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A Proofs

Proof of Proposition 1. Given that Mt,t+nRt,t+n = 1 by assumption, C(n)
t = 0 in (4). The stated

results then follow immediately.

Proof of Proposition 2. First consider n = m = 1, and write

ε
(1)
t+1 = µ

(1)
t+1 − f

(1)
t = L

(1)
t+1 − L

(2)
t + L

(1)
t + covt(MRt,t+2, rt,t+2)

− covt(MRt,t+1, rt,t+1)− covt+1(MRt+1,t+2, rt+1,t+2). (A1)

Consider the first covariance term. Given the joint log-normality of the SDF and returns (and the
normality of rt,t+n), Stein’s lemma gives that

covt(MRt,t+2, rt,t+2) = covt(MRt,t+1MRt+1,t+2, rt,t+2)

= covt(mrt,t+1 +mrt+1,t+2, rt,t+2)Et[MRt,t+2]

= covt(mrt,t+1 +mrt+1,t+2, rt,t+1 + rt+1,t+2) ,

where mrt,t+n = ln(MRt,t+n), and where the last line uses that Et[MRt,t+2] = 1. Having separated
the two MR terms, apply Stein’s lemma again to obtain

covt(MRt,t+2, rt,t+2) = covt(mrt,t+2, rt,t+1) + covt(mrt,t+1, rt+1,t+2) + covt(mrt+1,t+2, rt,t+2)

= covt(MRt,t+2, rt,t+1) + covt(MRt,t+1, rt+1,t+2)

+ covt(MRt+1,t+2, rt+1,t+2) . (A2)

For the first two terms in (A2), by the law of total covariance and using that Et+1[MRt+1,t+2] = 1,

covt(MRt,t+2, rt,t+1) = Et

[
MRt,t+1rt,t+1 covt+1(MRt+1,t+2, 1)

]
+ covt(MRt,t+1 Et+1[MRt+1,t+2], rt,t+1)

= covt(MRt,t+1, rt,t+1) , (A3)
covt(MRt,t+1, rt+1,t+2) = Et[MRt,t+1 covt+1(1, rt+1,t+2)] + covt(MRt,t+1,Et+1[rt+1,t+2])

= covt(MRt,t+1,Et+1[rt+1,t+2]) . (A4)

Turning now to the last term in (A1), the law of total covariance can similarly be applied to obtain
that as of time t,

Et[covt+1(MRt+1,t+2, rt+1,t+2)] = covt(MRt+1,t+2, rt+1,t+2). (A5)

Taking expectations in (A1), substituting in results (A2)–(A5), and applying the definition of ε̂ (1)
t+1,

we obtain:

Et

[
ε
(1)
t+1

]
= Et

[
ε̂
(1)
t+1

]
+ covt(MRt,t+1,Et+1[rt+1,t+2]) . (A6)

Rearranging to solve for Et[ε̂
(1)
t+1] yields the stated result for the n = m = 1 case. While this case is

convenient for straightforward derivations, note that all the above steps apply when using t+ n in
place of t+ 1 and using t+ n+m in place of t+ 2, so the stated result holds for general n,m.
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Proof of Proposition 3. Starting again with (A1) and expanding the first covariance term,

covt(MRt,t+2, rt,t+2) = covt(MRt,t+1MRt+1,t+2, rt,t+1) + covt(MRt,t+1MRt+1,t+2, rt+1,t+2). (A7)

We consider each of the two terms on the right side of (A7) in turn, and in both cases apply the law
of total covariance. For the first term, as in (A3),

covt(MRt,t+1MRt+1,t+2, rt,t+1) = covt(MRt,t+1, rt,t+1) . (A8)

For the second term,

covt(MRt,t+1MRt+1,t+2, rt,t+2) = Et

[
MRt,t+1 covt+1(MRt+1,t+2, rt+1,t+2)

]
+ covt(MRt,t+1,Et+1[rt+1,t+2]) . (A9)

Using (A8) and (A9) in (A1), applying the definition of ε̂ (1)
t+1, and taking expectations,

Et

[
ε
(1)
t+1

]
= Et

[
ε̂
(1)
t+1

]
+ Et[(MRt,t+1 − 1) covt+1(MRt+1,t+2, rt+1,t+2)]

+ covt(MRt,t+1,Et+1[rt+1,t+2])

= Et

[
ε̂
(1)
t+1

]
+ covt(MRt,t+1,Et+1[rt+1,t+2] + covt+1(MRt+1,t+2, rt+1,t+2)) . (A10)

Note from (4) that L
(1)
t+1 = Et+1[rt+1,t+2] + covt+1(MRt+1,t+2, rt+1,t+2). Using this in (A10),

Et

[
ε̂
(1)
t+1

]
= Et

[
ε
(1)
t+1

]
− covt

(
MRt,t+1,L

(1)
t+1

)
.

The above steps again apply when using t+ n in place of t+ 1 and using t+ n+m in place of t+ 2,
completing the proof.

Proof of Lemma A1. To compute the risk-neutral expectation of H [PT ] = Rα (lnR)β , we apply
standard spanning theorems (Bakshi and Madan 2000, Carr and Madan 2001). We have

1

Rf
E∗
t

[
Rα (lnR)β

]
=
(
H
[
P̄
]
− P̄HP

[
P̄
]) 1

Rf
+HP

[
P̄
]
Pt

+

∫ P̄

0
HPP [K] put

(n)
t (K)dK +

∫ ∞

P̄
HPP [K] call

(n)
t (K)dK.

The result follows by setting P̄ = F
(n)
t and simplifying.

Proof of Proposition A1. (A13) is immediate from Martin (2017) Result 8. (A14) and (A15)
follow from Lemma A1 by setting the appropriate α and β and simplifying.

B Measurement Details

B.1 Data

United States Data. For the 1996 to 2021 period, we obtain end-of-day option prices, index prices,
projected dividend yields, and risk-free rates from OptionMetrics. To maximize the sample size, we
use options with both AM and PM settlement. We use the bid/ask midpoint as the option price in
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the main analysis. We linearly interpolate the risk-free rate curve to match option maturities. If
either the dividend yield or risk-free rate is missing, we use the last non-missing observation.

For the 1990 to 1995 period, we obtain intraday option quotes from CBOE Market Data Express,
as in Kelly, Pástor, and Veronesi (2016) and Culp, Nozawa, and Veronesi (2018). We obtain
end-of-day index prices/returns from CRSP and estimate dividend yields from lagged one-year
cum/ex-dividend index returns. We obtain Treasury bill rates and constant maturity Treasury yields
from FRED to construct risk-free rates, as in Culp, Nozawa, and Veronesi.

Unlike OptionMetrics, CBOE provides intraday quotes. To construct end-of-day prices, we first
apply filters to the intraday data and then use the last available quote. We drop quotes with the
missing codes of 998 or 999. We drop quotes with negative bid-ask spreads. We correct erroneously
recorded quotes – quotes with strike price less than 100 – by multiplying the strike/option price by
10. We drop end-of-day quotes that increase and then decrease fourfold (or vice versa), following
similar filters in Andersen, Bondarenko, and Gonzalez-Perez (2015) and Duarte, Jones, and Wang
(2022). We interpret these large reversals as probable data errors. To validate these filters, we
compare data from CBOE and OptionMetrics in 1996. We match approximately 99.3% of option
prices in OptionMetrics, suggesting these filters are not unreasonable.

We apply standard filters to the end-of-day data (Constantinides, Jackwerth, and Savov 2013).
(1) We drop options with special settlement. (2) To eliminate duplicate quotes, we select the quote
with highest open interest. (3) We drop options with fewer than seven days-to-maturity. (4) We
drop options with price less than 0.01. (5) We drop options with zero bid prices or negative bid-ask
spreads. (6) We drop options that violate static no-arbitrage bounds:

put
(n)
t (K) ≤ Ke−rτ call

(n)
t (K) ≤ Pt.

(7) We drop options for which the Black-Scholes implied volatility computation does not converge
and options with implied volatility less than 5% or greater than 100%.

International Data. We again obtain end-of-day option prices, index prices, projected dividend
yields, and risk-free rates from OptionMetrics. Unlike the United States, most option prices are
either end-of-day settlement prices or last traded prices. Only a small fraction are from either bid/ask
prices. The index price is time synchronized to the option price. If the index price is missing, we
obtain the end-of-day price from Compustat Global. Risk-free rates are from currency-matched
LIBOR curves. Dividend yields are from put-call parity and so are maturity-specific. As before
with risk-free rates, we linearly interpolate the dividend yield curve to match option maturities. We
apply the same filters to the end-of-day data as with the United States, except for filters that require
bid/ask prices.

Table A1 describes the international sample. The European sample begins in January 2002 and
ends in September 2021. The Asian sample begins in January 2004 and ends in April 2021. Our
international sample closely follows Kelly, Pástor, and Veronesi (2016) and Dew-Becker and Giglio
(2021), but we also use pan-European Stoxx indexes. These indexes represent a substantive addition
to the sample. At long maturities, the Euro Stoxx 50 is arguably the most liquid options market in
the world, as is the case with the dividend futures market (Binsbergen and Koijen 2017, Binsbergen
et al. 2013).

Main Sample. As the international data is not equally robust across exchanges, we select the
most reliable exchanges for the main analysis. We select the main sample by elimination. We drop
Netherlands and Japan because they do not have sufficiently dense options, as seen in Panel A of
Figure A1. We drop Finland, the Stoxx Europe 50, and the Stoxx Europe 600 because they do not
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have reliable open interest data, as seen in Panel B of Figure A1. We drop Belgium, Korea, and
Taiwan because they do not consistently have long-maturity options, as seen in Panel D of Figure A2.
We drop China and Sweden because they do not have sufficiently deep out-of-the-money options, as
seen in Figure A2. This leaves the 10 exchanges in the last column of Table A1 for the main sample.
As a robustness check, we examine the full sample of 20 exchanges in Table A8 and Table A10.

B.2 Baseline Measures

Methodology. On each date and separately for puts/calls,

1. We convert option prices to implied volatilities via Black-Scholes. Here we follow an extensive
literature on option-implied risk-neutral densities that finds interpolation more conducive in
the space of implied volatilities, not option prices (Figlewski 2010, Malz 2014).

2. We fit a Delaunay triangulation to implied volatilities. The grid consists of strike prices
between K = 0.10× Pt and K = 2.00× Pt with ∆K = 0.001× Pt and maturities τ = 30, 60,
91, 122, 152, 182, 273, 365 days. The triangulation extrapolates as necessary with the nearest
implied volatility in moneyness and time-to-maturity space.

3. We convert the triangulation of implied volatilities back to option prices via Black-Scholes.
We then use the implied triangulation of option prices to evaluate the LVIX integral in (7) via
Gaussian quadrature.

4. With the LVIX in hand, we can immediately compute spot rates, forward rates, and forecast
errors under log utility via Proposition 1, as shown in Figure A3. Figure A4 plots contempo-
raneous 6-month spot rates and 6× 6-month forward rates in the full sample, analogous to
Figure 2 in the United States.

5. We occasionally find negative forward rates. Gao and Martin (2021) argue that negative
forward rates are unlikely theoretically and likely represent data errors. We follow Gao and
Martin and drop such observations, but our results are not quantitatively sensitive to this
choice.

Discussion. Three empirical challenges in the computation of option-implied moments – discretiza-
tion, truncation, and interpolation bias – motivate our baseline methodology (Carr and Wu 2009,
Jiang and Tian 2007). We discuss each in turn. First, discretization bias arises because (7) requires
numerical integration. To minimize this bias, we integrate on a fine grid of interpolated option prices
in step 3. Second, truncation bias arises because (7) requires integration over an infinite range of
strike prices in theory. In practice, we truncate the integral. To minimize this bias, we extrapolate
and integrate over strike prices well beyond the range of observable option prices in step 2. Finally,
interpolation bias arises because (7) usually requires options with unavailable maturities. To address
this bias, we interpolate the option surface at target maturities in step 2.

Measurement Error. To better understand the role of measurement error, Figure A5 examines
spot/forward rates in simulations. We first compute option prices from a parametric model. Since
we know the true data generating process, we then quantify how varying integration bounds affects
the integral relative to the true value. The thought experiment follows a similar exercise in Jiang
and Tian (2007) for the VIX.

We first truncate the integral (7) without extrapolation, as in Table A3. In Panel A, we consider
a Black-Scholes model. We find a large truncation bias in bad times. In bad times, volatility is
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high, deep out-of-the-money options are expensive, and so the bias is large. In contrast, in good
times, volatility is low, deep out-of-the-money options are cheap, and so the bias is small. The bias
is especially large for 12-month spot rates and forward rates because longer-maturity option prices
have more time value. In Panel B, we consider a stochastic volatility model with jumps (SVJ). We
again find an uncomfortably large truncation bias. Relative to Black-Scholes, the bias is larger when
volatility is low, but smaller when volatility is high because volatility mean-reverts in SVJ.

We next truncate the integral after extrapolating beyond the range of observable strikes, as in
the baseline analysis. We continue with a SVJ model in Panel C. Relative to Panel B, we find that
extrapolation reduces truncation bias across the board.

We emphasize, however, that this exercise only motivates extrapolation in our baseline integration
scheme and our use of shorter-maturity forward rate as instruments/predictors, as in Table 3 and
Table 5. We make no claim that measurement error is unconditionally small. By construction, these
simulations address only truncation bias. There is no scope for either discretization or interpolation
bias, as we simulate option prices on a counterfactually dense grid. We think these biases may be
non-trivial at times and especially so when options are less dense.

B.3 Alternative Measures

Table A3 reports robustness checks where we use alternative choices to measure spot rates, forward
rates, and forecast errors. As we discuss below, the main results are largely robust to these choices.

Integration Bounds. Panel A repeats the analysis with alternative integration bounds. The first
four rows consider static bounds without extrapolation. As an example, the first row evaluates the
integral in (7) between strike prices K = 0.65× Pt and K = 1.35× Pt at each maturity. The fifth
row uses observable option prices between strike prices K = 0.10 × Pt and K = 2.00 × Pt, again
without extrapolation. The bounds in the first five rows naturally vary both by time and maturity
with the availability of option prices. The sixth row considers static bounds with extrapolation,
following a similar robustness check in Gormsen and Jensen (2022):

[
K(n),K

(n)
]
=


[0.75, 1, 25]× Pt n ∈ {1, 2}
[0.55, 1.45]× Pt n ∈ {3, 4, 5}
[0.35, 1.65]× Pt n ∈ {6, 9}
[0.20, 1.80]× Pt n ∈ {12} .

These bounds vary by maturity, but not by time. The seventh row considers dynamic bounds with
extrapolation, again following a similar robustness check in Gormsen and Jensen:

K(n) = max
{
0.10, 1.00− 5σ

(n)
t

√
τ
}
× Pt K

(n)
= min

{
2.00, 1.00 + 5σ

(n)
t

√
τ
}
× Pt,

where σ
(n)
t , the price of the volatility contract in Bakshi, Kapadia, and Madan (2003), proxies for

the risk-neutral volatility of the market return:(
σ
(n)
t

√
τ
)2

=
1

Rf
t,t+n

E∗
t

[
(lnRt,t+n)

2
]

=

∫ Pt

0

2
(
1 + ln

[
Pt
K

])
K2

put
(n)
t (K)dK +

∫ ∞

Pt

2
(
1 + ln

[
Pt
K

])
K2

call
(n)
t (K)dK. (A11)
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These bounds vary by both time and maturity with volatility. The eighth row considers the baseline
integration bounds, as discussed in the main text and Appendix B.2.

In sum, this exercise illustrates the significant effect truncation/extrapolation have on the re-
gression estimates. With shallow bounds, forecast errors are relatively large on average but less
predictable. With deep bounds, forecast errors are relatively small on average but more predictable.

Liquidity Filters. Panel B repeats the analysis with alternative liquidity filters. The first row
considers an outlier filter, following similar filters in Constantinides, Jackwerth, and Savov (2013) and
Beason and Schreindorfer (2022). On each date and separately for puts/calls, we first fit a quadratic
function to implied volatilities in terms of moneyness K/P and time-to-maturity. To minimize the
effect of deep out-of-the-money, short/long-maturity options, we only use options with maturity
14 ≤ τ ≤ 365 days and moneyness 0.65 ≤ K/P ≤ 1.35. We then drop influential observations via
Cook’s Distance. The second row considers an open interest filter. We drop options with zero open
interest. We do not have open interest data before 1996. The third row combines the outlier and
open interest filters. In all, this exercise is consistent with the baseline results, suggesting that option
illiquidity does not explain our findings.

Volatility Surface. The first row in Panel C repeats the analysis with the interpolated volatility
surface from OptionMetrics. OptionMetrics provides interpolated Black-Scholes implied volatilities
on a constant moneyness/maturity grid. The literature often uses this surface for options with
American exercise because OptionMetrics reports an equivalent, European exercise, implied volatility
(Kelly, Lustig, and Van Nieuwerburgh 2016, Martin and Wagner 2019). We instead simply use it
as a robustness check on our own Delaunay triangulation of the volatility surface. In short, this
exercise is consistent with the baseline results, although the average forecast error is somewhat smaller.

SVI Surface. The second row in Panel C repeats the analysis with the stochastic volatility inspired
(SVI) surface from Jim Gatheral at Merrill Lynch (Gatheral 2011, Gatheral and Jacquier 2011, 2014).
Our implementation of the SVI surface closely follows Berger, Dew-Becker, and Giglio (2020) and
Beason and Schreindorfer (2022). We parameterize squared Black-Scholes implied volatilities with
the function

σ2
BS (t, κ, τ) = a+ b

(
ρ (κ−m) +

√
(κ−m)2 + σ2

)
, (A12)

where κ is standardized forward moneyness

κ =
lnK − lnF

(n)
t

σ
(n)
t

√
τ

,

σ
(n)
t proxies for the risk-neutral volatility of the market return as in (A11), and each parameter

is a linear function of time-to-maturity (e.g., a = a0 + a1τ). On each date, we estimate param-
eters θ = (a0, a1, b0, b1, ρ0, ρ1,m0,m1, σ0, σ1) that minimize the implied volatility RMSE between
the surface (A12) and the data, subject to standard no-arbitrage constraints: option prices are
nonnegative and monotonic/convex in K (Aït-Sahalia and Duarte 2003). We check these constraints
on a grid with moneyness between −20 ≤ κ ≤ 0.50 for puts, between −0.50 ≤ κ ≤ 10 for calls, and
maturities τ = 30, 60, 91, 122, 152, 182, 273, 365 days. We estimate the surface with outlier-filtered,
as discussed in Appendix B.3, out-of-the-money puts/calls: puts with κ ≤ 0 and calls with κ ≥ 0.
We estimate the surface separately for puts/calls and separately for short/long-maturity options:
14 ≤ τ ≤ 122 days and 122 < τ ≤ 365 days, respectively.
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Bid/Ask Prices. Panel D repeats the analysis with bid/ask prices, following similar robustness
checks in Martin (2017) and Gao and Martin (2021). We only have bid/ask prices in the United
States. The first row reports the baseline results with the bid-ask midpoint. The second row repeats
the analysis with bid prices, the third ask prices. In sum, this exercise is consistent with the baseline
results, although the Coibion-Gorodnichenko regression slope is somewhat smaller with ask prices.

C Additional Empirical Results and Robustness Checks

C.1 Coibion-Gorodnichenko Regressions

Methodology. Here, we study the predictability of forecast errors using forward-rate changes
(rather than levels, as in the main text), using the method in Coibion and Gorodnichenko (2015).
This allows us to address more specifically whether forward rates exhibit excess sensitivity to news.
These regressions take the following form:

ε̃mi,t+n = β0 + β1

(
f̃
(n,m)
i,t − f̃

(n+h,m)
i,t−h

)
+ ei,t+m,

for both option-based risk premia and expected returns. We consider multiple horizons for the
forecast revision and forecast error.

Results. Table A4 presents results. We find, consistent with the main analysis, meaningful forecast-
error predictability with significantly negative coefficients at multiple (though not all) horizons. The
long-horizon risk-premium revisions generate more consistent significance in predictability, consistent
with the fact that forward rates are persistent (so short-horizon revisions contain quite a bit of noise
unrelated to the predictable component of forecast errors).

Measurement Error. In Coibion-Gorodnichenko regressions, we use forecast revisions to predict
forecast errors. Since forecast revisions/errors involve the same forward rate, measurement error may
produce spurious evidence of predictability. To better understand the role of measurement error, we
again turn to simulations. We quantify how much correlated measurement error would be necessary
to produce the Coibion-Gorodnichenko regression slopes in the data.

We assume we observe forecast revisions and forecast errors with noise:

x̃ = xσx + vσv and ỹ = yσy − vσv,

respectively, with σxy = σxv = σyv = 0 and x, y, v
i.i.d.∼ N (0, 1). We vary σ2

v exogenously. In each
simulation draw, we set the variance of the truth (σ2

x and σ2
y) such that the observed variance (σ2

x̃

and σ2
ỹ) equals that in the data. As σ2

v varies, these weights ensure all variation in slopes comes from
variation in noise and none from variation in observed variances. Any evidence of predictability –
any non-zero slope – is spurious because σxy = 0.

Figure A6 reports the results from these simulations. To produce the Coibion-Gorodnichenko
regression slopes in the data, we require σv be about 40 basis points or more than one-quarter
the volatility of forecast errors in the data. This, at least to us, seems implausibly large. We
conclude that correlated measurement error cannot fully explain forecast-error predictability in
Coibion-Gorodnichenko regressions, although we cannot fully rule out some bias due to measurement
error.

OA-7



C.2 Power Utility Regressions

Methodology. This section derives the power utility analogue to the LVIX. To do so, we apply
results from Martin (2017) and Gao and Martin (2021). We omit time subscripts throughout to
minimize clutter.

Lemma A1 (Spanning Rα (lnR)β). For any α and β,

1

Rf
E∗
t

[
Rα (lnR)β

]
= Rα

f (lnRf )
β +

∫ F
(n)
t

0
ω (α, β) put

(n)
t (K)dK +

∫ ∞

F
(n)
t

ω (α, β) call
(n)
t (K)dK,

where

ω (α, β) = −α (1− α)mβ + β (1− 2α)mβ−1 + β (1− β)mβ−2

P 2
t

(
K

Pt

)α−2

and m = lnK − lnPt.

As is well-known, under certain regularity conditions, we can compute the price of any function
of the index price via a replicating portfolio of bonds, stocks, and options. We simply apply this
result to the function Rα (lnR)β , which is useful for expectations under power utility below.

Proposition A1 (Expected Equity Premium with Power Utility). From the standpoint of
an unconstrained power utility investor fully invested in the market,

Et [lnR]− lnRf =
E∗
t [R

γ lnR]

E∗
t [R

γ ]
− lnRf , (A13)

where

1

Rf
E∗
t [R

γ lnR] = Rγ
f lnRf +

∫ F
(n)
t

0
ω (γ, 1) put

(n)
t (K)dK +

∫ ∞

F
(n)
t

ω (γ, 1) call
(n)
t (K)dK (A14)

and
1

Rf
E∗
t [R

γ ] = Rγ
f +

∫ F
(n)
t

0
ω (γ, 0) put

(n)
t (K)dK +

∫ ∞

F
(n)
t

ω (γ, 0) call
(n)
t (K)dK (A15)

and γ is the investor’s risk aversion.

The LVIX uses a special case of (A13) with γ = 1, and so the mechanics under power utility are
similar, if only messier, to that under log utility. However, there is one caveat: as risk aversion γ
increases, the weights ω (γ, 0) and ω (γ, 1) on deep out-of-the-money call options become untenably
large. Unfortunately, these options are largely unobservable. As such, we can only realistically
measure expectations for a γ ≤ 3 investor in practice.

Armed with the expected equity premium from the standpoint of a power utility investor, we
can compute spot rates, forward rates, and forecast errors in the usual way.

Results. Table A5 presents results for option-based risk-premium and expected-return forecast
errors when re-estimated under the assumption of an unconstrained investor with power utility,
rather than log utility, for different values of constant relative risk aversion. Figure A7 provides a
visual representation of these results. See Section 4.1.5 in the text for a discussion of the results.
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C.3 Long-Horizon Forecast Errors

For the forecast-error quantification in Section 5.1, we re-estimate spot rates, forward rates, and
forecast errors at longer horizons (up to m + n = 8 years) for the Euro Stoxx 50. The sample
runs from September 2005 through September 2014 (beyond which we cannot yet observe realized
forecast errors). The combinations of m and n (in months) can be seen in Table A6. For each such
combination, we predict forecast errors as in (9) using a regression of realized forecast errors on
shorter-horizon forward rates; we use the n − 12 × 12 forward rate (with horizons again now in
months) for n ≥ 24, and for n = 12 we use the 6× 6 rate. After obtaining these predicted forecast
errors, we calculate a decay parameter for each date’s forecast errors, ϕ(n,m)

t , as the ratio of estimated
Et[ε

(m)
t+n] to Et[ε

(12)
t+12] for each available m,n > 12. This decay specification builds on the one used

by De la O and Myers (2021, eq. (13)) for expected returns, but we estimate it directly for each
date t (whereas they use a full-sample regression for one horizon). The entries of Table A6 report
the median decay parameter over all t for each combination of m and n. In all cases the estimates
are close to or above 1. Assuming that predictable forecast errors are permanent at all horizons
might be thought of as providing an estimate of their maximal possible effect. That said, when we
estimate the decay parameter in the U.S. (at shorter horizons, unreported), we in fact generally
obtain estimates greater than 1, suggesting that setting ϕ(n,m) = 1 may, if anything, be slightly
conservative in the U.S. sample.

C.4 Monetary Policy Shocks

Methodology. While a full accounting of the drivers of forecast errors is beyond the scope of the
paper, here we consider one leading candidate: unexpected monetary policy shocks. We separately
consider forecast errors for the risk-free rate and for the option-based risk premium (which together
add up to the expected-return forecast errors). For the risk-free rate, the forecast error is the
difference between the forecast error on the option-based expected return and the option-based risk
premium. For each of the two sets of realized forecast errors, we then run time-series regressions —
separately for the U.S. and the Eurozone — of forecast errors on contemporaneous monetary policy
shocks:

ε̃
(6)
t+6 = β0 + β1

(
6∑

h=1

MPSt+h

)
+ et+6,

where MPSt+h is a monetary policy shock measure for month t + h. The summed measure is
contemporaneous to the 6-month forecast error, and the spot-rate horizon is 6 months. For MPSt+h

in the U.S., we consider fed funds rate changes and surprises from Bernanke and Kuttner (2005, BK),
obtained from Ken Kuttner’s website; target shocks and path shocks from Gürkaynak, Sack, and
Swanson (2005, GSS), obtained via Acosta (2023) from Miguel Acosta’s website; and fed funds rate
shocks and policy news shocks from Nakamura and Steinsson (2018, NS), also obtained from Miguel
Acosta’s website. For the Eurozone, we consider target shocks, forward guidance shocks, and risk
premium shocks from Leombroni et al. (2021, LVVW), obtained from Andrea Vedolin’s website. In all
cases, we report the R2 from the above regression, as well as the correlation between the two variables.

Results. Table A7 presents results. We find strong, positive correlations in most cases between the
risk-free rate forecast error and the monetary policy shocks, particularly the shocks related to future
policy expectations like the GSS path shock or the NS policy news shock (as should be expected
given that these are forecast errors for expected future short-term rates). We find more limited
explanatory power (R2) for equity risk-premium forecast errors, indicating that these are not largely
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driven by monetary policy shocks. That said, the shocks still explain some of the forecast errors,
and there are meaningful negative correlations: monetary policy tightening that was unexpected ex
ante tends to correlate with future risk-premium spot rates being lower than predicted according to
the forward rates, consistent with improving economic conditions. This is also potentially consistent
with the monetary policy shocks partially driving the decreases in spot rates, along the lines of the
information effect discussed by Nakamura and Steinsson (2018) (see also Golez and Matthies 2023).

C.5 Additional Robustness Checks

Alternative Samples. Table A8 considers how our results extend to the full sample with all 20
available exchanges, as opposed to the 10 developed-market exchanges used in our main panel. The
table presents results from a concise set of key regressions from Tables 2–5 in the main text. The
main results hold here. The Mincer-Zarnowitz regression coefficients are similar to (in fact slightly
below) the results in the main sample; the average forecast error is nearly identical to that in the
main sample; and the error-predictability and Coibion-Gorodnichenko results are slightly stronger in
the extended sample than in the main sample.

Alternative Horizons. Table A9 examines alternative horizons for Mincer-Zarnowitz, average error,
and error-predictability regressions. The baseline analysis in Section 4 considers the 6-month spot
rate in 6 months (n = m = 6 in Panel E). This exercise illustrates the effect of the horizon on the
regression estimates. Holding n+m fixed, forecast errors are relatively small on average and less pre-
dictable with small n; forecast errors are relatively large on average and more predictable with large n.

Additional Robustness Checks. Table A10 examines additional robustness checks. Panel A
reports the baseline results. Panel B winsorizes spot rates, forward rates, forecast errors, and forecast
revisions at the 2.5% level by exchange. Panel C is the trimming analogue to Panel B. Panel D
repeats the analysis in balanced panels. Panel E repeats the analysis in subsamples. This exercise is
generally consistent with the baseline results, although the Coibion-Gorodnichenko regression slopes
are sensitive to winsorization/trimming and the forecast errors are somewhat less predictable in the
later subsample.

D Additional Model Discussion: A Trilemma for Expectation Errors

This appendix continues the discussion in Section 6.3 on how different moments of the data are tied
together by the cyclicality of forecast errors. We begin with the Campbell-Shiller price-dividend
decomposition in (11). Assume that the expectations Et[·] in that decomposition refer to agents’
subjective beliefs, and pt − dt is the observed log price-dividend ratio. Now consider an alternative
economy in which all agents have rational expectations. For arbitrary equilibrium variable xt in the
observed data, denote the corresponding variable in the alternative RE economy by xRE

t . Define the
wedge between these two variables to be x̃t = xt − xRE

t . For example, p̃t − dt is the wedge between
the observed price-dividend ratio and the one that would be observed in the alternative economy
with RE. Up to a constant, it satisfies

p̃t − dt = C̃F t − F̃t − R̃F t. (A16)
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Assume for simplicity that R̃F t = 0. The following variance decomposition for the price-dividend
wedge therefore holds:

var
(
p̃t − dt

)
= var

(
C̃F t

)
+ var

(
F̃t

)
− 2 cov

(
C̃F t, F̃t

)
. (A17)

Alternatively, one can also use the following decomposition given (A16):

var
(
p̃t − dt

)
= cov

(
p̃t − dt, C̃F t

)
− cov

(
p̃t − dt, F̃t

)
. (A18)

The wedges C̃F t and F̃t can be understood as expectation errors along the lines considered in
Section 6: if subjective expectations are too high relative to RE, then the wedge will be positive
(and forecast errors, defined as realized − forecast, are likely to be negative). According to either of
the decompositions in (A17)–(A18), therefore, one must choose from at most two of the following
three features of any model of expectation errors:

1. Volatile expectation errors for returns (and/or fundamentals)
2. Volatile price-dividend ratio relative to a rational benchmark
3. Countercyclical return expectation errors (positive return expectation errors in bad times)

For example, if excessively positive cash-flow and return forecast revisions occur in good times (after
positive news), then cov

(
C̃F t, F̃t

)
> 0 in (A17). Alternatively, in the version expressed in (A18),

positive comovement between price-dividend and forward-rate wedges similarly detracts from a
model’s ability to generate volatile p̃t − dt. This form of overreaction to realized outcomes (cash flows
and/or returns) may be intuitively appealing, but it limits a model’s ability to speak to variation in
the price-dividend ratio through expectation errors alone.1

Our empirical results, and our model of expectation errors, instead suggest overreaction of
forward rates to spot rates, rather than realized returns. Unlike realized returns, we find that spot
and forward rates increase in bad times. The negative covariance between fundamental news and
return expectation errors in principle allows for a volatile price-dividend ratio.

1For example, Nagel and Xu (2022) obtain a price-dividend ratio volatility about 50% lower than that
observed in the data (see their Table 5). Similarly, De la O and Myers (2021) report that in the model
of Barberis et al. (2015), “movements in dividend change expectations are almost completely negated by
movements in price change expectations. This leads to low variation in the price-dividend difference” (p. 1370);
Campbell (2017) provides a related discussion of the Barberis et al. (2015) results.
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Appendix Tables and Figures

Table A1Table A1
Option Sample

This table reports the region, the abbreviation, the underlying index, the sample period, and the sample
length in months for each exchange. The last column indicates whether the exchange is in the main sample.
See Appendix B.1 for more details.

Region Abbrv Index Start End Length Main

North America
United States USA S&P 500 199001 202112 384 Y

Europe
Belgium BEL BEL 20 200201 202109 228
Switzerland CHE SMI 200201 202109 237 Y
Germany DEU DAX 200201 202109 237 Y
Spain ESP IBEX 35 200610 202109 180 Y
Finland FIN OMXH25 200201 202109 237
France FRA CAC 40 200304 202109 222 Y
United Kingdom GBR FTSE 100 200201 202109 237 Y
Italy ITA FTSE MIB 200610 202109 180 Y
Netherlands NLD AEX 200201 202109 219
Sweden SWE OMXS30 200705 202109 173

Pan-Europe
Euro Stoxx 50 SX5E SX5E 200201 202109 237 Y
Stoxx Europe 50 SX5P SX5P 200201 202109 237
Stoxx Europe 600 SXXP SXXP 200509 202109 193

Asia-Pacific
Australia AUS ASX 200 200401 202104 208 Y
China CHN HSCEI 200601 202104 184
Hong Kong HKG Hang Seng 200601 202104 184 Y
Japan JPN Nikkei 225 200405 202104 204
Korea KOR KOSPI 200 200407 202104 202
Taiwan TWN TAIEX 200510 202104 187
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Table A2Table A2
Summary Statistics

This table reports summary statistics for option-based risk premia (left panel) and expected returns (right
panel). The units are annualized percentage points. The horizon is the 6-month spot rate, 6 months from
now. The sample is the longest available for each exchange in the full sample.

Risk Premia Expected Returns

Spot µ̃
(6)
t+6 Forward f̃6,6

t Spot µ̃
(6)
t+6 Forward f6,6

t

Mean StDev Mean StDev Mean StDev Mean StDev

North America
USA 2.17 1.40 2.15 0.99 5.04 2.41 5.44 2.32

Europe
BEL 2.42 2.07 2.56 2.22 3.59 2.82 4.13 2.79
CHE 1.96 1.34 1.88 0.80 2.26 1.85 2.60 1.50
DEU 2.85 1.86 2.63 1.07 4.10 2.74 4.27 2.12
ESP 3.37 1.83 2.89 1.17 4.19 2.73 4.19 2.19
FIN 2.79 2.21 2.38 1.85 4.03 2.85 4.02 2.65
FRA 2.57 1.56 2.44 1.04 3.71 2.42 3.97 2.07
GBR 2.21 1.51 2.12 1.00 4.33 2.59 4.76 2.13
ITA 3.60 1.67 3.17 1.35 4.39 2.40 4.42 2.23
NLD 2.85 2.18 2.43 1.26 3.93 3.20 3.95 2.40
SWE 2.79 1.80 2.44 1.41 3.79 2.83 3.77 2.68

Pan-Europe
SX5E 2.89 1.83 2.65 1.08 4.14 2.69 4.29 2.10
SX5P 2.23 1.62 2.11 1.48 3.47 2.64 3.75 2.51
SXXP 2.14 1.63 2.05 1.53 3.12 2.65 3.44 2.57

Asia-Pacific
AUS 1.97 1.39 1.84 1.20 5.65 2.65 5.95 2.39
CHN 4.24 4.01 3.90 3.29 5.61 4.42 5.92 3.64
HKG 2.98 2.56 2.85 1.93 4.35 2.98 4.86 2.26
JPN 2.93 2.20 2.60 1.57 3.21 2.35 3.15 1.76
KOR 2.23 2.16 2.14 1.85 5.13 3.02 5.40 2.95
TWN 2.39 1.90 2.36 1.45 3.37 2.11 3.84 1.70
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Table A3Table A3
Alternative Measures

This table reports regression estimates with alternative measures for option-based risk premia (Panel A) and expected returns (Panel B). See
Appendix B.3 for more details. The first three subpanels report estimates from panel regressions in the main sample. The last subpanel reports
estimates from time-series regressions in the U.S. sample. Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average forecast error tests
H0 : ε̄t = 0, as in Table 4. Error-predictability regressions test H0 : β1 = 0, as in Table 5. The horizon is the 6-month spot rate, 6 months from now.
The units are annualized percentage points. Panel regressions, in the main sample, include exchange fixed effects, compute a within R2, and report
standard errors clustered by exchange and date. This sample is the longest available for each exchange. Time-series regressions, in the U.S. sample,
report Newey-West standard errors with lags selected following Lazarus et al. (2018) and fixed-b p-values. This sample is from January 1990 to June
2021.

Panel A. Risk Premia µ̃
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 ε̃t se(ε̃t) p-val β1 se(β1) p-val R2 N

Alternative Integration Bounds
Truncation: 0.65 ≤ K/P ≤ 1.35 0.78 0.091 ** 0.18 0.34 0.094 *** -0.019 0.039 0.00 2139
Truncation: 0.55 ≤ K/P ≤ 1.45 0.68 0.074 *** 0.17 0.26 0.097 ** -0.082 0.041 * 0.01 2137
Truncation: 0.45 ≤ K/P ≤ 1.55 0.63 0.065 *** 0.16 0.22 0.099 * -0.12 0.042 ** 0.02 2140
Truncation: 0.35 ≤ K/P ≤ 1.65 0.59 0.059 *** 0.15 0.20 0.10 * -0.15 0.044 *** 0.03 2138
Observable Moneyness 0.56 0.053 *** 0.15 0.19 0.10 * -0.17 0.043 *** 0.04 2140
Extrapolation: Static Moneyness 0.56 0.056 *** 0.15 0.14 0.10 -0.15 0.041 *** 0.04 2244
Extrapolation: Dynamic Moneyness 0.56 0.055 *** 0.15 0.16 0.11 -0.17 0.046 *** 0.03 2241
Extrapolation: Baseline 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.047 *** 0.03 2227

Alternative Liquidity Filters
Outliers 0.60 0.055 *** 0.17 0.18 0.098 -0.20 0.050 *** 0.05 2241
Open Interest: After 199601 0.52 0.057 *** 0.14 0.16 0.11 -0.18 0.045 *** 0.04 2033
Outliers and Open Interest: After 199601 0.56 0.051 *** 0.16 0.19 0.097 * -0.21 0.050 *** 0.06 2040

Alternative Surfaces
Volatility Surface: After 199601 0.57 0.051 *** 0.17 0.087 0.095 -0.21 0.053 *** 0.06 2163
SVI Surface: U.S. and SX5E 0.59 0.047 * 0.17 0.051 0.11 -0.19 0.039 0.04 609

Alternative Prices
Bid-Ask Midpoint: U.S. Only 0.67 0.096 *** 0.22 0.021 0.15 -0.17 0.066 ** 0.03 378
Bid Prices: U.S. Only 0.64 0.099 *** 0.21 0.034 0.14 -0.15 0.077 ** 0.03 378
Ask Prices: U.S. Only 0.66 0.089 *** 0.23 0.0051 0.15 -0.18 0.060 *** 0.04 378

(Continued on the next page)
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Table A3Table A3
Alternative Measures (Continued)

Panel B. Expected Returns µ
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 εt se(εt) p-val β1 se(β1) p-val R2 N

Alternative Integration Bounds
Truncation: 0.65 ≤ K/P ≤ 1.35 1.02 0.053 0.71 -0.12 0.094 -0.18 0.043 *** 0.04 2139
Truncation: 0.55 ≤ K/P ≤ 1.45 0.99 0.054 0.67 -0.19 0.097 * -0.23 0.044 *** 0.07 2137
Truncation: 0.45 ≤ K/P ≤ 1.55 0.96 0.055 0.64 -0.23 0.099 ** -0.26 0.045 *** 0.09 2140
Truncation: 0.35 ≤ K/P ≤ 1.65 0.94 0.056 0.63 -0.25 0.10 ** -0.29 0.046 *** 0.10 2138
Observable Moneyness 0.93 0.058 0.61 -0.26 0.10 ** -0.31 0.046 *** 0.12 2140
Extrapolation: Static Moneyness 0.92 0.060 0.60 -0.31 0.100 ** -0.26 0.039 *** 0.12 2244
Extrapolation: Dynamic Moneyness 0.91 0.061 0.59 -0.29 0.10 ** -0.30 0.047 *** 0.11 2241
Extrapolation: Baseline 0.91 0.061 0.59 -0.28 0.10 ** -0.29 0.047 *** 0.10 2227

Alternative Liquidity Filters
Outliers 0.92 0.062 0.62 -0.27 0.098 ** -0.34 0.050 *** 0.15 2241
Open Interest: After 199601 0.91 0.062 0.59 -0.26 0.10 ** -0.31 0.043 *** 0.12 2033
Outliers and Open Interest: After 199601 0.92 0.064 0.62 -0.24 0.096 ** -0.35 0.048 *** 0.16 2040

Alternative Surfaces
Volatility Surface: After 199601 0.93 0.065 0.63 -0.34 0.098 *** -0.36 0.052 *** 0.16 2163
SVI Surface: U.S. and SX5E 0.89 0.048 0.65 -0.36 0.11 -0.28 0.049 0.10 609

Alternative Prices
Bid-Ask Midpoint: U.S. Only 0.88 0.072 0.71 -0.40 0.17 ** -0.20 0.090 ** 0.04 378
Bid Prices: U.S. Only 0.87 0.070 * 0.73 -0.38 0.17 ** -0.18 0.11 * 0.04 378
Ask Prices: U.S. Only 0.87 0.076 0.69 -0.41 0.17 ** -0.21 0.077 *** 0.05 378

(Continued from the previous page)
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Table A4Table A4
Coibion-Gorodnichenko Regressions

This table reports Coibion-Gorodnichenko regressions of future realized forecast errors on current forecast revisions for option-based risk premia (left
panel) and expected returns (right panel):

ε̃mi,t+n = β0 + β1

(
f̃
(n,m)
i,t − f̃

(n+h,m)
i,t−h

)
+ ei,t+n

For risk premia, the realized spot rate is the future expectation of the m-month equity premium, the forward rate is the current expectation of the
same risk premium, and the forecast error is the realized spot rate minus the forward rate. These expectations are analogously defined for expected
returns. The units are annualized percentage points. All regressions include exchange fixed effects and compute a within R2. Standard errors are
clustered by exchange and date. The sample is the longest available for each exchange in the main sample.

Risk Premia µ̃
(m)
t+n Expected Returns µ

(m)
t+n

β1 se(β1) p-val R2 β1 se(β1) p-val R2 N

Short-Horizon Forecast Revisions
h = 1-Month Revision n+m = 4 n = 3 m = 1 -0.20 0.11 * 0.01 -0.23 0.13 * 0.01 2214
h = 1-Month Revision n+m = 5 n = 4 m = 1 -0.27 0.11 ** 0.01 -0.27 0.13 * 0.01 2217
h = 2-Month Revision n+m = 4 n = 3 m = 1 -0.22 0.081 ** 0.01 -0.23 0.11 * 0.01 2205
h = 3-Month Revision n+m = 6 n = 3 m = 3 -0.055 0.056 0.00 -0.067 0.094 0.00 2215
h = 3-Month Revision n+m = 9 n = 6 m = 3 -0.24 0.12 * 0.01 0.033 0.11 0.00 2186

Long-Horizon Forecast Revisions
h = 4-Month Revision n+m = 5 n = 2 m = 3 -0.081 0.053 0.00 -0.086 0.079 0.01 2223
h = 5-Month Revision n+m = 4 n = 1 m = 3 -0.051 0.053 0.00 -0.050 0.064 0.00 2213
h = 6-Month Revision n+m = 6 n = 3 m = 3 -0.13 0.055 ** 0.01 -0.031 0.063 0.00 2183
h = 7-Month Revision n+m = 5 n = 2 m = 3 -0.12 0.040 ** 0.02 -0.065 0.053 0.00 2191
h = 8-Month Revision n+m = 4 n = 1 m = 3 -0.082 0.034 ** 0.01 -0.056 0.044 0.01 2181
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Table A5Table A5
Power Utility Regressions

This table reports regression estimates from the standpoint of an unconstrained power utility investor fully
invested in the market for option-based risk premia (Panel A) and expected returns (Panel B). See Section 4.1.5
and Appendix C.2 for more details. Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average
forecast error tests H0 : ε̄t = 0, as in Table 4. Error-predictability regressions test H0 : β1 = 0, as in Table 5.
The horizon is the 6-month spot rate, 6 months from now. The units are annualized percentage points. Panel
regressions, in the main sample, include exchange fixed effects, compute a within R2, and report standard
errors clustered by exchange and date. This sample is the longest available for each exchange. Time-series
regressions, in the U.S. sample, report Newey-West standard errors with lags selected following Lazarus et al.
(2018) and fixed-b p-values. This sample is from January 1990 to June 2021.

Panel A. Risk Premia µ̃
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 ε̃t se(ε̃t) p-val β1 se(β1) p-val R2 N

Main Sample
γ = 0.75 0.51 0.059 *** 0.13 0.045 0.057 -0.19 0.045 *** 0.04 2224
γ = 1.00 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.046 *** 0.03 2220
γ = 1.25 0.60 0.057 *** 0.15 0.36 0.15 ** -0.13 0.050 ** 0.02 2215
γ = 1.50 0.62 0.062 *** 0.16 0.59 0.20 ** -0.10 0.054 * 0.01 2206
γ = 2.00 0.64 0.075 *** 0.15 1.14 0.29 *** -0.044 0.057 0.00 2181

U.S. Sample
γ = 0.75 0.61 0.094 *** 0.21 -0.022 0.083 -0.20 0.069 *** 0.05 378
γ = 1.00 0.67 0.096 *** 0.22 0.021 0.15 -0.17 0.066 ** 0.03 378
γ = 1.25 0.72 0.098 ** 0.23 0.12 0.20 -0.13 0.064 ** 0.02 378
γ = 1.50 0.76 0.100 ** 0.24 0.25 0.26 -0.099 0.062 0.01 378
γ = 2.00 0.85 0.10 0.26 0.57 0.35 -0.048 0.059 0.00 378
γ = 2.50 0.91 0.10 0.27 0.94 0.44 ** -0.0087 0.057 -0.00 378
γ = 3.00 0.97 0.10 0.28 1.32 0.52 ** 0.022 0.056 -0.00 378

Panel B. Expected Returns µ
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 εt se(εt) p-val β1 se(β1) p-val R2 N

Main Sample
γ = 0.75 0.93 0.042 0.75 -0.40 0.061 *** -0.42 0.056 *** 0.17 2224
γ = 1.00 0.91 0.061 0.59 -0.28 0.10 ** -0.30 0.046 *** 0.11 2220
γ = 1.25 0.90 0.075 0.50 -0.084 0.15 -0.22 0.048 *** 0.07 2215
γ = 1.50 0.90 0.088 0.43 0.15 0.19 -0.17 0.052 *** 0.04 2206
γ = 2.00 0.88 0.11 0.36 0.69 0.28 ** -0.093 0.057 0.01 2181

U.S. Sample
γ = 0.75 0.89 0.061 * 0.84 -0.44 0.14 *** -0.24 0.13 * 0.04 378
γ = 1.00 0.88 0.072 0.71 -0.40 0.17 ** -0.20 0.090 ** 0.04 378
γ = 1.25 0.87 0.082 0.61 -0.30 0.21 -0.15 0.077 ** 0.03 378
γ = 1.50 0.87 0.089 0.53 -0.17 0.25 -0.12 0.070 * 0.02 378
γ = 2.00 0.90 0.096 0.45 0.15 0.34 -0.066 0.063 0.00 378
γ = 2.50 0.93 0.098 0.41 0.52 0.42 -0.024 0.059 -0.00 378
γ = 3.00 0.96 0.098 0.39 0.90 0.50 * 0.0077 0.056 -0.00 378
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Table A6Table A6
Long-Horizon Forecast Errors

This table reports estimates of the predicted forecast error decay for the Euro Stoxx 50. The decay ϕ
(n,m)
t

parameter follows the expected decay specification from De la O and Myers (2021):

Et

[
ε
(m)
t+n

]
= ϕ

(n,m)
t Et

[
ε
(12)
t+12

]
The estimate is the median by horizon:

ϕ(n,m) = median
{∣∣∣ϕ(n,m)

t

∣∣∣}
The predicted forecast error is from a time-series regression of future realized forecast errors on current
forward rates: the predictor is the n− 12× 12-month forward rate for n ≥ 24 and the 6× 6-month forward
rate for n = 12. The sample is from 09/2005 to 09/2014.

n-months

m-months 12 24 36 48 60 72 84

12 1.00 2.13 1.88 0.73 0.89 1.23 1.05
24 1.00 2.13 1.94 0.90 0.88 1.37
36 1.00 2.09 1.98 0.95 0.98
48 1.00 2.13 1.99 1.08
60 1.00 2.09 1.91
72 1.00 2.07
84 1.00
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Table A7Table A7
Forecast Errors and Monetary Policy Shocks

The table reports the comovement between forecast errors and monetary policy shocks in the U.S. (Panel A) and the Eurozone (Panel B). See
Appendix C.4 for more details. For option-based risk premia, the R2 is from a time-series regression of contemporaneous forecast errors on monetary
policy shocks

ε̃
(6)
t+6 = β0 + β1

(
6∑

h=1

MPSt+h

)
+ et+6

and the correlation is between the same two variables. These expectations are analogously defined for the risk-free rate. The horizon is the 6-month
spot rate, 6 months from now. The units are annualized percentage points. U.S. forecast errors are for the S&P 500, Eurozone the Euro Stoxx 50. BK
monetary policy shocks are obtained from Ken Kuttner’s website, GSS and NS are obtained via Acosta (2023) from Miguel Acosta’s website, and
LVVW are obtained from Andrea Vedolin’s website.

Panel A. U.S. Monetary Policy Shocks

Correlation ρ Explained Variation R2

Start End Length Risk-Free Risk Premia Risk-Free Risk Premia

Bernanke-Kuttner: BK
Fed Funds Rate Change 199402 201812 299 0.64 -0.31 0.40 0.09
Fed Funds Rate Surprise 199402 201812 299 0.12 -0.26 0.01 0.07

Gurkaynak-Sack-Swanson: GSS
Target Shock 199905 202106 266 0.21 -0.18 0.05 0.03
Path Shock 199905 202106 266 0.51 -0.25 0.26 0.06

Nakamura-Steinsson: NS
Fed Funds Rate Shock 199905 202106 266 0.17 -0.18 0.03 0.03
Policy News Shock 199905 202106 266 0.56 -0.32 0.32 0.10

Panel B. Eurozone Monetary Policy Shocks

Correlation ρ Explained Variation R2

Start End Length Risk-Free Risk Premia Risk-Free Risk Premia

Leombroni-Vedolin-Venter-Whelan: LVVW
Target Shock 200201 202006 222 -0.30 0.15 0.09 0.02
Forward Guidance Shock 200201 202006 222 0.23 -0.36 0.05 0.13
Risk Premium Shock 200201 202006 222 0.53 -0.28 0.28 0.08
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Table A8Table A8
Alternative Samples

This table reports regression estimates in alternative samples for option-based risk premia (Panel A) and
expected returns (Panel B). See Appendix C.5 and Table A1 for more details. Mincer-Zarnowitz regressions
test H0 : β1 = 1, as in Table 2. The average forecast error tests H0 : ε̄t = 0, as in Table 4. Error-predictability
regressions test H0 : β1 = 0, as in Table 5. The horizon is the 6-month spot rate, 6 months from now.
The units are annualized percentage points. All regressions include exchange fixed effects and compute a
within R2. Standard errors are clustered by exchange and date. The sample is the longest available for each
exchange.

Panel A. Risk Premia µ̃
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 ε̃t se(ε̃t) p-val β1 se(β1) p-val R2 N

Baseline
Main: 10 Indexes 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.047 *** 0.03 2227
Full: 20 Indexes 0.48 0.053 *** 0.14 0.19 0.12 -0.26 0.049 *** 0.08 4199

Eurozone
Main: 5 Indexes 0.53 0.080 *** 0.12 0.28 0.13 * -0.15 0.053 * 0.03 1019
Full: 8 Indexes 0.45 0.10 *** 0.11 0.26 0.13 * -0.22 0.076 ** 0.05 1665

Europe
Main: 7 Indexes 0.55 0.071 *** 0.13 0.22 0.12 -0.15 0.049 ** 0.03 1474
Full: 13 Indexes 0.46 0.075 *** 0.13 0.21 0.12 * -0.22 0.058 *** 0.06 2696

Asia-Pacific
Main: 2 Indexes 0.54 0.093 0.18 0.13 0.11 -0.20 0.12 0.04 375
Full: 6 Indexes 0.48 0.057 *** 0.14 0.18 0.16 -0.33 0.064 *** 0.12 1125

Excludes U.S.
Main: 9 Indexes 0.55 0.056 *** 0.14 0.20 0.11 -0.16 0.049 ** 0.03 1849
Full: 19 Indexes 0.47 0.053 *** 0.13 0.20 0.12 -0.27 0.051 *** 0.08 3821

Panel B. Expected Returns µ
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 εt se(εt) p-val β1 se(β1) p-val R2 N

Baseline
Main: 10 Indexes 0.91 0.061 0.59 -0.28 0.10 ** -0.29 0.047 *** 0.10 2227
Full: 20 Indexes 0.79 0.089 ** 0.47 -0.25 0.12 * -0.37 0.058 *** 0.15 4199

Eurozone
Main: 5 Indexes 0.92 0.081 0.57 -0.13 0.12 -0.30 0.056 *** 0.11 1019
Full: 8 Indexes 0.83 0.11 0.49 -0.15 0.13 -0.35 0.080 *** 0.14 1665

Europe
Main: 7 Indexes 0.94 0.077 0.59 -0.21 0.11 -0.30 0.052 *** 0.12 1474
Full: 13 Indexes 0.84 0.089 * 0.53 -0.20 0.12 -0.35 0.064 *** 0.15 2696

Asia-Pacific
Main: 2 Indexes 0.86 0.092 0.51 -0.40 0.14 -0.31 0.10 0.10 375
Full: 6 Indexes 0.67 0.12 ** 0.32 -0.29 0.17 -0.42 0.072 *** 0.17 1125

Excludes U.S.
Main: 9 Indexes 0.92 0.074 0.57 -0.25 0.11 * -0.30 0.048 *** 0.11 1849
Full: 19 Indexes 0.78 0.096 ** 0.45 -0.23 0.12 * -0.38 0.059 *** 0.16 3821
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Table A9Table A9
Alternative Horizons

This table reports regression estimates at alternative horizons for option-based risk premia (Panel A) and expected returns (Panel B). See Appendix C.5
for more details. Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average forecast error tests H0 : ε̄t = 0, as in Table 4.
Error-predictability regressions test H0 : β1 = 0, as in Table 5. The horizon is the m-month spot rate, n months from now. The units are annualized
percentage points. All regressions include exchange fixed effects and compute a within R2. Standard errors are clustered by exchange and date. The
sample is the longest available for each exchange in the main sample.

Panel A. Risk Premia µ̃m
n

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 ε̃t se(ε̃t) p-val β1 se(β1) p-val R2 N

4-Month Horizon: n+m = 4
n = 1 m = 3 0.90 0.048 * 0.62 0.044 0.073 -0.12 0.040 ** 0.03 2269
n = 2 m = 2 0.77 0.058 *** 0.35 0.055 0.11 -0.20 0.053 *** 0.04 2268
n = 3 m = 1 0.68 0.065 *** 0.20 0.094 0.14 -0.24 0.055 *** 0.04 2235

5-Month Horizon: n+m = 5
n = 1 m = 4 0.94 0.043 0.67 0.067 0.064 -0.075 0.033 * 0.02 2269
n = 2 m = 3 0.83 0.053 ** 0.42 0.12 0.10 -0.13 0.043 ** 0.02 2268
n = 3 m = 2 0.74 0.063 *** 0.25 0.16 0.13 -0.15 0.049 ** 0.02 2241
n = 4 m = 1 0.62 0.078 *** 0.13 0.27 0.15 -0.19 0.053 *** 0.02 2236

6-Month Horizon: n+m = 6
n = 1 m = 5 0.95 0.037 0.70 0.067 0.058 -0.054 0.029 * 0.01 2269
n = 2 m = 4 0.86 0.047 ** 0.46 0.14 0.091 -0.094 0.036 ** 0.01 2268
n = 3 m = 3 0.78 0.058 *** 0.30 0.21 0.12 -0.11 0.044 ** 0.01 2249
n = 4 m = 2 0.67 0.072 *** 0.17 0.27 0.14 * -0.15 0.050 ** 0.02 2238
n = 5 m = 1 0.57 0.076 *** 0.09 0.32 0.17 * -0.20 0.057 *** 0.02 2228

9-Month Horizon: n+m = 9
n = 3 m = 6 0.81 0.055 *** 0.39 0.15 0.087 -0.065 0.036 0.01 2257
n = 4 m = 5 0.73 0.066 *** 0.26 0.21 0.10 * -0.10 0.044 ** 0.01 2242
n = 5 m = 4 0.65 0.071 *** 0.17 0.26 0.12 * -0.14 0.049 ** 0.02 2232
n = 6 m = 3 0.55 0.071 *** 0.10 0.28 0.14 * -0.17 0.051 *** 0.02 2224

12-Month Horizon: n+m = 12
n = 3 m = 9 0.81 0.049 *** 0.44 0.094 0.070 -0.059 0.036 0.01 2258
n = 6 m = 6 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.047 *** 0.03 2227
n = 9 m = 3 0.39 0.097 *** 0.06 0.25 0.15 -0.24 0.052 *** 0.04 2191

(Continued on the next page)
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Table A9Table A9
Alternative Horizons (Continued)

Panel B. Expected Returns µm
n

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 εt se(εt) p-val β1 se(β1) p-val R2 N

4-Month Horizon: n+m = 4
n = 1 m = 3 0.96 0.042 0.80 -0.074 0.073 -0.17 0.039 *** 0.06 2269
n = 2 m = 2 0.90 0.057 0.62 -0.21 0.11 * -0.30 0.056 *** 0.09 2268
n = 3 m = 1 0.89 0.068 0.50 -0.26 0.14 * -0.36 0.059 *** 0.08 2235

5-Month Horizon: n+m = 5
n = 1 m = 4 0.99 0.038 0.84 -0.027 0.063 -0.12 0.033 *** 0.04 2269
n = 2 m = 3 0.95 0.052 0.69 -0.080 0.097 -0.22 0.046 *** 0.06 2268
n = 3 m = 2 0.94 0.063 0.57 -0.13 0.12 -0.27 0.053 *** 0.06 2241
n = 4 m = 1 0.92 0.080 0.45 -0.11 0.14 -0.33 0.057 *** 0.06 2236

6-Month Horizon: n+m = 6
n = 1 m = 5 0.99 0.035 0.86 -0.027 0.057 -0.10 0.029 *** 0.03 2269
n = 2 m = 4 0.97 0.049 0.73 -0.039 0.086 -0.18 0.040 *** 0.05 2268
n = 3 m = 3 0.97 0.057 0.63 -0.043 0.11 -0.22 0.048 *** 0.05 2249
n = 4 m = 2 0.95 0.071 0.52 -0.082 0.13 -0.29 0.052 *** 0.06 2238
n = 5 m = 1 0.93 0.082 0.42 -0.15 0.15 -0.36 0.059 *** 0.07 2228

9-Month Horizon: n+m = 9
n = 3 m = 6 0.97 0.046 0.73 -0.075 0.082 -0.16 0.036 *** 0.05 2257
n = 4 m = 5 0.97 0.055 0.66 -0.082 0.096 -0.22 0.040 *** 0.06 2242
n = 5 m = 4 0.97 0.063 0.59 -0.10 0.11 -0.27 0.046 *** 0.08 2232
n = 6 m = 3 0.94 0.071 0.51 -0.17 0.13 -0.31 0.053 *** 0.08 2224

12-Month Horizon: n+m = 12
n = 3 m = 9 0.96 0.039 0.78 -0.14 0.067 * -0.15 0.034 *** 0.06 2258
n = 6 m = 6 0.91 0.061 0.59 -0.28 0.10 ** -0.29 0.047 *** 0.10 2227
n = 9 m = 3 0.81 0.077 ** 0.41 -0.46 0.15 ** -0.41 0.062 *** 0.12 2191

(Continued from the previous page)
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Table A10Table A10
Additional Robustness Checks

This table reports additional robustness checks for option-based risk premia (Panel A) and expected returns (Panel B). See Appendix C.5 for more
details. Mincer-Zarnowitz regressions test H0 : β1 = 1, as in Table 2. The average forecast error tests H0 : ε̄t = 0, as in Table 4. Error-predictability
regressions test H0 : β1 = 0, as in Table 5. The horizon is the 6-month spot rate, 6 months from now. The units are annualized percentage points. All
regressions include exchange fixed effects and compute a within R2. Standard errors are clustered by exchange and date. The sample is the longest
available for each exchange in the main sample.

Panel A. Risk Premia µ̃
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 ε̃t se(ε̃t) p-val β1 se(β1) p-val R2 N

Baseline: 199001 to 202106 0.56 0.055 *** 0.15 0.17 0.11 -0.16 0.047 *** 0.03 2227
Winsorization: 199001 to 202106 0.60 0.059 *** 0.19 0.15 0.093 -0.15 0.048 ** 0.03 2227
Trimming: 199001 to 202106 0.57 0.056 *** 0.18 0.091 0.078 -0.10 0.049 * 0.01 2029
Balanced Panel: 200610 to 202010 0.49 0.058 *** 0.12 0.22 0.13 -0.20 0.050 *** 0.05 1674
First Half: 199001 to 201110 0.49 0.078 *** 0.11 0.37 0.19 * -0.25 0.064 *** 0.07 1113
Second Half: 201111 to 202106 0.30 0.12 *** 0.06 -0.024 0.099 -0.11 0.081 0.01 1114

Panel B. Expected Returns µ
(6)
t+6

Mincer-Zarnowitz Average Error Error Predictability

β1 se(β1) p-val R2 εt se(εt) p-val β1 se(β1) p-val R2 N

Baseline: 199001 to 202106 0.91 0.061 0.59 -0.28 0.10 ** -0.29 0.047 *** 0.10 2227
Winsorization: 199001 to 202106 0.91 0.048 * 0.65 -0.31 0.092 *** -0.28 0.051 *** 0.11 2227
Trimming: 199001 to 202106 0.90 0.045 * 0.65 -0.33 0.079 *** -0.20 0.051 *** 0.06 2041
Balanced Panel: 200610 to 202010 0.89 0.080 0.55 -0.28 0.13 * -0.35 0.048 *** 0.14 1674
First Half: 199001 to 201110 0.78 0.11 * 0.30 -0.14 0.18 -0.40 0.061 *** 0.18 1113
Second Half: 201111 to 202106 0.43 0.085 *** 0.21 -0.41 0.11 *** -0.19 0.088 * 0.04 1114
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Table A11Table A11
Model Calibration: Objective Parameters

This table reports AR(3) time-series regressions for 3-month spot rates:

µ
(3)
t =

1−
3∑

j=1

ϕj

 µ̄+ ϕ1 µ
(3)
t−1 + ϕ2 µ

(3)
t−2 + ϕ3 µ

(3)
t−3 + et

The units are annualized percentage points. Standard errors are from 10,000 Monte Carlo simulations of
length T months. The sample is the longest available for each exchange in the main sample.

AUS CHE DEU ESP FRA GBR HKG ITA SX5E USA

ϕ1 0.59 0.78 0.79 0.76 0.87 0.90 0.74 0.66 0.77 0.94
(0.07) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.08) (0.07) (0.05)

ϕ2 0.02 -0.01 -0.06 -0.07 -0.14 -0.19 0.16 -0.02 -0.03 -0.26
(0.08) (0.08) (0.08) (0.09) (0.09) (0.08) (0.09) (0.09) (0.08) (0.07)

ϕ3 0.22 0.05 0.11 0.09 0.12 0.14 -0.05 0.11 0.11 0.18
(0.07) (0.06) (0.06) (0.08) (0.07) (0.06) (0.07) (0.07) (0.06) (0.05)

µ̄ 6.19 6.13 8.89 10.49 7.69 6.73 9.30 11.63 8.99 6.40
(1.36) (1.00) (1.62) (1.48) (1.23) (1.21) (2.44) (1.27) (1.59) (0.89)

σe 3.23 2.86 3.82 4.41 2.89 2.89 5.04 4.31 3.69 2.56
(0.16) (0.13) (0.18) (0.23) (0.14) (0.13) (0.27) (0.23) (0.17) (0.09)

T 208 237 237 180 222 237 184 180 237 384
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Figure A1Figure A1
Filtered Option Prices

Panel A plots the number of options after filters. Panel B plots the share of filtered options with positive
open interest. Each bar is the annual median from daily data. The black line is the full sample median from
daily data. The sample is the longest available for each exchange. Option prices have maturity 30 ≤ τ ≤ 365
days. See Appendix B.1 for more details.
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Panel B. Positive Open Interest
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Figure A2Figure A2
Minimum/Maximum Strike Price by Maturity

This figure plots the minimum/maximum strike price by maturity bin. The minimum/maximum is the annual
median from daily data. The black line is the full sample minimum/maximum from daily data. The units are
risk-neutral standard deviations from the index price. The sample is the longest available for each exchange.
See Appendix B.1 for more details.

Panel A. 92 to 182 Days-to-Maturity

SX5E SX5P SXXP TWN USA

ITA JPN KOR NLD SWE

ESP FIN FRA GBR HKG

AUS BEL CHE CHN DEU

2005 2010 2015 2020 2005 2010 2015 2020 2010 2015 2020 2010 2015 2020 1990 2000 2010 2020

2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020 2010 2015 2020 2010 2015 2020

2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020 2010 2015 2020

2005 2010 2015 2020 2005 2010 2015 2020 2005 2010 2015 2020 2010 2015 2020 2005 2010 2015 2020

-5

0

5

-5.0
-2.5
0.0
2.5
5.0

-5.0

-2.5

0.0

2.5

-10

-5

0

-5.0
-2.5
0.0
2.5
5.0

-5.0
-2.5
0.0
2.5
5.0

-8
-4
0
4

-4
-2
0
2

-4
0
4

-5

0

5

-4
-2
0
2
4

-4
-2
0
2

-6
-3
0
3

-2
-1
0
1

-6
-3
0
3
6

-4
-2
0
2

-6
-3
0
3

-2.5
0.0
2.5

-5.0
-2.5
0.0
2.5
5.0

-5
0
5

10

St
an

da
rd

D
ev

ia
ti

on
s

fr
om

In
de

x
P

ri
ce

Panel B. 274 to 365 Days-to-Maturity
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Figure A3Figure A3
Timeline: Current/Realized Spot Rates and Forward Rates

See Section 3 for more details.

t t+ n t+ n+m

µ
(n)
t

µ
(n+m)
t

f
(n,m)
t

µ
(m)
t+n

• µ
(n)
t = L

(n)
t is the n-month spot rate at time = t

• µ
(n+m)
t = L

(n+m)
t is the n+m-month spot rate at time = t

• f
(n,m)
t = µ

(n+m)
t − µ

(n)
t is the m-month forward rate n months from time = t

• µ
(m)
t+n = L

(m)
t+n is the m-month spot rate at time = t+ n
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Figure A4Figure A4
Current Spot and Forward Rates in the Full Sample

This figure plots contemporaneous 6-month spot rates µ̃
(6)
t (light blue) and 6× 6-month forward rates f̃

(6,6)
t

(dark blue) in the full sample. Spot and forward rates are for equity risk premia and are from option-based
expectations. The sample is the longest available for each exchange.
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Figure A5Figure A5
Measurement Error: Spot and Forward Rates

This figure describes truncation bias in the Black-Scholes model (left panel) and the stochastic volatility jump
(SVJ) model (right panel). Integration bounds are in moneyness K/P units from the index price. Bar labels
are in volatility standard deviations from the index price. Black-Scholes parameters: Pt = 100, r = 0.05,
q = 0.02. SVJ parameters under Q are from Bakshi, Cao, and Chen (1997):

θv κv σv ρ µJ σJ λ
0.040 2.030 0.380 -0.570 -0.050 0.070 0.590

Under Black-Scholes (SVJ), good times correspond to low volatility IV = 10% (
√
vt = 10%), bad times to

high volatility IV = 60% (
√
vt = 60%). The units are non-annualized basis points. See Appendix B.2 for

more details.

Panel A. Black-Scholes: Panel B. Stochastic Volatility Jump:
Without Extrapolation Without Extrapolation

Panel C. Stochastic Volatility Jump:
With Extrapolation

OA-29



Figure A6Figure A6
Measurement Error: Coibion-Gorodnichenko Regressions

This figure quantifies how much correlated measurement error is necessary to produce the Coibion-
Gorodnichenko regression slopes in the data with monthly forecast revisions (left panel) and quarterly
forecast revisions (right panel). The solid lines are the slopes in simulations. The shaded regions are 95%
confidence bands in 50,000 samples. The blue circles are slopes in the data. The sample is the longest
available for each exchange in the main sample. See Appendix C.1 for more details.

Panel A. Short-Horizon Forecast Revisions
h = 1-Month Revision: h = 1-Month Revision: h = 2-Month Revision:

n + m = 4, n = 3, m = 1 n + m = 5, n = 4, m = 1 n + m = 4, n = 3, m = 1

h = 3-Month Revision: h = 3-Month Revision:
n + m = 6, n = 3, m = 3 n + m = 9, n = 6, m = 3

Panel B. Long-Horizon Forecast Revisions
h = 4-Month Revision: h = 5-Month Revision: h = 6-Month Revision:

n + m = 5, n = 2, m = 3 n + m = 4, n = 1, m = 3 n + m = 6, n = 3, m = 3

h = 7-Month Revision: h = 8-Month Revision:
n + m = 5, n = 2, m = 3 n + m = 4, n = 1, m = 3
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Figure A7Figure A7
Power Utility: Regression Slopes and Average Forecast Errors

This figure reports regression slopes and average forecast errors from the standpoint of an unconstrained
power utility investor fully invested in the market for option-based risk premia. See Panel A of Table A5 for
more details. The sample is the longest available for each exchange in the main sample.
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Figure A8Figure A8
Model Calibration: Regression Fit

This figure reports regression R2s in the calibrated model of expectation errors. The model is calibrated from
the standpoint of an unconstrained log utility investor fully invested in the market. Table A11 reports the
objective parameters. The solid lines are model-implied population R2s in a single long sample. The shaded
regions are model-implied 95% confidence bands in 10,000 short samples. The blue circles are model-implied
R2s under rational expectations with θ = 0. The red squares are model-implied R2s under diagnostic
expectations with θ = 0.91 from Bordalo, Gennaioli, and Shleifer (2018). The green triangles are R2s in the
data. The sample is the longest available for each exchange in the main sample.
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