rounds in the main part of the study, in
each of which they observe one draw of a card. We elicit 6,000 pre-
dictions in this part: 4,036 from one symmetric signal, and 1,964
from one asymmetric signal. To test that participants have a
basic understanding of the setting, we randomly make 72 signals
fully uninformative.?? The rest of the study includes an atten-
tion check, multiple draws of cards, demand for information, and
signals with ambiguous strength. Given space constraints and to
emphasize our core results, we largely focus on the main treat-
ment, where people see one symmetric signal and signal strength
does not depend on the signal realization. Details for the addi-
tional treatments are in Online Appendix B and a previous work-
ing paper version of this article (Augenblick, Lazarus, and Thaler
2023, hereafter ALT 2023).

3. Main Results. In the main condition where signals are
symmetric, the signal precision from learning the suit of one
drawn card is p = p; = pe. Given that the prior is % (both decks
are equally likely to be chosen), a Bayesian will place probability
p that the card was drawn from the deck that contains more of
that card’s suit.

We used Figure I in the theory section to visually represent
our core predictions under the log-normal parameterization of our
model. Figure II presents the same graphs with the addition of
the actual data from the experiment, where we back out partic-
ipants’ perception of signal strength from their posterior (given
a fixed prior of %). We compare our estimates for each condi-
tion (black circles) and the fitted predictions of the parameterized
model (dashed lines) with Bayesian updating (solid lines). The
left panel shows that participants’ behavior is not purely random:
they qualitatively understand that stronger signals are in fact
stronger, as average perceived signal strength rises monotonically
with true strength. But this relationship is quantitatively muted,
so participants systematically overinfer from weak signals and
underinfer from strong signals. As in the parameterized model,
this relationship between true and perceived signal strength is
close to linear in logs.

22. That is, both decks have exactly the same composition, so the correct up-
date is to stay at 50%. Reassuringly, 96% of participants answer exactly 50%.


https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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Study 1a: Over- and Underinference by Signal Strength

The left panel plots the perceived signal strength (the logit belief change) as a
function of true signal strength on a log-log scale. The right panel plots the aver-
age weight participants put on signals relative to a Bayesian for whom the weight
is one. In both panels, black markers plot the data (with 95% confidence inter-
vals). Observations are winsorized for each signal strength category at the 5%
and 95% levels. Dashed lines fit the data using the power weighting function from
equation (6), estimating parameters using nonlinear least squares. Thicker solid
lines indicate Bayesian behavior. Both panels show that participants overweight
weak signals and underweight strong signals.

The right panel presents the same information in a different
way, showing that people are effectively overweighting weak sig-
nals and underweighting strong signals, with a shape that again
largely hews to the predictions of the parameterized model. For
very weak signals, participants are acting as if signals are more
than twice as strong as they truly are; for very strong signals,
they are acting as if signals are roughly two-thirds as strong as
they truly are.

The parametric curves in Figure II are obtained by estimat-
ing the model parameters £ and g from equation (6), W(S) =
k- S~1-P) using nonlinear least squares. The estimated value for
k is 0.88 (std. err. 0.02) and for B is 0.76 (std. err. 0.03). The value
of B is statistically significantly less than one (p < .001), as pre-
dicted. These values correspond to an estimate for the switching
point p* of 0.64 (std. err. 0.01).23 All standard errors are clustered
by participant.

Experiments using this paradigm have been run many times
in the past, largely focusing on higher signal strengths. In
Online Appendix Figure Al, we compare our estimates to the

23. Equivalently, people are updating as if the distribution of strengths is
such that S* = logit(0.64) = 0.58.


art/qjae032_f2.eps
https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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many studies discussed in Benjamin (2019). Our results line up
with past studies’ estimates for these higher signal strengths. In
particular, we match the literature in finding underinference for
signals with precision at or above % It is only for signals with
precision below 0.6 that we see overinference, and this is a range
that the previous literature had not explored.

To explore our main results more formally in a consistent
way across studies, Table I presents the results of regressions for
the weight on the signal, W(S), on a constant and the true sig-
nal strength S. Bayes’ rule would predict a constant of one and
slope of zero on S in such a regression, while our theory predicts
a constant above one (indicating overinference for very weak sig-
nals) and a slope below zero (indicating that people are partially
insensitive to signal strength, and switch to underinference for
strong signals).2* Column (1) confirms the relationship suggested
by Figure II for Study la: the constant is above one, the slope is
below zero, and both effects are precisely estimated and strongly
significant.

4. Heterogeneity. The theory assumes that people use a ran-
domly drawn estimate of signal strength to form their beliefs.
Consequently, it predicts that our main effect occurs on av-
erage, but also that there will be heterogeneity: some people
will overreact and some will underreact to any given signal.
Online Appendix Figure A2 plots the raw cumulative distribution
and probability density functions at the individual level for strong
and weak signals. Nearly everyone updates in the right direction,
and the distributions are centered in accordance with our main
effect. But given the nontrivial spread in the distributions, there
is clear heterogeneity in perceived signal strength and associated
updating behavior.

The model also makes the prediction that the core effect will
be larger as a person’s estimate of signal strength becomes less
precise. Naturally, we cannot observe the precision of a person’s
internal estimates of strength, and therefore must rely on a set of
proxies. To estimate heterogeneity in treatment effects, we then

24. Both our model and Figure II suggest a nonlinear relationship between
weight and strength. We thus see the linear specification in Table I as provid-
ing a clean hypothesis test of the key effect predicted by our theory, rather than
identifying model parameters directly (which we do separately via nonlinear least
squares).


https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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interact these proxies with the signal strength in regressions for
the weight placed on the signal, with results presented in Table II.

Our first proxy for (im)precision uses the standard deviation
in a person’s implied signal weights across the experiment. In-
tuitively, a person whose estimates have very high precision will
have low variance in these weights, since most weights will be
around one; meanwhile, a person whose estimates have low pre-
cision will have high variance in weights.?> As shown in Table II,
column (1), our effect is stronger (i.e., the interaction term is
negative) for people who have higher standard deviation of their
weights on other questions.

Our second proxy for estimation precision is task experience:
if people become better at understanding and estimating signal
strength as they get more practice, then they will be less precise
earlier in the experiment (and our core effect will be stronger). As
shown in Table II, column (2), consistent with this idea, people
overweight weak signals and underweight strong signals by more
in earlier rounds of the experiment.

In addition to these two proxies, we also preregistered cor-
relating our effects with performance on a three-item cognitive
reflection test (CRT; Frederick 2005). In Table II, column (3), we
find that people with lower CRT scores show the core effect sig-
nificantly more. We also preregistered looking at an additional
heterogeneity by self-reported news consumption, and indeed find
that less experience with news consumption is correlated with our
core effect (see ALT 2023).

5. Extensions: Asymmetric, Multiple, and Ambiguous Sig-
nals, and Other Concerns. The main treatment of the experiment
focuses on how people respond to one symmetric signal with a de-
terministic signal strength. The experiment included additional
treatments in which we relax each of these features. We report
some key takeaways here.

First, we consider asymmetric signals such that one deck has
a similar share of Spades and Diamonds, but the other deck does
not. We find that our main results continue to hold for these asym-
metric signals, and as suggested by our theory, the more compli-

25. There is a small endogeneity issue in using the same observation both
to measure a person’s reaction and to calculate a person’s weight variance across
choices. As a result, we relate a person’s reaction in one decision to the standard
deviation in their weights for all other decisions on similar problems.
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cated problem leads to a stronger effect. Using the same nonlin-
ear least squares estimation as before, we estimate a value for
k of 0.84 (std. err. 0.03) and for 8 of 0.56 (std. err. 0.04), with a
similar estimated switching point p* of 0.66 (std. err. 0.01).

Second, in Online Appendix Figure A.3, we replicate the
finding in Griffin and Tversky (1992) that people react less to
multiple signals than a single signal with the same overall
strength; in Griffin and Tversky’s language, participants are un-
derattentive to the weight of evidence. The reduction in reaction
to multiple signals is essentially constant for all strengths, so this
effect is orthogonal to our main effect. Third, we consider ambigu-
ous signals by telling participants that the share of suits in each
deck is equal to one of two possible values (high or low). Our main
effect continues to hold, and results suggest that people first esti-
mate each possible signal strength, and then average these esti-
mates, to form their overall expected strength (see ALT 2023 for
further details).

Finally, we consider a set of alternative hypotheses for our
results that are unrelated to over- or underinference. Our re-
sults are not explained by participants being averse to not up-
dating when signals are not informative; they also cannot be ex-
plained by reactions to particular components of the experiment,
for example, being influenced by the relative salience of the first
deck or the second deck (or the Green and Purple color), positive
or negative signal, the suit of the signal, or the particular deck
size.26

II1.B. Study 1b: Follow-Up Experiment

1. Design. To probe the robustness of the results from Study
la, we run a follow-up using the same general design but now
considering asymmetric prior beliefs. Given our focus on the ro-
bustness of the main results, Study 1b drops the additional treat-

26. Ninety-six percent of participants who see a completely uninformative
signal say exactly 50%. We also see below that results are very similar when the
prior is equal to 33.3%, suggesting that results are not driven by a preference for
stating the closest round number above/below the prior given a weak signal. We
find a tightly estimated null effect of color and suit asymmetry, and only mod-
est differences when the deck size varies between 1,665 and 337. Again see ALT
(2023) for further details and discussion.


https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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ments in the original study and focuses on the reaction to a single
symmetric signal.

To allow for asymmetric prior beliefs, we vary the probabil-
ity that the first (Green) deck is chosen. In the original study,
the chosen deck is picked randomly from two decks, such that the
likelihood of picking the Green deck is % To vary this prior like-
lihood in a salient way, Study 1b includes treatments in which
there are two, three, or four decks, and each deck is chosen with
equal probability (%, %, or ‘—i, respectively). As in the original study,
the first deck is labeled as Green and has D; Diamonds and
N — D; Spades. The other decks are labeled as different shades
of Blue and have identical compositions of N — D; Diamonds and
D, Spades. Given this setup, the signal strength matches that of
the original study, but the person’s prior that the Green deck is
chosen is either %, %, or %.27 After the suit of the drawn card is
shown to the participant, we elicit the probability that each deck
was chosen. Our analysis considers the stated probability for the
Green deck as the belief outcome of interest.

2. Implementation. Study 1b was conducted in March 2024.
Participants were again recruited on Prolific. As preregistered,
500 participants completed the experiment and passed an at-
tention check. Ten participants were randomly chosen to win
bonuses. If they won the high bonus, they received $50; if not,
they received no bonus. All participants received a $3.60 show-up
fee, and the average bonus earnings for the selected participants
was $35. Participants played 15 rounds in the study, in each of
which they received one draw of a card. The experiment involved
three blocks of five rounds. Each block gave participants a differ-
ent prior, in which the Green deck, as above, had either a %, %, or

1 probability of being chosen.

3. Results. We first visually present the main results in
Figure III, which replicates Figure II using the new data from

27. Another way to vary the prior would have been to continue to use
two decks but to tell participants that the Green deck would be chosen with
some specific probability. We instead chose the multideck design because it
makes the change in the prior more clear and, from our perspective, easier to
understand.
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Study 1b: Over- and Underinference by Signal Strength

The left panel plots the logit belief change (equal to perceived strength in our
theory) as a function of true signal strength on a log-log scale. The right panel
plots the average implied weight participants put on signals relative to a Bayesian
for whom the weight is one. In both panels, black markers plot the data (with
95% confidence intervals). Observations are winsorized for each category of signal
strength and prior at the 5% and 95% levels. Dashed lines fit the data using the
power weighting function from equation (6), estimating parameters using non-
linear least squares. Thicker solid lines indicate Bayesian behavior. Both panels
show that participants overweight weak signals and underweight strong signals.

Study 1b. We find that the broad patterns in the logit belief
changes (in the left panel) and resulting implied signal weights
are very similar to those from Study la, even when allowing for
asymmetric priors.

Next we replicate the regression from Study la for the im-
plied weight on the signal, with results shown in Table I, col-
umn (2). Since W(S) is measured from the logit belief change,
this analysis implicitly assumes that people correctly incorpo-
rate the prior probability. As discussed in Section II.C, these re-
sults may be contaminated if people do not appreciate or mis-
weight the prior (as is true with base-rate neglect). As such, col-
umn (3) estimates and controls for the effect of misweighted pri-
ors. In particular, it includes the additional regressor wﬁlﬁ
in the regression, which (omitting the error term and fixed effects)
is now

10git7T()

8 WwESH=yv+r1-Ss)+(@—1)- Togitr; — logitrg’

Previous Terms Base-Rate Neglect Term
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and an estimated « < 1 represents base-rate neglect.?® Control-
ling for misweighted priors does not affect our main results: the
estimated constant and slope on strength in columns (2) and (3)
are close to identical, and we continue to strongly reject the
Bayesian null in the manner predicted by our theory. If any-
thing, comparing the columns for this study with column (1) for
Study 1a, asymmetric priors seem to strengthen our effects, po-
tentially because signal strength estimation is more challenging
when there are more decks. That said, the estimates across the
two studies may not be directly comparable, as Study 1b uses a
more limited set of signal strengths.

We also analyze the effects of asymmetric priors in a specifi-
cation that follows the Grether (1980) regression approach more
directly:

9) logit71(s) = « - logitmg £ y - S(s).

To allow for differences in inference in response to signals of dif-
ferent strengths, we estimate equation (9) separately for each sig-
nal strength S(s). The results are presented in Online Appendix
Table A1, and they align with those in Table I, albeit with differ-
ent interpretation for the strength coefficient y. We find that par-
ticipants significantly overweight weak signals ( > 1) and un-
derweight strong signals (y < 1). We find that there is significant
base-rate neglect for strong signals but none for weak signals, in-
dicating that the modest estimates for overall base-rate neglect
may partly reflect the inclusion of the weak-signal treatments.?®
In the rightmost columns of Table I, we examine heterogene-
ity in our main treatment effect by interacting signal strength

28. The regressor’s denominator logit7; — logitzy is included to make «
here match its typical interpretation in a Grether (1980) regression. The typi-
cal Grether regression is logit#; = o logitmy + y (logity — logitmg), or logit#; —
logitrg = (@ — 1) logit g + y (logitm; — logitmy). Our regression sets y = yy+
y15(s) and uses W(s) = % as the outcome variable. So dividing both
sides of the Grether equation by logitm; — logity, we obtain equation (8), with «
having the same interpretation as in Grether’s case. Intuitively, base-rate neglect
matters more for the estimated weight the greater the distance of 7y from 0.5 (the
regressor’s numerator) relative to the signed signal strength (its denominator).

29. The table also presents a set of additional analyses. Column (1) consid-
ers only the 7y = 0.5 treatment, finding our usual results. Column (2) replicates
the analysis for all priors, imposing « = 1, and finds slightly stronger results. Col-
umn (3) allows for separate y across strengths but sets « to be constant, with
similar results and mild base-rate neglect. Column (4) presents the full set of «
and y estimates described in the text.


https://academic.oup.com/qje/article-lookup/doi/10.1093/qje/qjae032#supplementary-data
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with proxies for estimation precision (or imprecision), control-
ling for base-rate neglect as in equation (8). Column (4) considers
the same noise proxy from Study la, finding again that people
who have higher variance in weights exhibit stronger effects. Col-
umn (5) considers how our effect correlates with task experience,
again finding that people exhibit a stronger effect earlier in the
experiment.

We also elicit one additional measure to proxy for partici-
pants’ estimation precision, based on the elicitation procedure
used by Enke and Graeber (2023). In particular, we ask people,
“How certain are you that the optimal guess is somewhere be-
tween x — 1% and x + 1%?” on a scale from 0 to 100. We ask peo-
ple this question three separate times during the experiment and
average their answers to get an additional measure of a person’s
estimation precision. Intuitively, a person with low precision will
report higher subjective uncertainty than a person with high pre-
cision (as shown by Enke and Graeber 2023 and Enke, Graeber,
and Oprea 2024). Column (6) suggests that this new proxy of cog-
nitive uncertainty is also associated with our effect in the direc-
tion predicted by the theory: people with more stated uncertainty
about their answer seem to exhibit our core effect more strongly.

Finally, we again estimate k£ and g from equation (6). The
estimated value for & is 0.89 (std. err. 0.02) and for 8 is 0.61 (std.
err. 0.02). The value of 8 is statistically significantly less than one
(p < .001). These values correspond to an estimate for p* of 0.68
(std. err. 0.01). Allowing for base-rate neglect in the model gives
an estimate of 0.94 for the weight on the prior, and leads to little
change in the other estimates (¢ = 0.87 and g = 0.69).

II1.C. Study 2: Naturalistic Experiment

1. Overview. The benefit of the abstract DGP in Studies
la and 1b is that it is cleanly and fully defined. This con-
strained structure allows for straightforward manipulation of sig-
nal strength and calculation of a precise Bayesian benchmark,
which is a key reason this paradigm is so widely used. But one
possible concern is that this abstract, numerically oriented envi-
ronment is unnatural for most people, more closely mirroring a
math exam than a real-life updating situation. If people solve ab-
stract inference problems differently than more naturalistic prob-
lems, our results might not generalize to real-life behavior.
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Given this concern, our next experiment attempts to study
updating behavior in a more naturalistic environment. In partic-
ular, we analyze how NBA basketball fans update their beliefs
that a team wins a game given information that they make or
miss a shot in different situations. This environment provides an
experimental parallel to one of the observational data settings
considered in Section IV. We choose to focus on it here because
while the DGP is naturalistic and complex, fans intuitively un-
derstand this process well and can easily make reasonable pre-
dictions. A made basket is almost always a positive signal, and a
missed basket is a negative signal, but the exact strength of this
signal is unclear.

This last feature also represents the main chal-
lenge in analyzing a naturalistic setting: not having ex-
act knowledge of the signal strength would seem to
make it difficult to test for over- and underreaction. Cru-
cially, however, this environment is one where we can
obtain credible estimates of the correct probabilities in dif-
ferent situations using historical game data. We do so using an
online win probability calculator from Inpredictable, a sports
analytics site that provides estimates for different game situa-
tions.?? To provide participants signals with varying strength,
we vary the game situation. As detailed shortly, the key source
of signal strength variation across scenarios is similar to the one
we use later in our analysis of sports betting data: the timing
of the event. NBA basketball games have four quarters, and a
basket made in the fourth quarter is a stronger signal of the
game’s winner than is a basket made in the first quarter. Our
core prediction, therefore, is that people will overreact to made
or missed shots in early quarters (when signals are weaker)
and underreact to made or missed shots in late quarters (when
signals are stronger).

30. Our estimates were taken from https:/stats.inpredictable.com/nba/
wpCalc.php (Beuoy 2024) in April 2024. This calculator takes as input the current
score differential, time remaining, and which team has possession and outputs a
win probability based on historical data. To check whether this calculator gives
reasonable estimates, we also created our own simple calculator based on more,
or fewer, years of data; the estimates from our versions of the calculator and the
online calculator are extremely similar. We tie our hands by using this third-party
tool.
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2. Design. Participants are told that they will see a vari-
ety of simple scenarios in an NBA game (which include the score
differential, time remaining, and which team has possession) be-
tween two unnamed teams (e.g., Team A and Team B), and that
their goal is to estimate the probability that each team wins the
basketball game in that scenario. Participants are sequentially
given four sets of scenarios, with each scenario set starting with
2:40 left in one of the four quarters and the time decreasing by
10-15 seconds after each event. The order of the sets is random.

In each scenario set, the person is first given a base scenario.
They are told the actual calculated probability of the base sce-
nario, such that all participants have the same prior. To provide
variation in priors within a quarter, we randomize whether the
lead in the base scenario is one or five. The participants are then
told the outcome of the next possession. This signal is equally
likely to be good news for the team on offense (a made two-point
basket) or good news for the team on defense (a missed basket
that leads to the defensive team getting possession). They are
then asked for the probability that a given team will win after
observing this event. We again elicit beliefs using the paired-
uniform scoring version of the binarized scoring rule (Hossain
and Okui 2013; Vespa and Wilson 2017), with participants’ an-
swers determining the probability that they win a high bonus.3!

After the person enters their answers, they go through this
process for three more consecutive possessions in the same quar-
ter. For each possession in this scenario set, they see the sequence
of previous events in the quarter, as well as the answers they en-
tered. After completing a scenario set, they move on to the next
scenario set in a different quarter, where they are again told a
base scenario and shown a series of signals. Figure IV shows a
screenshot with an example of the page participants see after the
base scenario and one event; a full set of screenshots of the study
pages are again in Online Appendix C.

We identify our core effect by exploiting variation in sig-
nal strength across these scenarios. Interestingly, the empirical
variation in signal strength in these scenarios is driven almost

31. Our study instructions include the following: “We have used a model based
on a database of regular-season NBA games with several years of play-by-play
data to estimate the likelihoods of each team winning in these scenarios. The
closer your answer is to the likelihood, the more likely you are to win the $50
bonus.”
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Prediction
We will give you some more information about the game. With 2:25 left in the third quarter, Team F missed a

shot and Team E rebounded the ball.

Time Last action Score Your guess

Q3:2:40 left [Team E made a shot Team E is up by S points  |Team E: 6% chance of winning

Q3: 2:25 left (Team F missed a shot, Team E rebounded the ball Team E is up by 5 points  |?

Now, what do you think is the percent chance that Team E wins the game?

0 10 20 30 40 50 60 70 80 90 100

FI1GURE IV

Study 2: Example of an Information Page Participants See

entirely from variation in the amount of time left rather than
the event or score differential.?? This motivates us to group our
estimates by quarter when visually presenting our results, to see
whether we indeed observe overreaction on average in response
to the weak signals in early quarters, and underreaction given
the strong signals in late quarters.

3. Implementation. Study 2 was conducted in April 2024.
Participants were recruited from Prolific from a sample of Amer-
icans who reported that they were basketball fans. As preregis-
tered, 500 participants completed the experiment, passed an at-
tention check, and stated that they followed the NBA. Ten partici-
pants were randomly chosen to win bonuses. If they won the high
bonus, they received $50; if not, they received no bonus. All partic-
ipants received a $2.50 show-up fee, and the average bonus earn-
ings for the selected participants was $25. Participants played

32. Fixing time and initial score difference, our events (made and missed
two-point shots) have similar strengths, as NBA teams average close to one point
per possession. Similarly, fixing time, baskets have surprisingly similar strengths
given different initial score differences. Intuitively, while a basket shifts probabil-
ity when tied more than when up by 10 (say, 50% to 60% versus 90% to 93%), these
have virtually the same signal strength S given the different base probabilities.
Quantitatively, using past game data and regressing estimated strength on time
remaining yields an R? of about 55%, and adding the score margin only improves
this to 57%.
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16 rounds in the study (four possessions in a given quarter’s sce-
nario set, and four quarters).

4. Results. To study the relationship between participant’s
perceived signal strength and the true signal strength, we first
back out a participant’s perceived signal strength from their be-
liefs before and after an event as follows:

(10) logit(ﬁtﬂ(stﬂ)) = logit(ﬁt) + S(S‘Hl)
——— —— ~—— (N —
Logit of Logit of Signal Perceived

Guess Prior Direction  Signal Strength

For the base scenario (t = 0) in a given set, we set the prior 7
to the calculator-estimated 7(, as we give this win probability to
the participant at the beginning of a set. We then provide signals
(events) s; 1 and elicit #;1(s;41) foreach t = 0, 1, 2, 3, backing out
@(stﬂ) from #;,1(s;41) and their previous 7; (which they still see
onscreen); one benefit of giving a sequence of signals is our ability
to observe the previous #, in backing out S(s;1). We back out
true signal strength S(s;.1) in a similar manner but using the
calculator’s estimated m;,1(s; ;1) after each signal. Following the
previous studies, we then compare §(8t+1) to S(sy41).

We visually present our main results in Figure V, averag-
ing perceived and true signal strength across all events in each
quarter. The left panel shows that, as in the previous studies, the
relationship between perceived and true signal strength is ap-
proximately linear in logs, with a positive intercept and a muted
slope. The dots are ordered by quarter from left to right: the first
quarter has the lowest true signal strength, the fourth quarter
has the highest, and participants understand this ordering. But
while average perceived signal strength does rise over quarters,
participants are insensitive to how much true signal strength is
increasing, such that they overreact early and underreact late
(switching around the third quarter). This can also be seen in the
right panel, which plots the implied weights placed on events by
quarter. People weight first-quarter events by about 1.6 times as
much as the win probability estimates suggest and weight fourth-
quarter events by less than % as much.

We then conduct regressions for the estimated signal weights
as in the previous studies, with results shown in the last two
columns of Table I. As usual, we estimate these regressions at the
individual observation level and thus do not group by quarter
for this analysis. In column (4), we regress @w(5) only on a con-
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FIGURE V
Study 2: Over- and Underinference by Quarter

The left panel plots the logit belief change (our measure of perceived strength,
as in equation (10)) as a function of true signal strength on a log-log scale, where
true signal strength is based on the Inpredictable win probability calculator. The
right panel plots the average weight participants put on signals relative to a
Bayesian for whom the weight is one, also against true signal strength (rather
than precision, since signals are not necessarily symmetric). In both panels, black
markers plot the data (with 95% confidence intervals), averaged by quarter; signal
strengths increase in each quarter. Observations are winsorized for each category
of quarter and score differential at the 5% and 95% levels. Dashed lines fit the data
using the power weighting function from equation (6), estimating parameters us-
ing nonlinear least squares. Thicker solid lines indicate Bayesian behavior based
on the calculator’s average change. Both panels show that participants overweight
weak signals (in earlier quarters of the game) and underweight strong signals (in
the fourth quarter of the game).

stant and S, implicitly assuming that people correctly incorporate
their prior beliefs. We find the same qualitative patterns as in
the abstract experiments. Quantitatively, we see greater insen-
sitivity to signal strength than in the abstract studies, possibly
because this is a more complex environment. In column (5), we
allow for misweighting prior beliefs, with estimation proceeding
from equation (8). We find modest base-rate neglect but minimal
change in our main coefficients of interest.

We also run a Grether-style regression in Online Appendix
Table A2, again following equation (9) and now estimated sepa-
rately for each quarter. We again find that participants overinfer
from events in the first half, underinfer from events in the second
half, and exhibit modest base-rate neglect overall. This modest
base-rate neglect may be because the sequential setting makes
the prior belief more salient than in some other contexts, leading
participants to internalize their prior. But mimicking the results
in Study 1b, the last column of that table shows that priors are
appropriately weighted for weak signals (in early quarters), but
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that there is statistically significant base-rate neglect for stronger
signals (in later quarters).

Finally, we estimate £ and g from equation (6), again using
nonlinear least squares. The estimated value for % is 0.40 (std. err.
0.02) and for B is 0.41 (std. err. 0.02). The value of B is statisti-
cally significantly less than one (p < .001). Allowing for base-rate
neglect in the model gives an estimate of 0.976 (std. err. 0.06) for
the weight on the prior and leads to little change in the other
estimates (£ = 0.42 and B = 0.44).

II1.D. Discussion

Across the three experiments, we find robust evidence that
people overinfer from weak signals and underinfer from strong
signals. Our findings hold in both abstract decision problems
(Studies 1la and 1b) and naturalistic ones (Study 2), as well as
with fixed symmetric priors (Study 1a), exogenously varied asym-
metric priors (Study 1b), and endogenous priors based on pre-
vious belief-updating questions (Study 2). While prior weighting
biases like base-rate neglect can theoretically contaminate our
predictions of overreaction and underreaction, in our data they
have little impact on our main estimated effect.

We find that these observed patterns of over- and underinfer-
ence are consistent with people understanding the direction they
should update their beliefs, but only imperfectly estimating the
strength of the signals they receive. Our heterogeneity analyses
provide suggestive evidence of this as well: greater answer preci-
sion, subjective confidence, task experience, and cognitive reflec-
tion are all correlated with greater sensitivity to signal strength
and belief-updating patterns that are closer to Bayes’ rule.

IV. EVIDENCE FROM FINANCE AND SPORTS BETTING

To build on our experimental evidence and test our theory in
relevant observational settings, we now consider evidence from
a set of sports betting markets and financial markets. Depart-
ing from the lab setting comes with multiple costs: (i) it is gen-
erally infeasible for us to estimate the true conditional probabil-
ity of an outcome or true signal informativeness, as we no longer
have knowledge of the true DGP (as we did in Studies 1a and 1b)
nor the full information set available to participants over time
(as we did in Study 2); and (ii) measuring subjective beliefs and
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perceived signal informativeness is also less straightforward. To
overcome these issues, we apply new theoretical tools that allow
us to proxy for signal informativeness and to test updating be-
havior, given a set of beliefs data. We then choose a set of mar-
kets from which to measure price-implied beliefs: we consider
the prices of different bets (with payouts of either $0 or $1) with
known terminal dates. By considering price movements across in-
formativeness regimes, we test whether the patterns of over- and
underinference documented in the experiments apply in these
real-world settings. We first describe our theoretical approach in
more detail before turning to our empirical data and results.

IV.A. Conceptual Framework and Approach

Our conceptual framework for testing the behavior of be-
liefs builds closely on Augenblick and Rabin (2021) (hereafter AR
2021) and Augenblick and Lazarus (2023) (hereafter AL 2023).
Whereas Section II provided a model of over- and underinference
from signals, our goal here is different. Rather than a full alter-
native model of inference, we aim to characterize the Bayesian
null in a way that allows for empirically implementable hypoth-
esis tests. But while our starting point is someone who updates
according to Bayes’ rule, our tests are designed such that rejec-
tions are consistent with over- or underinference and therefore
speak to the patterns predicted from Section II. We build on that
section’s notation where appropriate, generalizing it to a dynamic
setting with arbitrary signal structures.

Time is discrete,t = 0,1, 2, ..., T, and there is again a binary
state 6 € {0, 1}. Each period, a person observes a signal s; from
an arbitrary distribution p(s; |6, H; 1), where H; = {sf}"‘r _p is the
history of signal realizations. The person’s prior belief in state 1
is denoted by 7o, and their belief at time ¢ given the DGP (i.e.,
their prior and p(-)) and history H; is m;(H;), or m; for short. The
belief stream = refers to the collection of the person’s beliefs over
time.

While we cannot directly test for overinference versus un-
derinference without knowledge of the DGP, keeping track of
the following two objects will allow for well-motivated indirect
tests. First, define the movement of a belief stream from period
t1 to te > t; as the sum of squared changes of beliefs over these
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periods:
to—1

mt1,t2(n) = Z(nr+l - 7[1')2~

T=t1

Then, defining the uncertainty of the belief in period ¢ as u; () =
(1 — 7z )y, we define uncertainty reduction from period #; to pe-
riod £y > ¢ as:
ta—1
P = Y (e (0) = ur 1 (1) = g, (1) — ug, ().

Z=t1

For each variable, we define the concomitant random variable in
capital letters (e.g., My, +,).

Our null model will be that the person fully understands the
meaning of all signals and updates according to Bayes’ rule. Un-
der this null, beliefs satisfy 7;,(H;) = E;[0] = E[0 | H;] for all H;,
where [E is the expectation under the true (physical) measure.

1. The Equality of Movement and Uncertainty Reduction.
As in AR (2021), the martingale property of beliefs under the
null implies that regardless of the DGP, expected Bayesian be-
lief movement from any period ¢; to period ¢3 must equal expected
uncertainty reduction:

ProrosiTION 2 (MOVEMENT AND UNCERTAINTY REDUC-
TION). Assume m;(H;) = E;[0]. For any DGP and for any
periods ¢; and ¢g, By, [My, 1] = B¢, [Ry, 4,].

This result formalizes the “correct” amount of belief volatil-
ity (or movement) under rationality, without the need to know
the true unobservable DGP. (We provide a review of the proof in
Online Appendix A.5.) One can then follow AR (2021) to use this
as the basis for a statistical test for Bayesian updating: given a set
of belief streams, one can calculate the difference between move-
ment and uncertainty reduction (which they call “excess move-
ment”) and then apply a means test to see if the average differ-
ence is statistically different from zero. If so, one can reject—with
a certain confidence level—that the beliefs arose from Bayesian
updating.

The result thus provides a testable link between belief move-
ment, uncertainty reduction, and signal strength: when we ob-
serve a Bayesian person’s beliefs moving, this must (on average)
mean that she is receiving informative signals and reducing her
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uncertainty accordingly.?® Crucially, this test (i) is valid regard-
less of the DGP and (ii) can be applied to arbitrary belief sub-
streams (from period #; to t3), as Proposition 2 applies ex ante in
all cases. Thus, given some ex ante known and observable sort-
ing variable related to signal strength, we can test whether ex-
cess movement is related to signal strength. We will use time to
resolution (7' —¢) as our separating variable, and we discuss its
relation to signal strength—and the relation of excess movement
to over- and underinference—below.

2. Excess Movement and Over- and Underinference. We now
consider what kinds of non-Bayesian behavior generate differ-
ent violations of the equality in Proposition 2. Most importantly
for us, there is a natural positive connection between excess
movement and overinference: people who overinfer are intuitively
changing their beliefs “too much” relative to the informativeness
of signals on average, generating E;, [M;, ;, — R;, +,] > 0. The oppo-
site is true in the case of underinference.

AR (2021) formalize this connection. First, in a two-period
environment, a person with a correct prior who overinfers from
signals will exhibit a positive excess movement statistic, while a
person who underinfers will exhibit a negative statistic. Second,
they show that the same relationship holds over many periods in
a symmetric binary-signal environment, despite the complication
that the person’s prior may not be correct in later periods.?* We
suspect that the same relationship between inference and excess
movement applies quite generally, but it is difficult to character-
ize other DGPs analytically. We therefore turn to simulations to
verify that the same intuitive relationships hold under our updat-

33. Formally, note from equation (2) that for any m;, belief movement
(441(5(s441)) — m)? is increasing in signal strength S(s,,1). So if we are in
a regime with high signal strength ex ante, £;[M;, 1] will be high, and by
Proposition 2, so will E;[R;;,1]. We will verify that both of these increase with
our informativeness proxy.

34. Specifically, the article considers a specification of over- or underinference
equivalent to equation (9), in which logit(#;,1) = logit(#;) £ yS(s;1). Their Propo-
sition 6 states that a person with #; = 7; and y > 1 will have E[M; ;1] > E[R; ;1]
(and the opposite if y < 1). Proposition 7 states that given a DGP with a con-
stant signal strength and my = %, a person with #y = % and y > 1 will have
[E[Mtl_tz] > [E[Rtl‘tz] given any history H;, (and the opposite if y < 1). One quarter
of a basketball game very roughly approximates such a binary symmetric envi-
ronment, to take an example (see note 32).
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ing model in environments that more closely map to our empirical
setting. We also use our simulations for further verification that
our time-based measure of signal strength is a good proxy in this
setting.

As a caveat, note that while overinference (underinference)
generates positive (negative) excess movement both analytically
and in simulations, there could be other drivers of excess move-
ment that we cannot rule out in observational beliefs data: we
only observe overall reactions.?® But given that the patterns we
observe in the data end up aligning closely with the predictions
of our model, we view the data as providing supporting evidence
alongside our experimental results (in which we can isolate infer-
ence behavior more directly).

3. Simulated Belief Streams. We now consider patterns in
movement and uncertainty reduction for a person who updates
according to our model in Section II, as well as a person who
exhibits constant over- or underinference, when forming beliefs
about the outcome of a sporting event or the future level of the
stock market in simulated data. Empirically, these settings fea-
ture similar random walk-like DGPs with signals (points scored,
daily returns) received in each period, with the aggregate of that
information determining the final state. To transparently model
such situations in our simulated economy, we consider a simple
random walk-like DGP in which there are two “teams” repre-
senting the two states, exactly one team scores in each of 7' peri-
ods, each team has equal probability of scoring in each period,
and the final state is which team has the highest score after
the final period. For example, if a team is leading by one score
with two periods left, they have a 75% chance of being the fi-
nal winner because they win if they score in one of the final two
periods.

We conduct 1 million simulations of this DGP, and we present
average results by time period in Figure VI. The top left panel
shows the expected movement and uncertainty reduction statis-
tics over time for a Bayesian. First, following Proposition 2, the

35. Base-rate neglect, for example, tends to generate positive excess move-
ment (AR 2021). Another bias, probability weighting, effectively matches the re-
sults from constant underinference. In fact, given a prior of 50%, the classic sym-
metric functional form for probability weighting from Gonzalez and Wu (1999) is
exactly equivalent to a person who constantly underinfers from all signals.
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Simulated Movement and Uncertainty Reduction over Time: Different Models

This figure shows the average belief movement (thicker black line) and uncer-
tainty reduction (thinner light line) statistics over time for four different models,
averaged over 1 million simulations of the game-like DGP discussed in the text
with T' = 27. We drop the first and last period, as they always have zero excess
movement given this DGP, and plot the remaining 24 periods. The updating mod-
els are (i) Bayesian updating (correct perception of signal strength S), (ii) underin-
ference (with perceived signal strength 0.8 - S), (iii) overinference (with perceived
signal strength 1.2-S), and (iv) our model (perceived signal strength % - S# with
k =0.88 and B = 0.76). For Bayesian updating, these statistics are always equal.
For underinference, movement is always less than uncertainty reduction; the op-
posite is true for overinference. For our model, movement is greater than uncer-
tainty reduction in early time periods (when signals are generally weak) and lower
in later time periods close to resolution (when signals are generally strong).

statistics must be equal at each period. Second, both statistics
are rising as the resolution of the game approaches. Initial peri-
ods always contain very little information, whereas the later pe-
riods sometimes convey no information (because one team has an
insurmountable lead) and sometimes convey strong information
(because the scores are close). Overall, though, signal strength
rises over time, and average movement and uncertainty reduc-
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tion increase accordingly. This is intuitive theoretically.?® As we
show shortly, it also applies in all of our empirical settings; impor-
tantly, we consider settings where all uncertainty will be resolved
by some fixed end period, and as a result strength increases closer
to that expiration.

What do the statistics look like for people who over- or un-
derinfer from signals? Following intuition and the theoretical re-
sults from simpler DGPs, overinference (top right panel) leads
to positive excess movement in every period, whereas the oppo-
site is true for underinference (bottom left panel). The bottom
right panel displays the results for our model, with parameters
estimated from our Study la. In the early periods, average signal
strength is low, leading to overinference, which in turn generates
excess movement. In later periods, the amount of information re-
vealed is higher, leading to underinference. Belief movement in-
creases, but not in line with the increase in uncertainty reduction.
There is therefore a switching period at which average movement
crosses below uncertainty reduction. This switching is in effect
the signature pattern for our model, as it does not occur under
Bayesian updating or when there is universal overinference or
underinference. We proceed to test whether the same patterns
hold empirically.

IV.B. Sports Betting Data

1. Data Description. We start with data on sports betting.
Our data comes from Betfair, which operates a large prediction
market in which individuals are matched on an exchange to make
opposing financial bets about the outcome of a sporting event. We
observe time-stamped transaction prices for a contract in which
one party pays another party a set amount given a particular re-
alized outcome of the game (e.g., Team A beats Team B). Prices
are quoted as fractional odds; for example, a transaction for the
Team A contract might occur at % odds, meaning the person buy-

36. For example, for option prices, the Black-Scholes model predicts that the
sensitivity of an option price to the same change in the underlying price (i.e.,
option delta) decreases exponentially with time to maturity, and the same applies
(in fact more strongly) for the option spreads used to construct option-implied
beliefs. That is, the same underlying price change rationally generates a bigger
change in beliefs about the option payoff closer to maturity. Our simulated random
walk is in fact a discrete-time approximation of a Black-Scholes economy, but the
same logic will hold in practically any option-pricing model beyond this one.
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ing one unit of it will receive $4 if Team A wins and lose $1 if
Team A loses. These odds can then be normalized to obtain an
implied probability (in this case, %). As in a standard centralized
exchange, contract prices (and implied beliefs) change with sup-
ply and demand.

These are the same data used in AR (2021), and we use the
same 2006—2014 sample and similar data filters as in that paper.
In particular, we focus on markets for five major sports—soccer,
basketball, baseball, ice hockey, and American football—and we
consider only contracts over the final winner of the game. We thus
omit more exotic contracts, such as which team will be winning
at the midpoint or number of goals scored. There are generally
two contracts per game (e.g., one paying off if Team A wins, an-
other if Team B wins); we use the contract for which the start-
ing beliefs are closest to 0.5. We use observations only when the
game is being played. To remove high-frequency noise, we follow
AR (2021) and keep only the first transaction in a given minute
increment. We also drop trades with less than 1% of the overall
average transacted amount. Finally, we attempt to have similar
timing in events by dropping less common events in a category for
which the timing of the game is different (such as WNBA games,
which are shorter than NBA games). We are left with more than
5 million transaction prices from about 260,000 sporting events
over the sample.

Given our focus on equilibrium bet-price data here, we follow
the literature that interprets these prices as “market beliefs.””
A test based on Proposition 2 can thus be viewed as a test of the
joint null that market prices may be interpreted as beliefs and
that these beliefs are Bayesian. But while this might affect the
interpretation of full-sample excess movement tests, it poses less
of a problem for our purposes. We are fixing the environment (i.e.,
the particular betting market in question) and comparing excess
movement as one varies the signal strength (proxied by time to
maturity) within this environment. If we assume that the map-

37. The interpretation of market prices as averages of individual beliefs has
been studied in a range of work. In standard Bayesian settings with complete
markets, this interpretation is straightforward (see AL 2023). With heterogeneity,
Gjerstad (2005) and Wolfers and Zitzewitz (2006) show the interpretation is valid
when traders have log utility and trade statically (see also Manski 2006). But with
speculative trading, prices often react more to new information than individual
beliefs (Martin and Papadimitriou 2022).
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ping from individual to market beliefs does not change systemati-
cally within a stream as one moves closer to maturity, our findings
are at minimum directionally informative about both individual-
and market-level reactions to information across signal-strength
regimes.

2. Graphs of Movement and Uncertainty Reduction.
Figure VII shows average movement and uncertainty reduc-
tion (as well as confidence intervals) across time for each sport.
Observations occur in continuous time and therefore must be
aggregated in some way. Our data contain observations in clock
time (“1:31 pm”) rather than game time (“4:50 through the
third quarter”); we therefore consider average movement and
uncertainty reduction for observations within 24 time windows,
each of which corresponds to ﬁ the length of an average game.?8
As in the simulations, average movement and uncertainty re-
duction are generally increasing over time (with the exception
of mid-period breaks). As discussed in Section III.C, signals in
basketball games increase in strength strongly over time; the
increase in both movement and uncertainty reduction over time
shows that the same pattern applies for all sports.3?

The relative patterns of the two series, though, follow the pre-
dictions of our model of over- and underinference. Early in games
for each sport, movement is greater than uncertainty reduction,
and for each sport there is a time at which movement drops below
uncertainty reduction. For four of the five sports, movement then
continues to be lower than uncertainty reduction after this time
(for hockey, movement stays lower than uncertainty until the final
period). The market accordingly appears to overreact to the less
informative signals at the beginning of a game and underreact to
the more informative signals at the end of a game. Interestingly,
for basketball (in the top right panel), excess movement switches
from positive to negative around the end of the third quarter, pre-

38. For example, as the average basketball game lasts around 132 minutes,
basketball games are broken into 24 chunks of 5.5 minutes. The final chunk then
includes all observations that occur after 132 minutes. Results are similar if we
use different numbers of chunks. Separately, in constructing confidence intervals
for this figure (but not for the regressions), we assume observations are uncorre-
lated across contracts.

39. This follows unless markets completely misunderstand directional
changes in signal strength (thinking stronger signals are weaker), seemingly
counter to all available evidence (e.g., Croxson and Reade 2013).
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Ficure VII

Movement and Uncertainty Reduction over Time for Sports Betting Data

This figure shows average belief movement (thicker black line) and uncertainty
reduction (thinner light line) statistics over time for the beliefs implied by betting
prices for five different sports (with 95% confidence intervals). Minute 0 is the be-
ginning of the game, and the last minute is the end of the game. Each estimated
point is the summed movement or uncertainty reduction within one of 24 equal-
length time windows, averaged over all the games in the sample. In each case,
movement is greater than uncertainty reduction in early time periods (when sig-
nals are generally weak), and it is lower than uncertainty reduction close to the
end of the game (when signals are generally strong), as predicted by the model.

cisely mirroring the switch from over- to underinference observed
in our experimental basketball setting in Study 2 (see Figure V).

3. Statistical Tests. Are the patterns in the figures statisti-
cally meaningful? To answer this question, we require a test to
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determine if there is overreaction (captured by expected move-
ment being greater than uncertainty reduction) when signals are
weak (captured by low uncertainty reduction) and underreaction
when signals are strong. But we cannot simply sort observations
by realized uncertainty reduction (or some ex post proxy for sig-
nal strength) and then test how excess movement changes across
this sort. Instead, Proposition 2 tells us that we must test whether
expected movement E,[M; ;1] equals expected uncertainty reduc-
tion E;[M; ;11] ex ante. We must therefore consider an ex ante sort
variable and analyze the relationship between average movement
and uncertainty reduction across settings with different strength.

As we have seen, time to resolution is a strong such ex ante
variable separating low (early) from high (late) signal strength
periods. For each sport, we therefore regress average movement
in each time window on average uncertainty reduction in the
same time window. Under the null of Bayesian updating, the con-
stant will be equal to zero and the slope coefficient equal to one, as
average movement should be equal to average uncertainty reduc-
tion in every period. However, for a person who updates according
to our model, average movement will be higher than average un-
certainty reduction when reduction is low, but lower than uncer-
tainty reduction when reduction is high, such that the constant
will be positive and the slope coefficient will be less than one.

The results for these regressions are shown in the first five
columns of Table III. Each regression is run on 24 collapsed ob-
servations, where each observation contains the average move-
ment and uncertainty reduction in a given time window. The use
of these calculated averages introduces a generated-regressor is-
sue for inference, so we bootstrap standard errors by resampling
events (games) with replacement and recalculating averages and
regression coefficients 10,000 times.® For each sport in the first
five columns, the constant and slope coefficients are highly sta-
tistically significantly different from the Bayesian benchmark in
the direction predicted by the theory: in all cases, the positive con-
stant and slope below one are consistent with overinference from
weak signals (when average uncertainty reduction is low) and un-
derinference from strong signals (when uncertainty reduction is
high).

40. OLS standard errors are very similar.
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To understand the magnitude of the estimates, note that be-
liefs moving 3 percentage points up and then 3 points down would
produce movement of 0.0018 (close to the average constant coeffi-
cient) and no uncertainty reduction. Given this average constant,
the average slope coefficient then implies that movement will
cross uncertainty reduction when both are around 0.014, which
occurs before the end of the game for all the sports in Figure VII.

A potential concern when testing for a one-to-one slope is
measurement error in the regressor and resulting attenuation
bias. This would be a meaningful concern if, instead of follow-
ing Proposition 2, we regressed period by period realized m; ;41
on r;4,1.4! But because we take averages over thousands of belief
changes at a given time horizon, we are able to estimate expected
uncertainty reduction at that time plus a tiny error term. In our
case, the estimated variance of the error term at each period is
more than 100,000 times smaller than the estimated variance of
the regressor, so any resulting attenuation bias is negligible.*?
Note that the R? values in all cases are very close to one: average
movement and uncertainty reduction move very closely together,
but with a muted slope.

IV.C. Index Options Data

1. Data Description. The sports betting data provide a use-
ful lab for studying beliefs in an incentivized setting similar to the
one in our experimental Study 1b. We now consider whether simi-
lar patterns apply to a large-scale financial market, where beliefs
are expressed over outcomes of first-order macroeconomic impor-
tance. In particular, we consider options on the S&P 500 index,
which are effectively bets on the value of the market index as of a
fixed future expiration date.*® We use the OptionMetrics database

41. For a Bayesian, E;[M; ;1] = E;[Rs 4411, but 744, 1 is equal to that expecta-
tion plus a mean-zero error.

42. By averaging the movement and uncertainty reduction statistics over time
chunks, we do face the subjective question of how many chunks to use. We show in
Online Appendix Tables A.3 and A.4 (with accompanying figures) that estimated
slopes change slightly (differently across sports) when using 12 or 36 chunks, but
p-values remain highly significant in all cases aside from hockey with 12 chunks
and football with 36.

43. An option contract specifies an expiration date 7' and strike price K, which
together with the realized value of the S&P (V) determine the payoff to the buyer
of the contract. If V7 > K, then the holder of a call option receives $V; — K; oth-
erwise they receive $0. They pay ¢; for the option upfront, and the seller receives
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to obtain option price quotes for S&P index options traded on the
Chicago Board Options Exchange (CBOE), which is the largest
U.S. exchange. We observe the best posted bid and ask quotes at
the end of every day for each strike price and expiration date, and
we take the average of these two and use this as our end-of-day
price.

These are the same data as used in AL (2023), and we
use the same sample (1996-2018) and similar filters as in
that paper. Because our list of filters is somewhat long, we
relegate details to Online Appendix B.2. After filters, we are
left with more than 4 million option prices corresponding to
about 955 option expiration dates (the analogue of a single
event in the betting data) and 5,500 trading dates. To ensure
that prices are liquid, AL (2023) consider options expiring at
most one year away from the trading date. For our purposes,
we cut off the analysis at 100 trading days from expiration
(in calendar time, roughly 4.5 months). This somewhat arbi-
trary choice is largely so that our movement and uncertainty
reduction figures are easily readable, and our results continue to
hold when using longer-horizon options.

2. Converting Option Prices to Market-Implied Beliefs. On
any given trading date ¢, there are prices for a range of S&P op-
tions with the same expiration date 7. They differ only in their
strike prices K (for a call option, the minimum S&P index value at
which the option will obtain a positive payoff at expiration). Using
minimal assumptions (following Breeden and Litzenberger 1978),
the set of option prices for such a (¢, T') pair can be translated into
a market-implied (or risk-neutral) probability distribution over
the future S&P price on the option expiration date. Intuitively, by
buying a set of options, one can construct a strategy that pays off
$1 if, say, the S&P is between 5,500 and 6,000 on September 30,
and $0 otherwise. The market price of constructing such a binary
bet can be read as an option-implied probability that the S&P will
indeed be in this range.

Unlike with the sports betting data, index options have pay-
offs that are tied (by construction) to the value of aggregate
wealth. Option prices therefore reflect risk aversion in addition to
subjective probability assessments about the future index value.

the negative of the buyer’s payoff. (For a put option, the holder instead receives
max(K — Vr,0).)
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This is the main complication in using option-implied probability
distributions: they do not, in general, correspond to any notion
of aggregate subjective beliefs. (They are equivalent to subjective
beliefs only in the case of risk neutrality over the index value,
which motivates referring to them as risk-neutral beliefs.) For
example, suppose that there are two possible date-T' macroeco-
nomic states that are perceived by investors as equally likely. If
investors value a marginal dollar in the “bad” state (when the
market is low) more than in the “good” state (when the market
is high), they will be willing to pay more for the option that pays
off in that state. If these risk preferences are not taken into ac-
count, one will (falsely) conclude that investors believe that the
bad state is more likely.

Addressing this issue is the main theoretical task taken up
in AL (2023). That paper shows that under certain assumptions,
one can place a bound on excess movement in risk-neutral (RN)
beliefs under the null that underlying subjective beliefs are ra-
tional. The bound is tight in the space of possible DGPs—that
is, one can construct a DGP under which it holds exactly—
but it is not necessarily tight under the true real-world DGP.#*
We therefore provide two sets of results in the current analy-
sis, (i) using the raw (unadjusted) RN beliefs, and alternatively
(i1) translating these beliefs to a set of physical (subjective, risk-
adjusted) beliefs under an assumption on risk aversion. For (ii),
we consider many possible assumptions in translating from risk-
neutral to physical beliefs, detailed in Online Appendix B.2. While
the dozens of possible assumptions and parameterizations af-
fect the physical belief estimated for a given risk-neutral be-
lief, it turns out their effect on our movement and uncertainty
reduction statistics is so small as to be nearly indetectable.*®
We thus report results here under our main translation, which
assumes a representative investor with power utility over the
terminal index value. We present estimates under a wide range
of alternative parameterizations in Online Appendix Figure A9,

44. While the bound is sufficient for the full-stream tests considered in that
paper, it might not be here: we wish to understand how “true” excess movement
evolves with signal informativeness within a stream.

45. The brief intuition is that risk aversion is unlikely to be changing mean-
ingfully from day to day. But the main point of interest for this analysis is that
the basic patterns found in the experimental data and in the sports betting data
are also observed in the finance data, regardless of the RN beliefs correction used.
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which shows that these choices have little effect on our re-
sults.

To implement our measurement of RN beliefs empirically, we
need a set of discrete possible outcomes as of date T'. In partic-
ular, we must partition the set of possible date-7T' index values
into discrete ranges (in the example above, the single range con-
sidered was from 5,500 to 6,000). To maintain the same set of
possible outcomes across different expiration dates, we set these
states to correspond to ranges for the log excess return on the
S&P 500 from the first observable option trading date to the ex-
piration date. In particular, we define 10 potential return out-
comes 6, each of which (aside from the two tails) corresponds to a
5 percentage point range for the S&P’s log return in excess of the
risk-free rate: state 0, is realized if the S&P’s log excess return
is below —0.2 (i.e., roughly —20%) from date 0 to date T'; state 65
is realized if the log excess return is in the range (—0.2, —0.15]
(between —20% and —15%); 03 if (—0.15, —0.10]; and so on, up to
A9 = (0.15, 0.2] and 67y above 0.2.

We then use options to measure RN beliefs ", for each state
J over trading days ¢t =0,1,...,99.46 For example, 7/, is the
option-implied belief, as of #, that the S&P’s excess return from
0 to T will end up being between —15% and —10%. At T = 100,
we assign probability one to the actual realized return state. Note
that unlike with the sports betting data, we no longer have only
two possible states. Instead, we are using the full histogram of
beliefs over 10 possible return outcomes. This departs from AL
(2023), where the histogram is converted into a set of binarized
conditional beliefs. We keep the full histogram here in order to
minimize the potential effects of noisy prices, which AL (2023)
show can induce meaningful measurement error in the binarized
statistics.4”

46. Full details on how we construct the risk-neutral belief distribution are
again provided in Online Appendix B.2. Given ntfj, we then also calculate the cor-
responding risk-adjusted physical belief 7; ; using the power-utility risk adjust-
ment described already, and all the calculations for movement and uncertainty
reduction are then duplicated for these adjusted beliefs.

47. They also provide and estimate a correction for this error on the binarized
statistics (which are used in that paper given their theoretical setting). We show
in Online Appendix Figure A10 that their noise-corrected, binarized RN beliefs
exhibit very similar patterns in movement and uncertainty reduction as in our
histogram data. The Online Appendix also includes figures and tables showing
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For each trading day and expiration date, we calculate the
belief movement and uncertainty reduction statistics for each
state’s RN belief (m; ;11 jr and ;11 j7) and then average the re-
sulting statistics across all 10 states (m; 1.7 = 1—10 Z}il Mt 141,75
and similarly for 7, ;1 7). Given that each belief has an interpre-
tation as a binary belief over whether the given state will be real-
ized or not, Proposition 2 still applies to these aggregated statis-
tics (see AR 2021, Proposition 3). Finally, as before, after calcu-
lating these values, we then break the data into 24 equal-length
time windows sorted by trading days to expiration. Within each
such chunk (for trading days ¢; through ¢5), we calculate average
overall movement and uncertainty reduction over all events T
(e.g., ﬁ 2%151 my, 1,.7) as our empirical measures of E[M;, ;,] and
ElR:, 1,].

3. Graphs of Movement and Uncertainty Reduction.
Figure VIII shows average movement and uncertainty re-
duction over time in the options data, analogous to Figure VII.
Date 0 is again 100 trading days from expiration, and date 100
is expiration. The left panel shows the average movement and
uncertainty reduction statistics for the raw RN beliefs, and the
right panel shows the statistics for physical beliefs obtained un-
der the main risk adjustment procedure. In both cases, movement
is consistently above uncertainty reduction relatively far from
expiration, when signals are only very weakly informative and
uncertainty reduction is statistically indistinguishable from zero.
Uncertainty reduction increases dramatically closer to expiration
(when market movements are more informative regarding the
true index value at the expiration date). And while option-implied
belief movement increases alongside uncertainty reduction, it
appears to do so less than one for one, with uncertainty reduction
crossing above movement roughly 10 days from expiration.

The patterns observed in this high-stakes financial market
are similar to those in the sports betting data for many sports
plotted in Figure VII. They are also similar to the simulated re-
sults from our theoretical framework plotted in the bottom right
panel of Figure VI. Recall that these simulations are parameter-
ized using the estimates from our experimental data, so the the-

that results are unchanged with different numbers of time windows, as well as in
subsamples of the option data (post-2000 and post-2010).



394 THE QUARTERLY JOURNAL OF ECONOMICS

S&P Options: Unadjusted S&P Options: Risk-Adjusted
.047 —s— Belief Movement .04
£ —— Uncertainty Reduction S
< =l i
= .037 g .03
= =
H 4 k= ]
Z 02 = 02
) &0
£ g
3} i 5] il
2 .01 Z .01
07 07
T T T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Trading Day Trading Day

Ficure VIII
Movement and Uncertainty Reduction over Time for Finance Data

This figure shows the average belief movement (thicker black line) and uncer-
tainty reduction (thinner light line) statistics over time for the beliefs implied
by option data (with 95% confidence intervals). Trading day O corresponds to
100 days from expiration, and the last trading day is the expiration date. Each
estimated point is the summed movement or uncertainty reduction within a
four-trading-day window, averaged over all option expiration dates in the sample
(1996-2018). The left panel uses the unadjusted (risk-neutral) beliefs implied by
options. The right panel uses a risk adjustment described in the text. Movement
is greater than uncertainty reduction far from expiration (when signals are gen-
erally weak), and it is lower than uncertainty reduction close to expiration (when
signals are generally strong), as predicted by the model.

ory accordingly helps unify the evidence obtained in both the lab
and real-world data.

4. Statistical Tests. We conclude this analysis by conducting
the same formal tests as in the previous case, regressing average
movement on average uncertainty reduction in each time win-
dow. The results are shown in the final two columns of Table III.
For both the raw and risk-adjusted data, the estimated slope and
constant are again highly statistically significantly different from
the Bayesian benchmark in the direction predicted by our theory.
The positive constant again indicates overreaction when signal
informativeness (uncertainty reduction) is low, as movement is
significantly positive in these cases; meanwhile, the slope being
less than one (and numerically nearly identical to the estimated
slope in the sports betting data) indicates underreaction for high
enough levels of signal informativeness. The market therefore ap-
pears to over- and underreact in the way predicted for individuals
modeled in Section II. More broadly, the consistent results from
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the lab and from observational data indicate a key determinant
for this updating behavior that applies across settings.

V. DiscUssION AND CONCLUSION

We provide evidence that people overinfer from weak signals
and underinfer from strong signals. We demonstrate this phe-
nomenon using three tightly controlled experiments and using a
new empirical method applied to betting and financial markets.
In each setting, beliefs appear to move in the correct direction and
shift more when signals are stronger. But perceptions of signal
strengths appear consistently anchored toward some intermedi-
ate level; in other words, people act as if they are partially insen-
sitive to the objective signal strength, leading on average to over-
inference from weak signals, underinference from strong signals,
and corresponding over- and underreaction in beliefs. This par-
tial insensitivity to signal strength is well captured by a model in
which a person understands the directional meaning of a signal
but is less certain about the strength of the information. These
findings help unify seemingly contradictory results in past litera-
ture and data on inference behavior.

Naturally, we view this as one of many possible reasons peo-
ple may react to information in a non-Bayesian manner. Our the-
ory directly applies when a person pays attention to a discrete sig-
nal, easily determines its directional meaning, has a reasonable
but imperfect estimate of its strength, and partially corrects for
this imperfection. We take these conditions as given, but it would
be fruitful to unpack them and study when they do or do not
hold. For instance, if attention is endogenous to signal strength
in certain situations, people may not attend to (and therefore un-
derinfer from) some weak signals. Similarly, people may estimate
strength in a systematically biased way, such that they overin-
fer from some strong signals. The limited-attention version of our
model in Section II.D—in which people focus on a subset of entries
in the signal-strength vector—provides a possible framework for
exploring these issues. Finally, for some predictions, people may
be naive about the imperfection in their estimate. Consequently,
we see modeling the different stages of the estimation process—
including how people form simple models of situations, attend to
and process information through these models, and correct for
estimation errors—in more detail, and understanding how these
change across decision environments, as important next steps.
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We see several additional paths for potential future research.
First, although we find similar main results in our abstract ex-
periments and our more naturalistic experiment, it is worth un-
derstanding better whether participants facing math test-like ex-
perimental environments use different decision-making processes
and heuristics than they do in naturalistic environments. Us-
ing abstract environments has huge benefits—better control and
mapping to abstract models—but may come at the cost of only ob-
serving a very particular class of behaviors. For example, our the-
ory and results suggest that estimates of base-rate neglect might
depend on whether the experiment uses abstract “endowed” pri-
ors versus a naturalistic “internalized” prior; telling people that
their prior should be 80% may generate different findings than
a person genuinely believing 80% from previous experience and
updating. Relatedly, our work suggests that some standard re-
sults (like underinference) may be limited to classic parameters
(like strong signals) used in past experiments, an insight also ob-
served in work by Blavatskyy, Panchenko, and Ortmann (2023)
and McGranaghan et al. (2024). Although there are benefits in us-
ing experimental designs and parameter values known to “work,”
these choices may limit external validity.

Second, our results suggest future directions to study the de-
mand for news in the real world. There has been a shift in news
provision and consumption away from traditional news outlets
and toward other platforms (Liedke and Gottfried 2022), despite
concerns about these platforms’ low-quality news and misinfor-
mation (Allcott and Gentzkow 2017). One potential explanation
is that people respond to news in general, but are insufficiently
sensitive to the quality of the information source. In our Study 1a,
we in fact find some suggestive evidence for this: we ask people to
decide how many signals to purchase (related to Ambuehl and Li
2018) and find that people purchase too many weak signals and
too few strong signals relative to the instrumental value of the
information (Online Appendix Figure A4). It would be valuable
to empirically understand whether these effects generalize out-
side the lab in a way that might help explain the prevalence of
lower-quality news sources.

Finally, while our results speak most directly to inference be-
havior, we see natural connections to the behavior of forecasts—
stated expectations, rather than beliefs—at different horizons.
Afrouzi et al. (2023) and Fan, Liang, and Peng (2024) find evi-
dence for overreaction to news in a set of experimental forecast-
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ing tasks, as well as a selection of survey data. But there is con-
sistent evidence in recent work that such overreaction decreases
strongly with the persistence of the given series in a range of set-
tings, in many cases switching to underreaction as a series ap-
proaches unit-root persistence.*® A model in which the conditional
mean (rather than 7;) is the object of interest may speak to these
patterns: if forecasters understand a shock’s directional effect on
the future conditional mean but do not perfectly understand how
much it should change, then stronger signals will take the form of
more persistent shocks, potentially generating the observed pat-
terns of over- and underreaction.*’ Given the importance of fore-
cast behavior for macroeconomic and financial market contexts
outside of the ones we consider here, it would be useful to explore
this connection theoretically and empirically. We leave these, and
other potential applications of our findings, for future work.

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at
The Quarterly Journal of Economics online.

DATA AVAILABILITY

The data underlying this article are available in the Harvard
Dataverse, https://doi.org/10.7910/DVN/EGLSZC (Augenblick,
Lazarus, and Thaler 2024).

48. Among others, Reimers and Harvey (2011) and Afrouzi et al. (2023) pro-
vide evidence in the lab, and Bordalo et al. (2020) provide evidence in survey data.
Using both options and stock-return surveys, Gandhi, Gormsen, and Lazarus
(2023) show evidence for overreaction in forecasts of the future equity premium,
which is a moderately persistent series. For the Treasury yield curve, Wang (2021)
and Farmer, Nakamura, and Steinsson (2024) show evidence for effective under-
reaction (e.g., positive coefficients in regressions of survey-based forecast errors on
forecast revisions) for the short-horizon interest rate, which is a very persistent
series with an annualized autocorrelation of above 0.9. Gabaix (2019) provides a
review and further discussion.

49. In a simple setting with two possible values for the conditional mean at a
given future date, our results can be applied immediately. But it would be useful to
explore richer generalizations of our framework in dynamic forecasting settings.
We think these settings are particularly well suited for further applications of
our general framework, as they often feature news that is clearly “good” or “bad”
relative to a previous expectation, but with some uncertainty as to its precise
meaning.
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