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Background
How does new information change beliefs? Conflicting evidence across context contexts

Often categorized into over- and underinference (generating over- and underreaction)

1. Financial markets
▶ Excess volatility in aggregate valuations: Appears consistent with overreaction
▶ Post-earnings drift for individual stocks: Appears consistent with underreaction
▶ . . .

⇒ lots of theories with context-specific biases

2. The lab
▶ Depends on the task. . .but in common tasks, Benjamin (2019):

“Stylized Fact 1: Underinference is by far the dominant direction of bias.”

Want to reconcile this evidence & offer a simple theory of updating behavior across settings.
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This Paper

What drives over- vs. underinference?

▶ We argue a key mediating factor is the strength of information

▶ Experiments overwhelmingly study strong signals

▶ Outside the lab, constant stream of weakly informative signals about future events
▶ New poll about politician’s favorability. . .Pr(reelection)
▶ Daily index return. . .Pr(annual return > x)
▶ First minutes of a basketball game. . .Pr(win)
▶ Important counterexamples: firm earnings, last-minute baskets, interest-rate surprises, . . .

Our story: Underinference from strong signals, overinference from weak signals
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Basic Intuition

Our broad idea:

▶ In many settings, people receiving info understand its direction, but not its strength
▶ Good poll numbers: ↗ Pr(win). . .but how much?
▶ Basket: ↗ Pr(win). . .but how much?
▶ Earnings beat expectations: ↗ fundamental value. . .but how much?

▶ Can understand if info is good/bad, but must generate noisy estimate of strength

▶ Shrinkage to moderate strength: after good news, shade toward “average” good news
▶ Extreme case: Update the same for all good news

=⇒ relative to full Bayesian, average overreaction to weak, underreaction to strong
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What We Do

Systematic study of reaction to information of different strengths:

1. Theory

2. Experiments
(a) Abstract setting: easy to vary signal strength, but concerns about external validity

(b) Naturalistic: give people less abstract situations (basketball games) where strength varies

3. Observational evidence: (a) sports betting & (b) option markets
▶ Use indirect measures of over-/underreaction, and time to expiration as proxy for signal strength

▶ Then a few conjectures (+ some evidence) on more general AP/forecasting applications
▶ Equity-premium predictions: Overreaction to news [Gandhi, Gormsen, Lazarus 2023]

▶ Interest-rate predictions: Underreaction to news [Farmer, Nakamura, Steinsson 2023]

▶ Brief discussion in paper, but more to be done on these extensions
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Contribution
Underinference:
▶ Dominant direction in balls-and-urns

experiments (Benjamin 2019; Edwards 1968; Griffin
& Tversky 1992; Enke & Graeber 2023)
▶ But little evidence for weak signals
▶ One recent paper does, confirms patterns

we find (Ba, Bohren, & Imas WP)

▶ Also: Neglect signal quantity or setting (Griffin
& Tversky 1992; Massey & Wu 2005)

Overinference:
▶ More common in observational data (e.g., Bordalo

et al. 2019)
▶ Our argument: Environments with weakly

informative signals
▶ Also common in forecasting experiments,

varying horizon (Afrouzi et al. 2022; Fan et al. WP)
▶ Finance literature on overreaction and excess

volatility (e.g. Shiller 1981)

We unite these strands: underinfer from strong signals and overinfer from weak signals:
▶ Strong: More common in lab. Weak: More common in forecast revisions.
▶ Other complementary mechanisms: Fan et al. WP; Kwon and Tang WP

Combine experiment with betting + finance data for external validity (Levitt & List 2006)

▶ Use tools from Augenblick & Rabin (2021), Augenblick & Lazarus (WP)

▶ ID settings in which signals strong vs. weak by using time to resolution
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Theory: Setup
▶ Person sees signal s about binary state θ ∈ {0, 1}. Objective prior π0 ≡ P(θ = 1).

▶ How would a full Bayesian update? LRpost = LRprior × LRsignal, or

π1
1 − π1

=
π0

1 − π0
× P(s|θ = 1)

P(s|θ = 0)

log
(

π1
1 − π1

)
= log

(
π0

1 − π0

)
+ log

(
P(s|θ = 1)
P(s|θ = 0)

)
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Theory: Setup
▶ Person sees signal s about binary state θ ∈ {0, 1}. Objective prior π0 ≡ P(θ = 1).

▶ How would a full Bayesian update? LRpost = LRprior × LRsignal, or

log
(

π1
1 − π1

)
= log

(
π0

1 − π0

)
+ log

(
P(s|θ = 1)
P(s|θ = 0)

)

▶ Separate out: (1) Direction is ±: sign
(

log
(

P(s|θ=1)
P(s|θ=0)

))
. (2) Strength: S ≡

∣∣∣log
(

P(s|θ=1)
P(s|θ=0)

)∣∣∣ .

log
(

π1
1 − π1

)
= log

(
π0

1 − π0

)
± S

▶ Behav. assumption: Person knows direction, but unsure about strength S
▶ Easy to see “good” vs. “bad,” but strength requires fully understanding DGP
▶ People have idea of when signals are more informative, but still uncertain (and know this)

▶ Updates as if strength is Ŝ. Say overinference if E[Ŝ|s] > S, underinference if E[Ŝ|s] < S.
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Theory: General Updating Assumptions
1. For signal s with direction sd, the person forms an estimate e about strength S such that:

(a) e is unbiased: E[e|S] = S

(b) e is well-ordered (satisfies MLRP): P(e | S=S′)
P(e | S=S) strictly increases in e for all S′ > S

(c) e is imperfect: there is no pair (e,S) s.t. P(S|e) = 1

2. Prior expectation of signal strength given direction is Ŝ(sd). Need not be perfect, but must satisfy
minS(s) < Ŝ(sd) < maxS(s).

3. The person updates toward the estimate: posterior Ŝ lies strictly between prior Ŝ(sd) and estimate e.

Proposition (Overinference from Weak Signals, Underinference from Strong Signals)

There exists a unique switching point S∗ such that the person overinfers from s (E[Ŝ|s] > S)
if S(s) < S∗ and underinfers from s if S(s) > S∗.

Idea of proof: Express E[Ŝ|s]− S(s) as expectation of single-crossing function w.r.t. MLRP estimate
distribution. Variation-diminishing property (Karlin 1968) implies expectation is also single-crossing.

Note that this setup encompasses quasi-Bayesian updating given estimate, but doesn’t require it.
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Theory: Parametric Version
Useful for empirics to parameterize strength & estimate distributions

▶ True signal strength: logS ∼ N (µS, σ2
S)

▶ Given S, person gets estimate e ∼ N
(

logS− σ2
e
2 , σ2

e

)
, then (quasi-)Bayesian updating on S

=⇒ Posterior mean of perceived S given e: power law E[Ŝ|s] = kSβ, with β ≡ σ2
S

σ2
S+σ2

e
∈ (0, 1)

▶ Again get shrinkage to “moderate” signal strength
▶ Switching point S∗ ≡ k1/(1−β) s.t. person underestimates S on average iff S > S∗
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Perceived vs. Actual Signal Strength
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Effective Weight on Signal
▶ Another way to think about it. Recall Bayesian

log
(

π1

1 − π1

)
= log

(
π0

1 − π0

)
± S

▶ Common way to parameterize over-/underinference: Ŝ = w · S:

log
(

π1

1 − π1

)
= log

(
π0

1 − π0

)
± w · S

▶ w = 1: Bayesian (w = 1)
▶ w > 1: Overinference
▶ w < 1: Underinference

▶ Past papers: w is a constant.

▶ Us: w depends on S. w > 1 when S < S∗ and w < 1 when S > S∗
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Over- and Underinference by Signal Strength
▶ y-axis: weight w(p) put on signal of precision p relative to Bayesian (here S = log
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Discussion, Open Questions, and Extensions

Where does estimate come from?
▶ Simplified model of difficult-to-understand DGP

▶ DGP could be difficult to understand for reasons of numerical complexity (as in experiments) or
because extremely hard to figure out meaning of signals (as in reality)

▶ Limited processing: only attend to parts of signal
▶ Extension in paper considers this more formally, and considers average behavior across multiple

people focusing on different components of the same signal

Other extensions in paper: Incorrect priors, base-rate neglect, uncertainty about direction.
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Experiment 1 in Brief
Standard bookbag-and-poker-chips setup [1,000 U.S. adults total on prolific.co, preregistered]

▶ Quite abstract, but can directly control DGP (and will use quantitative estimates later)

▶ Two card decks: Green & Purple

▶ Two card suits: diamond ♢ & spade ♠

▶ Green has more diamonds: n1 ♢ and n2 ♠ (n1 > n2)

▶ Purple has more spades: n2 ♢ and n1 ♠

▶ One deck chosen (equally likely for now) and one card drawn, showing suit but not color

▶ Elicit P(deck | suit drawn), with answers incentivized (binarized scoring rule) Example screen

▶ Example: it’s a ♢: Green is more likely, but how much?

▶ Use non-round deck size N = n1 + n2 to make magnitude unclear

▶ How does updating vary with signal strength ( n1
N )?

13
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Over- and Underinference by Signal Strength: Theory
▶ y-axis: weight w(p) put on signal of precision p relative to Bayesian (here S = log
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Over- and Underinference by Signal Strength: Data
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Over- and Underinference by Signal Strength: Comparison to Lit.
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▶ Estimates on medium/strong signals similar to 70 comparable arms from Benjamin (2019)
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People Are Responsive to Signal Strength...Just Not Enough
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Model Estimates & Other Tests

Recall: model predicts people perceive signal strength S ≡
∣∣∣log

(
P(s|θ=1)
P(s|θ=0)

)∣∣∣ as strength Ŝ = kSβ

▶ Nonlinear least squares estimate: k = 0.88 (s.e. 0.02); β = 0.76 (s.e. 0.03)

▶ Switching point S∗ is such that Ŝ∗ = S∗, occurs when signal precision P(sH|θ = 1) = 0.64:
▶ Signals with precision > 0.64 → Ŝ < S, i.e. underinference
▶ Signals with precision < 0.64 → Ŝ > S, i.e. overinference

▶ Explains why hard to detect overinference when looking at signals with precision ⩾ 0.6
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Experiment 1b: Replication Study

▶ Previous study started with priors on decks of 50/50
▶ What if prior is different?
▶ Basically same study but more decks:

▶ 1 Green and 1-3 other (same composition) Blue-shaded decks

▶ Prior on Green then 25%, 33%, 50%

▶ Draw card, “What is likelihood Green deck was chosen?”
▶ Find same main effects (next slide), including when controlling for weight on prior Regressions
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Experiment 1b: Replication with Different Priors Over Decks
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Additional Analysis and Robustness

In paper:

▶ Distributions: FOSD in signal strength, but lots of heterogeneity Heterogeneity

▶ Formal tests Regressions

▶ Heterogeneity tests: Estimation noise, inexperience, cog. uncertainty Heterogeneity regressions

▶ Willingness to pay to acquire new information WTP

▶ Too high for weak signals
▶ Too low for strong signals

▶ Inference from multiple signals Multiple signals

▶ Inference from asymmetric signals Asymmetric details

▶ Additional tests of potential alternative explanations Robustness details
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Naturalistic Experiment

▶ Experimental evidence matches our predictions. . .but clear questions:
▶ How does this relate to empirical evidence outside the lab?
▶ Are findings just about numerical (rather than substantive) complexity of updating task?

▶ Challenge: need DGP that people understand and some sense of correct answer

▶ Solution: recruit NBA fans and ask about basketball game situations

▶ Ex.: Suppose home team up 7 in 1st quarter. P(win)? Now, after other team scores 2: P(win)?

▶ Direction of updating is clear, but correct amount less so

▶ Will help bridge to observational data
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Naturalistic Experiment

Details:

▶ 500 self-identified NBA fans on prolific.co

▶ Multiple scenarios: Made/missed basket, home/away team, point differential

▶ Main variation: Which quarter the event takes place in (1st/2nd/3rd/4th)

▶ Going from 2 → 4 point lead more meaningful w/ 2:00 left in the 4th than the 1st

▶ To estimate objective signal log likelihood, use 3rd party win prob. estimates
(via inpredictable.com, estimated using > decade of NBA games)

23
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Experiment 2: Example Screen
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Experiment 2: Main Results
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▶ Takeaways: consistent results in non-math-like problems

▶ Concerns: Weakly incentivized, unclear external validity or applicability to finance settings
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Evidence from Options & Betting Markets

Now consider market-implied probabilities in binary betting markets and index options.
New challenges:

1. Interpretation as “beliefs”?
2. No longer control DGP =⇒ true signal informativeness is unknown, as are correct beliefs

▶ Need to develop measure of over-/underreaction that doesn’t require objective prob.
▶ And need an ex ante proxy for signal strength
▶ Key feature of setting we focus on:

Fix expiration date and observe implied beliefs over time within contract
▶ Will allow us to develop proxy for signal informativeness based on time to resolution
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Belief Movement and Uncertainty Reduction
For belief πt over binary state θ (e.g. “Warriors win,” or “Rmkt,0→T ∈ [10%, 15%]”) realized at T:

▶ Belief movement (quadratic variation):
mt,t+1 = (πt+1 − πt)

2

▶ Uncertainty reduction (decrease in subjective variance):

rt,t+1 = πt(1 − πt)− πt+1(1 − πt+1)

▶ Result (Augenblick & Rabin 2021): For a Bayesian, for any DGP,

Et[mt,t+1] = Et[rt,t+1]

▶ Allows for agnostic test of Bayes’ rule, with rejections having clean interpretation
▶ For non-Bayesian, E[m] ̸= E[r]
▶ E[m] > E[r] ⇐⇒ too much movement, overreaction (& vice versa)
▶ For T = 2, can prove formally that overinference =⇒ Et[m] > Et[r]. For T > 2, simulations.

▶ Crucial features: Valid regardless of DGP, for any subset of data (as long as cut is ex ante)

=⇒ measure of over/under-inference not requiring true beliefs. . .
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Belief Movement and Uncertainty Reduction

. . .also need proxy for signal strength (despite not knowing DGP)

▶ Theory says key mediating variable for over-/underinference is signal strength

▶ Need something that picks it up ex ante (not sorting on ex post movement), since Et[m] = Et[r] holds
only for conditional expectations

▶ We exploit the fixed-event feature of our data, and use time to resolution as our ex ante strength proxy:
▶ First-quarter baskets less informative than fourth-quarter baskets (on avg)

▶ Today’s info is less informative about equity index value in a year than about tomorrow (on avg)

▶ True in any standard option-pricing model (option delta decreases with time to resolution), in
simple simulations (next slide), and quite apparent in our data
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Simulated Belief Streams
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Our Model

▶ Simulate one million binary
option contracts where
underlying follows random
walk (±1 each period, 50/50
chance) and state 1 realized if
underlying > 0 at T = 24

▶ Movement (Black)
Uncertainty reduction (Red)

▶ Bayesian: m = r

▶ Overreaction: m > r

▶ Underreaction: m < r

▶ Our model (exp. params):
m > r early and m < r late
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Data

1. Sports betting (Moskowitz 2021): Betfair
▶ Large UK-based prediction exchange matching individual bettors on contracts over game outcome
▶ Within-game binary bet prices for soccer, American football, baseball, basketball, hockey games

2. Index options:
▶ OptionMetrics: Daily S&P index option prices traded on CBOE, 1996–2018 (Augenblick & Lazarus)

▶ Use risk-neutral beliefs over 5-percentage-point return ranges, keeping at-the-money +/− 20 ppt
▶ Also translate RN beliefs to physical beliefs under hundreds of parameterizations for risk aversion

ϕt,j (nearly identical results)
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Betfair Data: NBA and NFL
Using implied probabilities from Betfair over the course of sports games:
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Over course of game, m and r increase, and m − r moves from + to −.
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Betfair Data: All Sports
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Data

1. Sports betting (Moskowitz 2021): Betfair
▶ Large UK-based prediction exchange matching individual bettors on contracts over game outcome
▶ Within-game binary bet prices for soccer, American football, baseball, basketball, hockey games

2. Risk-neutral beliefs from index options:
▶ OptionMetrics: Daily S&P index option prices traded on CBOE, 1996–2018 (Augenblick & Lazarus 2023)

▶ Idea: Options allow for bets on value of market at T ⇒ their prices give an implied distribution
(risk-neutral distribution) for value of market at T

▶ Use histogram of risk-neutral beliefs for 5-percent return bins from 0 to T = 100 trading days, and
then calculate m and r using daily belief changes for a given return bin (summed over all bins)

▶ Augenblick & Lazarus (2023) show how risk-neutral beliefs are informative about excess vol. . .
less important for our analysis, because looking for relative over-/underreaction within a contract

▶ Also translate RN beliefs to physical beliefs under hundreds of parameterizations for risk aversion
ϕt,j (nearly identical results). Main parameterization uses CRRA utility, estimating γ via ML s.t.
resulting physical beliefs are unbiased on average
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Options Data
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As move closer to expiration, m and r increase, and m − r moves from + to −.
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Empirical Evidence: Formal Regression Framework

▶ Our hypothesis:
▶ Signals are weak =⇒ E[m] > E[r]
▶ Signals are strong =⇒ E[m] < E[r]

▶ Sorting variable for signal strength: time to resolution

▶ Cut market-implied belief streams into 24 time windows
▶ Paper has results for alternative choices

▶ Regress average movement on average uncertainty reduction within each window
▶ If used individual observations, would have severe attenuation bias
▶ Bayesian: Et[mt,t+1] = Et[rt,t+1] =⇒ should observe intercept of 0, slope of 1
▶ Our theory: positive intercept, slope below 1
▶ Results align with these theoretical predictions
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Empirical Evidence: Formal Regression Results
Regressions of Movement on Uncertainty Reduction

Dep Var: Betting Options

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Uncert. Red. 0.918 0.806 0.889 0.945 0.912 0.680 0.733
(0.005) (0.008) (0.013) (0.013) (0.027) (0.040) (0.041)

Constant 0.0009 0.0018 0.0026 0.0018 0.0015 0.0065 0.0060
(0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.0003) (0.0003)

R2 0.977 0.985 0.995 0.976 0.995 0.944 0.941
Time Chunks 24 24 24 24 24 24 24
Events 6,584 5,176 3,927 4,123 1,390 955 955
Observations 4,589,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val.: β1 = 1 <0.001 <0.001 <0.001 <0.001 0.007 <0.001 <0.001
p-val.: β0 = 0 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Parentheses show bootstrapped standard errors with resampling clustered by stream.

▶ Overreaction when signal informativeness is low. . .but decreases systematically as signal strength
increases, with underreaction close to expiration. 12 time chunks 36 time chunks
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Broader Implications

How does our framework help us understand more general settings?

▶ Have studied over-/underreaction in (subjective or market-implied) probabilities. . .
▶ . . .using time-series variation in signal strength within a given series
▶ For finance, often concerned with variation in (subjective or risk-neutral) expectations
▶ Claim: Cross-sectional variation in signal strength across processes helps us understand

expectation puzzles
▶ See news, need to figure out how much to update forecast Et[XT]

▶ Often clear whether news is good or bad, but less clear precisely how much to update
▶ Less persistent series =⇒ innovations today are weak news about future =⇒ overreaction
▶ More persistent series =⇒ innovations today are strong news about future =⇒ underreaction

[relative to fully signal-understanding Bayesian, even if forecasts are (boundedly) rational]

▶ Next: Suggestive evidence from recent work
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Forecasts of the Future Equity Premium

Gandhi, Gormsen, Lazarus (2023): “Forward Return Expectations”

▶ Measure and study expected future equity premium Et[µt+n]
▶ Using options
▶ Using surveys: Equity return expectations at multiple horizons → Et[µt+n]

▶ Main finding: In all settings, Et[µt+n] is excessively countercyclical relative to realized
future equity premium µt+n

▶ In bad times, Et[µt+n] ↗ by more than investors’ own stated equity premium at t+ n Figure

▶ Interpretation: Equity premium has low/moderate persistence =⇒ relatively weak news
& overreaction

▶ Tests: Forecasted persistence (ρ̂) exceeds persistence in spot expectations (ρ)
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Forecasts of the Future Risk-Free Rate

Farmer, Nakamura, Steinsson (2023): “Learning About the Long Run”

▶ Measure and study forecast errors in expected future 3-month T-bill yields Et[yt+n]
▶ Using SPF survey responses
▶ Separately consider GDP forecasts by CBO

▶ Forecast errors are positively autocorrelated Figure

▶ Interpretation: Risk-free rate has very high persistence =⇒ relatively strong news
& underreaction (their interpretation: slow learning)

▶ Tests: Forecasted persistence (ρ̂) underestimates objective persistence (ρ)

39



Implied Persistence in Equity-Premium and T-Bill Forecasts
Regressions of Forecasted and Realized Values on Current Values

Et[µt+n] = αsubj + ρ̂ µt + et,subj, µt+n = αobj + ρ µt + et,obj

Eq. Prem. Forecasts T-Bill Forecasts

Livingston SPF
Options Survey Survey

ρ̂ 0.65 0.68 0.84
[0.02] [0.08] [0.04]

ρ 0.48 0.64 0.91
[0.05] [0.10] [0.03]

▶ Overreaction for equity-premium forecasts, underreaction for yield forecasts

▶ Appears to be partial shrinkage to moderate persistence. Consistent with forecasters understanding
directional impact of news, but not knowing precise strength.

▶ Speculative conjecture: Helps tie together evidence across decent range of settings. More to be done,
and think this is one (of a few — see paper conclusion!) fruitful avenue for future work.
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Final Notes

Main finding: Overreaction from weak signals & underreaction from strong signals

▶ Robust & consistent evidence across domains:
Abstract experiment, naturalistic experiment, sports betting, financial markets
(each with own strengths and weaknesses)

▶ Basic theory: people know direction, unsure of magnitude =⇒ shade toward average
(doesn’t apply everywhere, but we think common situation)

▶ Helps reconciles disparate findings in experimental lit. & finance lit.

▶ Future work: More to be done teasing out implications in dynamic settings,
and lots of open questions

41



APPENDIX



Example Screen from Experiment 1a Back

Vary deck size (small/large), suit (diamond/spade), signal strength (weak/strong)



Distributions Back
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▶ Distribution of weights for
weak signals ∼FOSD
distribution for strong
signals

▶ But lots of heterogeneity.
Theory makes predictions:
▶ More strength estimation

uncertainty → further
from Bayes

▶ Proxies: task experience,
cognitive reflection test,
noisiness of answers



Heterogeneity and Learning: Experience Back
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▶ Less task experience: Infer more from weak signals and less from strong signals
▶ No feedback between rounds
▶ Suggests experience increases sophistication



Heterogeneity and Learning: Cognition Task Back
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▶ Lower score on cognitive reflection test (Frederick 2005): Infer more from weak signals and
less from strong signals



Heterogeneity and Learning: Noisy Inference Back
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▶ Group subjects by noise: SD of answers given when signal strength happens to be same
▶ Noisier answers: Infer more from other weak signals, less from other strong signals



Overinference Effects: Regression Tests Back

Bayes Theory Study 1a Study 1b Study 2

Dep. Var.: Weight on Signal (1) (2) (3) (4) (5)

Constant 1 > 1 1.420 2.180 2.182 1.706 1.700
(0.030) (0.049) (0.048) (0.024) (0.025)

Signal Strength 0 < 0 -0.308 -0.957 -0.958 -2.078 -2.060
(0.031) (0.065) (0.065) (0.111) (0.112)

Weight on Prior 1 0.980 0.976
(0.013) (0.009)

Participant FE Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes

Observations 3964 7500 7500 8000 8000
R2 0.23 0.16 0.17 0.24 0.24
p-val.: Const. = 1 <0.001 <0.001 <0.001 <0.001 <0.001
p-val.: Slope = 0 <0.001 <0.001 <0.001 <0.001 <0.001



Overinference Effects: Heterogeneity Tests Back

Study 1a Study 1b

Dep. Var.: Weight on Signal (1) (2) (3) (4) (5) (6)

Constant 1.395 1.416 1.421 2.147 2.183 2.181
(0.021) (0.030) (0.030) (0.037) (0.048) (0.048)

Strength 0.118 -0.072 -0.175 -0.002 -0.698 -0.756
(0.031) (0.051) (0.040) (0.070) (0.089) (0.120)

Strength × Noise -0.383 -0.433
(0.036) (0.046)

Strength × Inexperience -0.042 -0.037
(0.009) (0.012)

Strength × CRT Incorrect -0.102
(0.028)

Strength × Cog. Uncertainty -0.542
(0.288)

Weight on Prior 0.980 0.980 0.980
(0.013) (0.013) (0.013)

Participant FE Yes Yes Yes Yes Yes Yes
Round FE Yes Yes Yes Yes Yes Yes

Observations 3962 3964 3964 7500 7500 7500
R2 0.28 0.24 0.23 0.20 0.17 0.17



Demand for Information Back
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WTP bias similar to beliefs bias:
▶ Excess demand for weak signals
▶ Too little demand for strong signals
▶ Similar to Ambuehl and Li (2018)

Departure even more severe for WTP:
▶ One explanation: Subjects also

undervalue multiple signals.
▶ Run main treatment with 3 signals

and see this effect. Details



Alternative Explanations Back

▶ Misperceptions of probabilities rather than signal strengths (relative probabilities)?
▶ E.g. Maybe people overestimate probabilities that are 1/2 + ϵ vs. 1/2 − ϵ.
▶ Test using asymmetric signals, where one signal is close to uninformative
▶ P(s|θ = 1) ≫ 1/2, but P(s|θ = 0) = 1/2 + / − ϵ.
▶ Whether + or - ϵ would affect agent who misperceives probabilities, but not agents in our model
▶ Find little effect of changing + to - ϵ. Details

▶ Other explanations: Aversion to 50%, # of cards, preference for one deck or color, preference
for round answers
▶ No evidence these are driving results
▶ E.g. 72 subjects see decks with P(Green) = 1/2 and 69 (96%) have posteriors of exactly 1/2



Underinference from Multiple Signals Back to main Back to WTP
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Asymmetric Signals Back to main

▶ Signal in one state has likelihood far from 1/2:
▶ Vary P(s|θ = 1) = 0.65 or 0.80

▶ Signal in other state has likelihood close to 1/2:
▶ Vary P(s|θ = 0) = 0.495 or 0.505

▶ Estimate β from power law model for each P(s|θ = 0)

▶ If effects due to probabilities, would expect significantly higher β when P(s|θ = 0) = 0.505

▶ Instead: β = 0.54 when P(s|θ = 0) = 0.505 and β = 0.60 when P(s|θ = 0) = 0.495
▶ Difference small, in the opposite direction, and not statistically significant (p-value = 0.404)



Robustness: 12 Time Periods Back

Regressions of Movement on Uncertainty Reduction

Dep Var: Sports Finance

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Uncert. Red. 0.839 0.797 0.903 0.987 0.912 0.796 0.861
(0.006) (0.007) (0.012) (0.012) (0.027) (0.054) (0.063)

Constant 0.0014 0.0018 0.0024 0.0013 0.0015 0.0060 0.0054
(0.0003) (0.0003) (0.0004) (0.0009) (0.0002) (0.0005) (0.0005)

R2 0.984 0.991 0.996 0.990 0.997 0.945 0.941
Time Chunks 12 12 12 12 12 12 12
Events 6,584 5,176 3,927 4,123 1,390 955 955
Observations 4,589,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val.: β1 = 1 <0.001 <0.001 <0.001 0.274 0.002 0.004 0.025
p-val.: β0 = 0 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Parentheses show bootstrapped standard errors with resampling clustered by stream.

▶ Overreaction when signal informativeness is low. . .but decreases systematically as signal strength
increases, with underreaction close to expiration



Robustness: 36 Time Periods Back

Regressions of Movement on Uncertainty Reduction

Dep Var: Sports Finance

Movement Soccer Basketball Baseball Hockey Football Raw Risk-Adj.

Uncert. Red. 0.847 0.849 0.883 0.925 0.920 0.705 0.751
(0.003) (0.008) (0.015) (0.013) (0.026) (0.035) (0.040)

Constant 0.0014 0.0016 0.0027 0.0020 0.0015 0.0063 0.0058
(0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0003) (0.0003)

R2 0.955 0.974 0.993 0.975 0.982 0.932 0.928
Time Chunks 36 36 36 36 36 36 36
Events 6,584 5,176 3,927 4,123 1,390 955 955
Observations 4,589,289 867,567 166,346 109,751 86,193 58,864 58,864
p-val.: β1 = 1 <0.001 <0.001 <0.001 <0.001 0.054 <0.001 <0.001
p-val.: β0 = 0 <0.001 <0.001 <0.001 <0.001 0.051 <0.001 <0.001

Parentheses show bootstrapped standard errors with resampling clustered by stream.

▶ Overreaction when signal informativeness is low. . .but decreases systematically as signal strength
increases, with underreaction close to expiration



Illustration: Expected and Realized Equity Premia in Crises Back
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. . .and pattern holds systematically in both options & surveys (Livingston & CFO).



Expected and Realized Risk-Free Yields Back

▶ Figure from Farmer, Nakamura, and Steinsson (2023)
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