Forward Return Expectations

MIHIR GANDHI Chicago Booth NIELS J. GORMSEN Chicago Booth & NBER EBEN LAZARUS UC Berkeley Haas

September 2023

Background

Well-studied set of questions:

- What is the expected excess return on the market?
- How does it evolve over time?
- Are there systematic errors in return predictions?

Background

Well-studied set of questions:

- What is the expected excess return on the market?
- ► How does it evolve over time?
- Are there systematic errors in return predictions?

$$p_t - d_t = \kappa - \underbrace{\sum_{j=0}^{\infty} \rho^j \mathbb{E}_t r_{t+j+1}}_{\mathbb{E}_t r_{t+1} + \sum_{j=1}^{\infty} \rho^j \mathbb{E}_t \Delta d_{t+j+1}}_{\mathbb{E}_t r_{t+1} + \sum_{j=1}^{\infty} \rho^j \mathbb{E}_t r_{t+j+1}}$$

Background

Well-studied set of questions:

- What is the expected excess return on the market?
- How does it evolve over time?
- Are there systematic errors in return predictions?

$$p_t - d_t = \kappa - \underbrace{\sum_{j=0}^{\infty} \rho^j \mathbb{E}_t r_{t+j+1}}_{\mathbb{E}_t r_{t+1} + \sum_{j=1}^{\infty} \rho^j \mathbb{E}_t \rho^j \mathbb{E}_t \Delta d_{t+j+1}}_{f}$$

Our focus:

- What is the expected future equity premium?
- ▶ How does it compare to the *actual* future equity premium $\mathbb{E}_{t+j}r_{t+j+1}$?
- Are there systematic errors in *expected* return predictions?

What We Do

1. Measure equity premium at multiple horizons *n* (using options or surveys):

Spot rate:
$$\mu_t^{(n)} = \mathbb{E}_t[r_{t,t+n} - r_{t,t+n}^f]$$

2. Calculate expected future equity premium:

Forward rate:
$$f_t^{(n)} = \mu_t^{(n+1)} - \mu_t^{(n)} = \mathbb{E}_t[\mu_{t+n}^{(1)}]$$

3. Compare forward rate to realized future spot rate:

Forecast error:
$$\varepsilon_{t+n} = \mu_{t+n}^{(1)} - f_t^{(n)}$$

What We Do

Measurement:

- 1. Option prices
 - Measurement of log equity premium
 - ▶ Forecast errors identified under much weaker conditions than expected returns themselves
 - We can test whether expectations are intertemporally consistent, without needing to take a stand on whether spot expected returns are themselves rational
 - Rich data...but ultimately model-based
- 2. Survey expectations
 - Term structure of expected returns in Livingston and Duke-CFO survey
 - Model-free tests...but not as rich data

What We Find

Excess countercyclicality in forward return expectations:

- 1. In options & surveys, forward rates are countercyclical...
 - ▶ When the market $\searrow \implies$ expectations of future equity premia \nearrow
 - Contrasts with short-horizon extrapolation in some surveys [Greenwood & Shleifer 2014]

2. ...and in fact too countercyclical

- In bad times, investors believe expected returns will stay elevated for longer and by more than their own subsequent beliefs justify (vice versa in good times)
- ► Thus excessively cyclical (and excessively volatile) forward return expectations

Illustration: Option-Based Forward and Realized Spot Rates in Crises

- Forward rate at crisis onset
- Realized one-month spot rate

Summary of Evidence

	Η	Expectations Measured by:			
		Livingston	CFO		
	Options	Survey	Survey		
Panel A. Predic	tability in Spot Ra	tes ($\mu_{i,t+1} = \beta_0 +$	$-\beta_1 f_{i,t} + e_{i,t+1})$		
β_1	0.88	0.68	0.63		
$egin{array}{c} eta_1\ R^2 \end{array}$	0.71	0.38	0.46		
Panel B. Predict	ability of Forecast	Errors ($\epsilon_{i,t+1} =$	$\beta_0 + \beta_1 f_{i,t} + e_{i,t+1}$		
Panel B. Predict $\frac{\beta_1}{R^2}$	ability of Forecast -0.34	Errors ($\epsilon_{i,t+1} =$ -0.19	$\beta_0 + \beta_1 f_{i,t} + e_{i,t+1}$ -0.15		

Panel C. Cyclical Variation in Forward Rates and Forecast Errors

$\rho(f_{i,t}, 1/\text{CAPE}_t)$	0.04	0.42	0.21
$\rho\left(\epsilon_{i,t+1}, 1/\text{CAPE}_{t}\right)$	-0.38	-0.19	-0.38

Implications

Excess cyclicality in forward return expectations helps us understand:

- 1. Excess volatility in stock prices
 - ▶ When prices are depressed, this partly reflects investors expecting persistently high risk premia
 - If investors didn't overestimate persistence, would see more modest fluctuations in prices (about 50% less during 2008 crisis, nearly 100% less during Covid crash)
- 2. Inelastic demand for equities [Gabaix & Koijen 2022]
 - ▶ Puzzle: Why investors change weight in equities so modestly in response to change in stock prices
 - Partial resolution: If price drop leads to increases in expected returns mainly at long horizons, shouldn't see big increase in portfolio weight
- 3. Facts about equity term structure
- 4. Debate on cyclicality of subjective risk premia

Roadmap

1. Introduction

- 2. Price-Based Measurement of Expectations: Theory
- 3. Evidence from Price-Based Expectations
- 4. Evidence from Survey-Based Expectations
- 5. Explaining Forecast Errors
- 6. Implications and Conclusions

Setting and Identification Challenge

- Representative agent ("the market"). . .or any unconstrained trader fully invested in the market
- **•** Building block: LVIX $\mathscr{L}_t^{(n)}$ (Gao & Martin 2021):

$$\underbrace{\mathbb{E}_{t}[r_{t,t+n}-r_{t,t+n}^{f}]}_{\mu_{t}^{(n)}} = \underbrace{\mathbb{E}_{t}[M_{t,t+n}R_{t,t+n}-r_{t,t+n}^{f}]}_{\mathscr{L}_{t}^{(n)}} - \underbrace{\underbrace{\operatorname{Cov}_{t}(M_{t,t+n}R_{t,t+n},r_{t,t+n})}_{\mathcal{C}_{t}^{(n)}}$$

- $\mathscr{L}_t^{(n)}$: Observable from options
- ▶ $C_t^{(n)} = 0$ under log utility (*MR* = 1)...otherwise introduces unobservable contamination
- ► Gao & Martin argue $\mathcal{C}_t^{(n)} \leq 0$...but what about for fwd rate $f_t^{(n,m)} = \mathcal{L}_t^{(n+m)} \mathcal{L}_t^{(n)} + \mathcal{C}_t^{(n)} \mathcal{C}_t^{(n+m)}$?
- Key insight: Covariance terms largely cancel when measuring forecast errors $\varepsilon_{t+n}^{(m)} = \mu_{t+n}^{(m)} f_t^{(n,m)}$
- Option-based expected returns may not be good predictors of realized returns...
 ... but they should predict themselves

The Log-Normal Case: Result

Observable forecast-error proxy:

$$\widehat{\varepsilon}_{t+n}^{(m)} = \mathcal{L}_{t+n}^{(m)} - \mathcal{L}_{t}^{(n+m)} + \mathcal{L}_{t}^{(n)}$$

Result 1 (Log-Normal Identification)

For a general SDF $M_{t,t+n}$, assuming $M_{t,t+n}$, $R_{t,t+n}$ are jointly log-normal:

$$\mathbb{E}_t \left[\widehat{\varepsilon}_{t+n}^{(m)} \right] = \mathbb{E}_t \left[\varepsilon_{t+n}^{(m)} \right] - \operatorname{Cov}_t (M_{t,t+n} R_{t,t+n}, \mathbb{E}_{t+n} [r_{t+n,t+n+m}])$$

- Covariance term now relates to pricing of *discount-rate risk*, rather than *realized-return* risk
- Likely much smaller than previous term: expected returns are much less volatile than realized returns
- Can be disciplined empirically or theoretically
- Basic idea of proof: $MR_{t,t+n}$ is orthogonal to unexpected component of $r_{t+n,t+n+m}$

The General Case: Result

Define forecast-error proxy and expected-return proxy:

$$\begin{split} \widehat{\boldsymbol{\varepsilon}}_{t+n}^{(m)} &= \boldsymbol{\mathscr{L}}_{t+n}^{(m)} - \boldsymbol{\mathscr{L}}_{t}^{(n+m)} + \boldsymbol{\mathscr{L}}_{t}^{(n)} \\ \widehat{\boldsymbol{\mu}}_{t+n}^{(m)} &= \boldsymbol{\mathscr{L}}_{t+n}^{(m)} + \boldsymbol{r}_{t+n,t+n+m}^{f} \end{split}$$

Result 2 (*Generalized Identification*)

For any SDF $M_{t,t+n}$,

$$\mathbb{E}_t \left[\widehat{\varepsilon}_{t+n}^{(m)} \right] = \mathbb{E}_t \left[\varepsilon_{t+n}^{(m)} \right] - \operatorname{Cov}_t \left(M_{t,t+n} R_{t,t+n}, \widehat{\mu}_{t+n}^{(m)} \right)$$

- ▶ Intuition from log-normal case carries over, with $\mathbb{E}_{t+n}[r_{t+n,t+n+m}]$ replaced by $\hat{\mu}_{t+n}^{(m)}$
- ► LVIX-based $\hat{\mu}_{t+n}^{(m)}$ is closely related to $\mathbb{E}_{t+n}[r_{t+n,t+n+m}]$...but $\hat{\mu}_{t+n}^{(m)}$ is directly observable
- Main specification: µ̂_{t+n}^(m) is 1/10 as volatile as realized return r_{t+n,t+n+m} ⇒ unobserved covariance likely much smaller for forecast errors than for spot rates

Roadmap

1. Introduction

- 2. Price-Based Measurement of Expectations: Theory
- 3. Evidence from Price-Based Expectations
- 4. Evidence from Survey-Based Expectations
- 5. Explaining Forecast Errors
- 6. Implications and Conclusions

Data and Measurement: Options

Data:

- Main data: Global panel of index options from OptionMetrics (monthly data, standard filters)
 - ► For U.S. sample: 1990–2021
 - ▶ For international sample: Consider 10 major indices, with data since at least 2006
- Sample monthly and apply standard filters
- Baseline: 6-month horizon, 6 months forward (n = m = 6)

Measuring LVIX: Following Gao & Martin (2021), Carr & Madan (2001),

$$\mathscr{L}_{t}^{(n)} = \left(R_{t,t+n}^{f}\right)^{-1} \mathbb{E}_{t}^{*}[R_{t,t+n}r_{t,t+n}] - r_{t,t+n}^{f} = \frac{1}{P_{t}} \left\{ \int_{0}^{F_{t}^{(n)}} \frac{\operatorname{put}_{t}^{(n)}(K)}{K} dK + \int_{F_{t}^{(n)}}^{\infty} \frac{\operatorname{call}_{t}^{(n)}(K)}{K} dK \right\}$$

- Calculate integral a bunch of different ways
- ▶ First: Simplify by working under log assumption, so LVIX ⇒ spot & forward rates

Estimates: Contemporaneous U.S. Spot and Forward Rates

Estimates: Realized U.S. Spot and Forward Rates

Do Forward Rates Predict Future Spot Rates?

$\mu_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(6,6)} + \epsilon_{t+6}$			
	(1) U.S.	(2) Ex-U.S.	(3) All
$f_t^{(6,6)}$	0.67*** (0.096)	0.55*** (0.056)	0.56*** (0.055)
Intercept	0.74*** (0.28)		
Country FEs	X	\checkmark	\checkmark
<i>p</i> -value: $\beta_1 = 1$	0.003	0.000	0.000
Obs.	378	1,849	2,227
R^2	0.22	0.21	0.22
Within R^2	—	0.14	0.15

Mincer–Zarnowitz Regressions for Spot Rates by Country

Substantial predictive power...

- ...but β₁ ≠ 1, suggesting forward rates overshoot future spot rates
- What if β₁ estimate is downwardly biased due to measurement error?
- ► To address this, now consider IV using shorter-term forward rate $f_t^{(2,1)}$ as instrument for $f_t^{(6,6)}$
- Shorter-horizon forwards likely to be better measured: denser option strikes & more trading volume

SEs in (1) are heteroskedasticity and autocorrelation-robust [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

Do Forward Rates Predict Future Spot Rates?

$\mu_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(6,6)} + \epsilon_{t+6}, f_t^{(6,6)} = \pi_0 + \pi_1 f_t^{(2,1)} + \eta_t$				
	(1) U.S.	(2) Ex-U.S.	(3) All	
$f_t^{(6,6)}$	0.73*** (0.062)	0.69*** (0.078)	0.70*** (0.074)	
Intercept	0.59*** (0.13)			
Country FEs	X	\checkmark	\checkmark	
<i>p</i> -value: $\beta_1 = 1$	0.018	0.004	0.003	
Obs.	378	1,849	2,227	
R^2	0.22	0.20	0.22	
Within R^2	_	0.13	0.14	

Instrumented Mincer–Zarnowitz Regressions for Spot Rates

- Forward rate → by 1%
 ⇒ future spot rate → by ~0.7%
- Forward rates explain ~20% of the variation in future spot rates
- The market qualitatively understands variation in the equity premium, but quantitatively significant excess persistence

SEs in (1) are heteroskedasticity and autocorrelation-robust [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

Average Forecast Errors Are Close to Zero

$\varepsilon_{t+6}^{(6)} = \mu_{t+6}^{(6)} - f_t^{(6,6)}$				
	(1)	(2)	(3)	
	U.S.	Ex-U.S.	All	
Average	0.021	0.20	0.17	
0	(0.15)	(0.11)	(0.11)	
Obs.	378	1,849	2,227	

Average Forecast Errors Across Countries

SEs in (1) are HAR [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

- ▶ Not just statistically insignificant, but effectively zero: $\bar{\epsilon} \leq 20$ bps annualized
- ► Therefore can't reject log utility + RE just on the basis of average errors
 - Not the highest-powered test, but will be informative in trying to rationalize time variation

But average of zero masks substantial predictability...

Forecast Errors and Lagged Forward Rates Over Time

Forward Rates as Predictors of Forecast Errors

Predictable Forecast Errors

Regressions of Forecast Errors on 2×1 Forward Rate $\varepsilon_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(2,1)} + e_{t+6}$				
	(1) U.S.	(2) Ex-U.S.	(3) All	
$f_t^{(2,1)}$	-0.17** (0.066)	-0.16** (0.049)	-0.16*** (0.047)	
Intercept	0.39* (0.23)			
Country FEs	×	\checkmark	\checkmark	
Obs.	378	1,849	2,227	
R^2	0.04	0.04	0.04	
Within \mathbb{R}^2		0.03	0.03	

SEs in (1) are HAR [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

Predictable Forecast Errors

$\varepsilon_{t+6}^{(6)} = \beta_0 + \beta_1 f_t^{(2,1)} + e_{t+6}$				
	(1) U.S.	(2) Ex-U.S.	(3) All	
$f_t^{(2,1)}$	-0.17** (0.066)	-0.16** (0.049)	-0.16*** (0.047)	
Intercept	0.39* (0.23)			
Country FEs	×	\checkmark	\checkmark	
Obs.	378	1,849	2,227	
R^2	0.04	0.04	0.04	
Within \mathbb{R}^2	—	0.03	0.03	

Regressions of Forecast Errors on 2×1 Forward Rate

SEs in (1) are HAR [Lazarus et al. (2018)], and in (2)–(3) are clustered by exchange and month.

- Forward rates again overshoot future spot rates
- Errors are also predictable in Coibion– Gorodnichenko regressions using forward-rate *revisions*
- And predictability rises substantially $(R^2 = 0.11)$ with kernel regression: Arises mostly from high forward rates
- Is this consistent with overreaction? It depends: Overreaction to what?
 - Option-based expected returns: Yes [Spot rates, fwd rates, fwd-rate revisions]
 - Past returns: Wrong direction
 - Consistent excess persistence

How Significant Are Forecast Errors?

Can now return to question posed at outset: How significant are forecast errors for price variation?

$$p_t - d_t = \kappa - \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t r_{t+j+1} + \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t \Delta d_{t+j+1}$$

How Significant Are Forecast Errors?

Can now return to question posed at outset: How significant are forecast errors for price variation?

$$p_t - d_t = \kappa - \mathbb{E}_t r_{t+1} - \sum_{j=1}^{\infty} \rho^j f_t^{(j,1)} - \underbrace{\mathbb{R}F_t}_{\text{discounted}} + \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t \Delta d_{t+j+1}$$

Break $f_t^{(j,1)}$ into:
$$f_t^{(j,1)} = \underbrace{\mathbb{E}_t[\mu_{t+j}^{(1)}]}_{\text{expected spot rates}} - \underbrace{\mathbb{E}_t[\varepsilon_{t+j}^{(1)}]}_{\text{predictable forecast errors}}$$

- Set one period to be 6 months, and predict error using 2m×1m forward
- Assume $\mathbb{E}_t[\varepsilon_{t+j+1}^{(1)}] = \phi^j \mathbb{E}_t[\varepsilon_{t+j}^{(1)}]$ [De la O & Myers (2021)] $\Longrightarrow \widehat{\phi} \approx 1$ (using longer-dated SX5E data)
- Use this to estimate contribution of discounted sum of predicted forecast errors (\mathcal{E}_t) on prices
- Compare to repurchase-adj. $p_t d_t$ from Nagel & Xu (2022)

Discounted Forecast Errors and Price-Dividend Variation

Meaningful in magnitude, esp. in crises, and on average \mathcal{E}_t moves 0.5-for-one with $p_t - d_t$

Roadmap

1. Introduction

- 2. Price-Based Measurement of Expectations: Theory
- 3. Evidence from Price-Based Expectations
- 4. Evidence from Survey-Based Expectations
- 5. Explaining Forecast Errors
- 6. Implications and Conclusions

Data and Measurement: Surveys

Survey Data:

- Livingston survey of prof. forecasters:
 - Price expectations at 6m & 12m horizon, allow for:

$$\begin{array}{l} \mu_t^{(12 \text{ months})}, \mu_t^{(6 \text{ months})} \\ f_t^{(6 \text{ months})} = \mu_t^{(12 \text{ months})} - \mu_t^{(6 \text{ months})} \\ \epsilon_{t+6 \text{ months}}^{(6 \text{ months})} = \mu_{t+6 \text{ months}}^{(6 \text{ months})} - f_t^{(6 \text{ months})} \end{array}$$

Duke CFO survey:

1 y & 10y return expectations, allow for:

$$\mu_t^{(10 \text{ years})}, \mu_t^{(1 \text{ year})}$$

$$f_t^{(9 \text{ years}, 1 \text{ year})} = \mu_t^{(10 \text{ years})} - \mu_t^{(1 \text{ year})}$$

$$\epsilon_{t+1 \text{ year}}^{(9 \text{ years})} \approx \mu_{t+1 \text{ year}}^{(10 \text{ years})} \times 9/10 - f_t^{(9 \text{ years}, 1 \text{ year})}$$

Reminder: Forward Rates and Predicted Forecast Errors

Excess Cyclicality: Consistent Evidence in Surveys

Excess Cyclicality: Consistent Evidence in Surveys

Predictive Regressions in Survey Data

	Expectations Measured by:			
	Livingston	CFO		
Options	Survey	Survey		

Panel A. Predictability in Spot Rates ($\mu_{i,t+1} = \beta_0 + \beta_1 f_{i,t} + e_{i,t+1}$)

β_1	0.88	0.68	0.63
R^2	0.71	0.38	0.46

Panel B. Predictability of Forecast Errors ($\epsilon_{i,t+1} = \beta_0 + \beta_1 f_{i,t} + e_{i,t+1}$)

β_1	-0.34	-0.19	-0.15
$egin{array}{c} eta_1 \ R^2 \end{array}$	0.06	0.06	0.03

Consistency Across Measures

	Expectations Measured by:		
_	Livingston CFO		
	Options	Survey	Survey

Panel A. Correlation in Forward Rates Across Measures

Options	1	0.46	0.11
Livingston Survey		1	0.55

Panel B. Cyclical Variation in Forward Rates and Forecast Errors

$\rho(f_{i,t}, 1/\text{CAPE}_t)$	0.04	0.42	0.21
$\rho(\epsilon_{i,t+1}, 1/\text{CAPE}_t)$	-0.38	-0.19	-0.38

CFO Spot and Forward Rates: Importance of Long Horizon

Roadmap

1. Introduction

2. Price-Based Measurement of Expectations: Theory

3. Evidence from Price-Based Expectations

4. Evidence from Survey-Based Expectations

5. Explaining Forecast Errors Can Forecast Errors From Price-Based Measure Be Rationalized? A Model of Expectation Errors

6. Implications and Conclusions

Explaining Forecast Errors

Paper considers two alternatives explaining forecast errors:

- 1. RE + risk premium
 - Price of discount-rate risk must be highly volatile and countercyclical for this to work
 - ► E.g., if $Corr_t(r_{t+1}, \mathbb{E}_{t+1}r_{t+2}) = -1$ and negative correlation condition (Gao & Martin 2021) ⇒ relevant SDF-related covariance can't change sign
 - Doesn't work for survey evidence
- 2. Expectation errors
 - Simple calibrated model with log util. & diagnostic expectations
 - ▶ Increase in equity premium ⇒ investors overestimate **future** equity premium
 - Single parameter θ governs overreaction to objective news
 - Consider range of values, incl. $\theta = 0$ [RE] & $\theta = 0.91$ [Bordalo et al. (2018, 2019) estimate]
 - θ around 0.9 does well at generating model coefficients close to our empirical estimates

$$\mathbb{E}_t[\widehat{\varepsilon}_{t+n}^{(m)}] = \mathbb{E}_t[\varepsilon_{t+n}^{(m)}] - \underbrace{\operatorname{Cov}_t(MR_{t,t+n}, \mathbb{E}_{t+n}[r_{t+n,t+n+m}])}_{\varsigma_t}$$

What conditions do we need on ς_t in order for **expectation errors** $\mathbb{E}_t[\varepsilon_{t+n}^{(m)}]$ to be unpredictable? Must have $-\varsigma_t$ take same sign as pred. forecast errors:

Main challenge: Small on average, but must flip signs dramatically (- in good times, + in bad).

$$\mathbb{E}_t[\widehat{\varepsilon}_{t+n}^{(m)}] = \mathbb{E}_t[\varepsilon_{t+n}^{(m)}] - \underbrace{\operatorname{Cov}_t(MR_{t,t+n}, \mathbb{E}_{t+n}[r_{t+n,t+n+m}])}_{\varsigma_t}$$

What conditions do we need on ς_t in order for **expectation errors** $\mathbb{E}_t[\varepsilon_{t+n}^{(m)}]$ to be unpredictable?

- For simplicity: Take n = m = 1, and assume SDF and returns are jointly log-normal
- Then $\varsigma_t > 0$ (as needed in bad times) if and only if:

$$SR_t(-\mu_{t+1}) > -\rho_t(r,\mu)\sigma_t(r),$$

where SR_t is Sharpe ratio on claim to next period's negative equity premium (low payoff is bad)

- Correlation $\rho_t(r, \mu)$ likely to be negative; for illustration, set it to -1
- Then SR_t must vary *more than* $\sigma_t(r)$ for ς_t to flip signs
- One calibration: Go back to log utility (likely to be conservative for time variation in σ_t), and estimate $\sigma_t(r)$ from options

$$\mathbb{E}_{t}[\widehat{\varepsilon}_{t+n}^{(m)}] = \mathbb{E}_{t}[\varepsilon_{t+n}^{(m)}] - \underbrace{\operatorname{Cov}_{t}(MR_{t,t+n}, \mathbb{E}_{t+n}[r_{t+n,t+n+m}])}_{\varsigma_{t}}$$

What conditions do we need on ς_t in order for **expectation errors** $\mathbb{E}_t[\varepsilon_{t+n}^{(m)}]$ to be unpredictable?

- SR_t must vary *more than* $\sigma_t(r)$ for ς_t to flip signs
- One calibration: Go back to conservative log utility case, and estimate σ_t(r) from options. Results for conditional volatility of 6-month market return:

$$\mathbb{E}_{t}[\widehat{\varepsilon}_{t+n}^{(m)}] = \mathbb{E}_{t}[\varepsilon_{t+n}^{(m)}] - \underbrace{\operatorname{Cov}_{t}(MR_{t,t+n}, \mathbb{E}_{t+n}[r_{t+n,t+n+m}])}_{\varsigma_{t}}$$

What conditions do we need on ς_t in order for **expectation errors** $\mathbb{E}_t[\varepsilon_{t+n}^{(m)}]$ to be unpredictable?

- SR_t must vary *more than* $\sigma_t(r)$ for ς_t to flip signs
- Further, given $\rho_t(r, \mu) = -1$, ς_t cannot flip signs if mNCC [Gao & Martin (2021), Assumption 2] holds
 - $\rho_t(r,\mu) = -1 \implies \varsigma_t$ is scaled version of their covariance term $C_t^{(n)}$
 - If $C_t^{(n)} \leq 0$ (mNCC), then $\varsigma_t \leq 0$
- More generally, difficult to get both average errors (small) and time variation (large) right
- Paper has one illustration varying risk aversion γ

Model Setup

- Now want a simple lab to examine whether findings could plausibly arise from combo of:
 - 1. Log utility
 - 2. Expectation errors
- \Rightarrow consider a version of framework from Bordalo, Gennaioli, Shleifer (2018)
- ▶ 3-month spot rate dynamics under **objective** measure:

$$\mu_t^{(3)} = \left(1 - \sum_{j=1}^3 \phi_j\right) \bar{\mu} + \phi_1 \,\mu_{t-1}^{(3)} + \phi_2 \,\mu_{t-2}^{(3)} + \phi_3 \,\mu_{t-3}^{(3)} + \epsilon_t, \qquad \epsilon_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_\epsilon^2)$$

- Under RE: Term structure of current spot rates would be based on objective expectations $\mathbb{E}_t \left[\mu_{t+n}^{(3)} \right]$
- Actual subjective expectations: Excess sensitivity to news governed by "diagnosticity" parameter θ :

$$\mathbb{E}_{t}^{\theta}\left[\mu_{t+n}^{(3)}\right] = \mathbb{E}_{t}\left[\mu_{t+n}^{(3)}\right] + \theta \underbrace{\left(\mathbb{E}_{t}\left[\mu_{t+n}^{(3)}\right] - \mathbb{E}_{t-3}\left[\mu_{t+n}^{(3)}\right]\right)}_{\operatorname{news} \propto \epsilon_{t}}$$

Model Setup

$$\mu_{t}^{(3)} = \left(1 - \sum_{j=1}^{3} \phi_{j}\right) \bar{\mu} + \phi_{1} \,\mu_{t-1}^{(3)} + \phi_{2} \,\mu_{t-2}^{(3)} + \phi_{3} \,\mu_{t-3}^{(3)} + \epsilon_{t}, \qquad \epsilon_{t} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_{\epsilon}^{2})$$
$$\mathbb{E}_{t}^{\theta} \left[\mu_{t+n}^{(3)}\right] = \mathbb{E}_{t} \left[\mu_{t+n}^{(3)}\right] + \theta \underbrace{\left(\mathbb{E}_{t} \left[\mu_{t+n}^{(3)}\right] - \mathbb{E}_{t-3} \left[\mu_{t+n}^{(3)}\right]\right)}_{\text{news } \propto \epsilon_{t}}$$

- Forward rates based on subjective expectations
- Longer-term spot rates embed objective short rate and subjective expectations of future short rates
- Consider a range of values for θ
 - $\bullet \ \theta = 0: \operatorname{RE}$
 - $\theta = 0.91$: BGS (2018), BGLS (2019)
- Estimate objective parameters for spot-rate process in each country
- For each θ , simulate 10,000 samples and run same tests as in the data for n, m = 6 months

Model vs. Data: Main Estimates

Model vs. Data: R^2 Values

Simple calibration does reasonably well on main estimates...

... but seems to miss some rational variation in forward rates:

A Trilemma for Expectation Errors

More generally:

- While simple calibrated model does reasonably well at matching the data, again not an unqualified success for all possible notions of overreaction
- Subjective beliefs overreact to increases in *spot rates* in our model, not past returns, and cyclicality matters:

$$p_t - d_t = \kappa - \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t r_{t+j+1} \mathbb{E}_t r_{t+1} - \sum_{j=1}^{\infty} \rho^j f_t^{(j,1)} + \sum_{j=0}^{\infty} \rho^j \mathbb{E}_t \Delta d_{t+j+1} - RF_t$$

▶ Use ~ to denote **expectation error wedge** (deviation from RE economy):

$$\operatorname{var}\left(\widetilde{p_t} - d_t\right) = \operatorname{var}\left(\widetilde{\mathcal{F}}_t\right) + \operatorname{var}\left(\widetilde{\mathsf{CF}}_t\right) - 2\operatorname{cov}\left(\widetilde{\mathcal{F}}_t, \widetilde{\mathsf{CF}}_t\right)$$

Have to choose between two of three:

- 1. Volatile expectation errors for cash flows and/or returns
- 2. Volatile price-dividend ratio relative to RE
- 3. Positive comovement between fundamental and return expectation errors

Roadmap

1. Introduction

- 2. Price-Based Measurement of Expectations: Theory
- 3. Evidence from Price-Based Expectations
- 4. Evidence from Survey-Based Expectations
- 5. Explaining Forecast Errors
- 6. Implications and Conclusions

Implications

Excess cyclicality in forward return expectations helps us understand:

- 1. Excess volatility in stock prices
 - ▶ When prices are depressed, this partly reflects investors expecting persistently high risk premia
 - If investors didn't overestimate persistence, would see more modest fluctuations in prices (about 50% less during 2008 crisis, nearly 100% less during Covid crash)
- 2. Inelastic demand for equities [Gabaix & Koijen 2022]
 - ▶ Puzzle: Why investors change weight in equities so modestly in response to change in stock prices
 - Partial resolution: If price drop leads to increases in expected returns mainly at long horizons, shouldn't see big increase in portfolio weight

Reminder: Forecast Errors and Price-Dividend Variation

Equity premium forecast errors help explain excess volatility, especially in crises.

Implications

Excess cyclicality in forward return expectations helps us understand:

- 3. Facts about equity term structure from dividend claims
 - ▶ Risk premia lower than expected ⇒ Realized returns higher than expected
 - Effect stronger for longer-duration assets (the market)
 - Potentially explains:
 - Downward sloping equity term structure on average [Binsbergen, Brandt, Koijen 2012]
 - Upward sloping term structure during bad times (counter-cyclical variation) [Gormsen 2021]
- 4. Debate on cyclicality of subjective risk premia
 - Short-term return expectations sometimes appear procylical [Greenwood & Shleifer 2014], acyclical [Nagel & Xu 2023], or countercyclical [Dahlquist & Ibert 2022]
 - ► Forward expectations are countercyclical across all data sources (and excessively so)
 - Disagreement in above studies may stem in part from differences in horizon

Final Notes

Summary:

- Introduce new methods to measure term structure of expected equity premia
- Robust evidence of excess countercyclicality in forward return expectations
- Investors consistently overestimate how long their own expected returns will stay elevated during bad times, and vice versa during good times
- Consistent across options (high-powered, general method) and surveys (straightforward measurement)

Tie-ins:

- Equity and bond term structures: Our tests are similar to tests of the expectations hypothesis, but with less room for discount-rate variation than in past work
- Similar to past work [van Binsbergen & Koijen (2017), Gormsen (2021)], find more predictability in equity term structure than in FI term structure
- Also build on Giglio & Kelly (2018) work on other term structures