
A New Test of Excess Movement in Asset Prices

NED AUGENBLICK
UC Berkeley Haas

EBEN LAZARUS
MIT Sloan

SEPTEMBER 2022



Background
Asset prices are volatile. Is this volatility informative for expectations formation in GE?

▶ For example: Too volatile to be consistent with rationality?

▶ Unanswerable without further structure. . .e.g., classic volatility bounds [Shiller (1981)]:

Pt + error = ex-post fundamental value

=⇒ Var(Pt) < Var(ex-post fundamental value) [Theory]

Var(Pt) > Var

 ∞

∑
j=1

Dt+j

Rj

 [Data]

constant discount rates
▶ Response [Fama (1991)]:

“Volatility tests are a useful way to show that expected returns vary, [but] give no help
on the central issue of whether the variation in expected returns is rational.”

▶ Can further statements be made with less structure?
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Background
Asset prices are volatile. Is this volatility informative for expectations formation?

▶ Should we care?

▶ Rich and growing literature on expectations formation in macro & finance making use of survey data

▶ But questions remain:

1. Mapping from survey responses to high-stakes behavior [Cochrane (2017), Manski (2018)]

2. GE outcomes [Angeletos, Huo, Sastry (2021)]

▶ Will make some progress on these questions after presenting & estimating our bounds

▶ Bounds also give new info on interaction of beliefs & risk aversion for broad class of models
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What We Do

▶ Like Shiller, focus on expectations over future equity index value. . .

▶ . . .but consider behavior of options written on future index value, rather than underlying index itself

▶ Apparently minor change in focus gives significant theoretical traction:

1. Multiple options on same index with same expiration =⇒ comparing relative prices allows us to
discard price variation arising from discounting & common unobservable shocks

2. Dynamics can be restricted without knowledge of true fundamental value

▶ Focus on equity index for interpretation & empirical implementation, but theoretical results apply
generally to rational valuation processes for state-contingent payoffs
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Results

1. Theory: In general framework, derive bound under RE:

Variation in option-implied beliefs
[risk-neutral beliefs]

⩽ f (risk aversion
[SDF slope]

)

▶ Main joint assumption: Et[MT | return state a]
Et[MT | return state b] constant over t within an option contract

[met in range of standard frameworks, and generates informative joint null]

▶ Logic of bound: Imagine observing beliefs over binary outcome at date T:

π0 = 0.1→ π1 = 0.9→ π2 = 0.1→ π3 = 0.9→ . . .

▶ Possible that this was generated by extreme signals. . .

▶ . . .but if we observe repeatedly, likely a violation of Bayes’ rule w.r.t. true DGP

▶ Show that this logic can be extended to risk-neutral beliefs given joint assumption
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Results

1. Theory: In general framework, derive bound under RE:

Variation in option-implied beliefs
[risk-neutral beliefs]

⩽ f (risk aversion
[SDF slope]

)

2. Data:
▶ S&P index options

▶ Volatile risk-neutral beliefs =⇒ very high required risk aversion & frequent bounds violations

▶ Excess movement in RN beliefs comoves strongly with excess movement in individual SPF
forecasts of output growth & inflation
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Preview: Empirical Variation
S&P 500 Option Prices and Risk-Neutral Beliefs as of July 1, 2005

Expiration Date: July 16, 2005

Call Option Prices

1100 1150 1200 1250 1300
0

20

40

60

80

100

Strike Price

O
pt

io
n

Pr
ic

e
Risk-Neutral Beliefs

1100 1150 1200 1250 1300
0

0.1

0.2

0.3

0.4

0.5

Terminal Index Value

Bi
n

Pr
ob

ab
ili

ty

Conditional Beliefs: 1175–1200 vs. 1200–1225

0

0.25

0.5

0.75

1

Bi
na

ry
Pr

ob
ab

ili
ty

Intuition
6



Preview: Empirical Variation
S&P 500 Option Prices and Risk-Neutral Beliefs as of July 5, 2005

Expiration Date: July 16, 2005
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Preview: Empirical Variation
S&P 500 Option Prices and Risk-Neutral Beliefs as of July 6, 2005

Expiration Date: July 16, 2005
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Preview: Empirical Variation
S&P 500 Option Prices and Risk-Neutral Beliefs as of July 7, 2005

Expiration Date: July 16, 2005
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Two-State Setting

How can we characterize AD state prices under RE? Will start simple and build piece by piece.

Setting (assumptions to be dropped):

▶ Discrete time, t = 0, 1, . . . , T

▶ Single agent

▶ Two states: θ ∈ {0, 1}, and realization determines terminal consumption (CT : θ → R+)

▶ Signals st ∈ S drawn from discrete distribution DGP(st | θ, Ht−1), where Ht−1 is signal history

▶ Write P(HT) for prob. of observing HT induced by DGP (E[·] ≡ EP[·])
▶ Beliefs: πt(Ht) ≡ subj. prob. for state θ = 1 (vs. state 0)

Assumption 1 (RE)

Beliefs satisfy πt(Ht) = E[θ | Ht ] for all Ht.

▶ Implies πt = E[πt+1 | πt ] (sufficient for main results)
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Two-State Setting: Directly Observed Beliefs

How can we characterize AD state prices under RE? Will start simple and build piece by piece.

Setting (assumptions to be dropped):

▶ Observable: Agent’s valuation qt(θ) of Arrow-Debreu security for θ ∈ {0, 1}

▶ Payoff: 1{θ}

▶ In general, cannot directly observe DGP or physical beliefs

▶ First case: Risk neutrality, no discounting =⇒ valuations reveal beliefs:

qt(1) = πt, qt(0) = 1− πt
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Two-State Setting: Directly Observed Beliefs
For belief stream π, keep track of:

1. Belief movement: m(π) ≡
T−1
∑

t=0
(πt+1 − πt)

2

▶ “Volatility”⇐⇒ sum of squared changes in beliefs

2. Initial uncertainty: u0(π) ≡ (1− π0)π0

▶ “Uncertainty”⇐⇒ variance of Bernoulli RV 1{θ = 1}, maximized at 0.5
▶ uT = 0 given πT ∈ {0, 1}, so uncertainty resolution is r(π) ≡ u0 − uT = u0

3. Excess movement: X(π) ≡ m(π)− u0(π)

Lemma 1 (Augenblick & Rabin, 2021)

Under RE, for any DGP,
E[X] = 0 Derivation

▶ Formalizes “correct” amount of subjective belief movement

▶ Derivation uses only martingale property of beliefs

▶ Intuition: Changing beliefs⇐⇒must be learning something (on average)

▶ Violations can arise from too large (or small) belief revisions
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Two-State Example: Directly Observed Beliefs

T = 2, sequential fair coin flips at t = 1 and t = 2, CT =

{
Clow if HH (θ = 1)
Chigh else (θ = 0)
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t=0

(πt+1 − πt)
2, u0 ≡ (1− π0)π0

Lemma: E[X] = 0 ⇐⇒ E[m] = u0

Path Movement (m) Frequency (P)

HH (1/2− 1/4)2 + (1− 1/2)2 = 5/16 1/2× 1/2 = 1/4

HT 5⁄16 1⁄4
T∗ 1⁄16 1⁄2

=⇒ E[m] = 3/16

= 3/4× 1/4 = u0 ✓
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Two-State Setting with Risk Aversion
Assume now:

▶ Utility: E0 ∑T
t=0 βt U(Ct), U′′ < 0

▶ State θ ∈ {0, 1} again determines terminal consumption CT,θ

▶ Normalize CT,1 ⩽ CT,0 =⇒ θ = 1 is “bad” state
▶ No restrictions on intermediate consumption {Ct}

▶ State prices:

qt(1) =
βT−tU′(CT,1)

U′(Ct)
πt, qt(0) =

βT−tU′(CT,0)

U′(Ct)
(1− πt)

=⇒ subjective beliefs no longer observable

▶ As qt(1) and qt(0) are similarly distorted by βT−t/U′(Ct), consider risk-neutral (RN) belief:

π∗t ≡
qt(1)

qt(0) + qt(1)
=

U′(CT,1)

Et[U′(CT)]
πt =

ϕπt
1 + (ϕ− 1)πt

,

⩾ πt

where ϕ ≡ U′(CT,1)

U′(CT,0)
=

SDFT(1)
SDFT(0)

▶ Challenge: π∗t need not follow a P-martingale under RE =⇒ can have E[X∗] > 0
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Assume now:
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Two-State Example: Risk-Neutral Beliefs

T = 2, sequential coin flips, θ = 1 if HH, and ϕ = 3⇐⇒ U′(CT,1) = 3×U′(CT,0)
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Observe: m∗ ≡
1

∑
t=0

(π∗t+1 − π∗t )
2, u∗0 ≡ (1− π∗0 )π

∗
0

Lemma: E[X∗] ?
= 0 ⇐⇒ E[m∗] ?

= u∗0

Path RN Movement (m∗) Frequency (P)

HH 5⁄16 1⁄8 1⁄4
HT 5⁄16 5⁄8 1⁄4
T∗ 1⁄16 1⁄4 1⁄2

=⇒ E[m∗] = 5/16 > 1/2× 1/2 = u∗0 ✘

E[X∗] > 0

E[X∗] ⩽ ?
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Two-State Setting: Results
How much RN excess movement X∗ can there be?

▶ The possibility that E[X∗] ⩾ 0 seems to suggest anything goes. . .but not the end of the story:

1. RN beliefs not arbitrarily distorted relative to physical beliefs: π∗t =
ϕπt

1+(ϕ−1)πt

2. For any ϕ, RN beliefs bounded by definition: π∗t ∈ [0, 1]

3. E∗[X∗] = 0

▶ Taken together and maximizing E[X∗] over all possible DGPs, obtain bound:

Result 1
Under RE, for any DGP,

E[X∗] ⩽ π∗0 (π
∗
0 − π0)︸ ︷︷ ︸ = π∗0

(
π∗0 −

π∗0
π∗0 + ϕ︸︷︷︸
U′(CT,1)/U′(CT,0)

(1− π∗0 )

)

upward bias in RN vs. physical beliefs induced by risk aversion

room for downward movement when bias collapses at T
Intermediate result
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Two-State Setting: Results

Result 1
Under RE, for any DGP,

E[X∗] ⩽ π∗0

(
π∗0 −

π∗0
π∗0 + ϕ︸︷︷︸
U′(CT,1)/U′(CT,0)

(1− π∗0 )

)

Features of bound and interpretation:

1. Relates observable values to unobserved structural parameter

2. Under risk neutrality (ϕ = 1): Bound becomes 0

3. Movement in RN beliefs still must correspond (on average) to learning about state,
but now have inequality bound where ∂bound

∂ϕ > 0

4. Thus given observed RN belief movement, bound can be inverted to get min. ϕ under RE

5. Bound is conditional on π∗0 , but can take uncond. expectation for implementation Details
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Two-State Setting: Results

Result 1
Under RE, for any DGP,

E[X∗] ⩽ π∗0

(
π∗0 −

π∗0
π∗0 + ϕ︸︷︷︸
U′(CT,1)/U′(CT,0)

(1− π∗0 )

)

Taking ϕ→ ∞, bound is still well-defined:

Corollary 1
Under RE, for any DGP and any value for ϕ,

E[X∗] ⩽ π∗0
2

▶ Can have so much excess vol. that no amount of risk aversion works
▶ Contrast with Hansen–Jagannathan bound
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Two-State Setting: Results

Result 1
Under RE, for any DGP,

E[X∗] ⩽ π∗0

(
π∗0 −

π∗0
π∗0 + ϕ︸︷︷︸
U′(CT,1)/U′(CT,0)

(1− π∗0 )

)

The bound is tight as T → ∞:

Result 2
There exists a sequence of DGPs, indexed by T, under which E[X∗] → π∗0 (π

∗
0 − π0) as T → ∞.

Meanwhile, for any T < ∞, the bound holds with strict inequality as long as ϕ > 1 and π∗0 ∈ (0, 1).
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Graphical Intuition: Bound in Result 1
Excess RN Belief Movement vs. Prior by ϕ Under RE
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Bound in General Setting

Result 1 (General Version)
Under RE, for any DGP,

Ẽ[X∗j ] ⩽ π̃∗0,j

(
π̃∗0,j −

π̃∗0,j

π̃∗0,j + ϕj︸︷︷︸
U′(CT,1)/U′(CT,0)

Et[MT | Rm
T =θj]/Et[MT | Rm

T =θj+1]

(1− π̃∗0,j)

)

General AP framework [assume discrete prob. space (Ω,F , P), with filtration {Ht}]

▶ Setting: Uncertainty over terminal value of market index, Vm
T

▶ State space: Many return states {θj} defined by Rm
T ≡ Vm

T /Vm
0 = θj

▶ Physical beliefs: π̃t,j ≡ πt(Rm
T = θj | Rm

T ∈ {θj, θj+1})

▶ RN beliefs (from options): SDF {Mt} =⇒ π̃∗t,j =
Et[MT | Rm

T = θj]

Et[MT | Rm
T ∈ {θj, θj+1}]

π̃t,j

▶ Identification restriction: ϕj is a constant greater than 1
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Bound in General Setting

Result 1 (General Version)
Under RE, for any DGP,

Ẽ[X∗j ] ⩽ π̃∗0,j

(
π̃∗0,j −

π̃∗0,j

π̃∗0,j + ϕj︸︷︷︸
U′(CT,1)/U′(CT,0)

Et[MT | Rm
T =θj]/Et[MT | Rm

T =θj+1]

(1− π̃∗0,j)

)

Corollary 1 (E[X∗] ⩽ π∗0
2) and Result 2 (bound tightness) also apply in this setting. In addition:

Result 3 (Interpreting ϕj)

Assume a representative agent with (indirect) utility over the time-T index value, and denote
Vm

j ≡ Vm
0 θj. Then local relative risk aversion γj ≡ −Vm

j U′′(Vm
j )/U′(Vm

j ) is given to a first order
around return state θj by

γj =
ϕj − 1

(Vm
j+1 −Vm

j )/Vm
j

=
ϕj − 1

% return diff. from θj to θj+1
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General Setting: Assumptions in Detail
Assumption 1 generalizes straightforwardly:

Assumption 1 (RE — General Case)

For any Y : Ω→ R, physical beliefs satisfy πt(Y = y) = Pt(Y = y) with prob. 1 for all t.

But in this setting, need two assumptions on ϕt,j for bound to apply:

Assumption 2 (Positive Risk Aversion in Index Return)

ϕt,j ⩾ 1 with prob. 1 for all t, j, where return states are ordered such that θ1 < θ2 < · · · < θJ.

In paper:

▶ What if the agent has an incorrect prior but updates correctly?

▶ What if ϕ < 1?

Both cases: Only minor modifications to bounds.

Assumption 3 (Constant ϕj)

ϕt,j = ϕj is constant with prob. 1 for all t and for all interior state pairs {(θ2, θ3), . . . , (θJ−2, θJ−1)}.

=
Et[MT | Rm

T = θj]

Et[MT | Rm
T = θj+1]
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General Setting: Assumptions in Detail

Assumption 3 (Constant ϕj)

ϕt,j = ϕj is constant with prob. 1 for all t and for all interior state pairs {(θ2, θ3), . . . , (θJ−2, θJ−1)}.

ϕj =
Et[MT | Rm

T = θj]

Et[MT | Rm
T = θj+1]

Ruled in by Assumption 3:

▶ Permanent shocks to the SDF [Alvarez & Jermann (2005)]

▶ Variable rare disasters as in Gabaix (2012): ϕj is constant for all but disaster state j = 1

▶ Rep. agent with Epstein–Zin utility, if: (i) γ = 1; (ii) ψ = 1 and ∆ct is an AR(1); or (iii) ∆ct is i.i.d.

Ruled out by Assumption 3:

▶ Habit formation as in Campbell & Cochrane (1999) [bug]

▶ Heterogeneous beliefs & non-fundamental risk as in Basak (2000) [feature]
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General Setting: Assumptions in Detail

Assumption 3 (Constant ϕj)

ϕt,j = ϕj is constant with prob. 1 for all t and for all interior state pairs {(θ2, θ3), . . . , (θJ−2, θJ−1)}.

ϕt,j =
Et[MT | Rm

T = θj]

Et[MT | Rm
T = θj+1]

If ϕt,j is time-varying, does anything go?

▶ E.g., assume πt is constant, but ϕt oscillates 1→ 1.5→ 1→ . . .

▶ This behavior is also ruled out by RE: ϕt,j is a ratio of Et[·]. Additional result:

Result 4
If ϕt evolves as a martingale or supermartingale (Et[ϕt+1] ⩽ ϕt), then the previous bounds apply,
with ϕ0 replacing ϕ.

▶ In paper: Simulations show CC habit model are covered by this result

▶ Next slide: Simulations extending beyond this supermartingale case
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Relaxing the Constant-ϕ Assumption: Simulation Evidence

RN Belief Movement Distributions with Time-Varying ϕt
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Raw Data and Risk-Neutral Beliefs
Raw data:
▶ Want distribution over return on market

=⇒ Daily data on S&P 500 index option prices from OptionMetrics, 1996–2018

Details and cleaning [Will use intraday data to address microstructure noise]

Measuring risk-neutral beliefs from options:
▶ Breeden and Litzenberger (1978): Index price Vm

T has risk-neutral CDF

P∗t (V
m
T ⩽ v) = 1 + Rf

t,T
(
∂qm

t (v)︸ ︷︷ ︸
option price

at strike v

/∂v
)

▶ Calculate ∂
∂v qm

t (v) numerically following Malz (2014) Details

▶ Log excess-return space (w.r.t. first trading date of option):

Θ = {(−∞,−20%), [−20%,−15%), [−15%,−10%), . . . , [15%, 20%), [20%, ∞)}

▶ Again turn all RN beliefs into conditional beliefs across adjacent bins
▶ Aggregated results: Exclude (−∞,−20%), [20%, ∞) states & consider only interior pairs
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Reminder: Empirical Setting
S&P 500 Option Prices and Risk-Neutral Beliefs as of July 1, 2005

Expiration Date: July 16, 2005
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Accounting for Market Microstructure Noise

Result 5
Assume that observed π̂∗t,j is measured with error:

π̂∗t,j = π̃∗t,j + ϵt,j,

where Ẽ[ϵt,j] = 0, Ẽ[ϵt,j ϵt+1,j] = 0, and Ẽ[ϵt,j π̃∗t,j] = 0. Denoting observed one-period expected excess

movement by Ẽt[X̂∗t,t+1,j], we have

Ẽt[X̂∗t,t+1,j] = Ẽt[X∗t,t+1,j] + 2Var(ϵt,j).

▶ Want to “de-noise” excess movement by estimating microstructure error variance Var(ϵt,j), then
subtracting 2 × estimate

▶ How to estimate Var(ϵt,j)? Use intraday data: Obtain minute-by-minute option price quotes (for
random sample of 30 trading days) from CBOE

▶ First pass: If ϵt,j is i.i.d. and true π̃∗t,j is an Itô process, then E[(π̂∗t+h,j − π̂∗t,j)
2]

h→0−−→ 2Var(ϵt,j)

[e.g., Zhang, Mykland, Aït-Sahalia (2005)]

▶ Better version [Li & Linton (ECMA, 2021)]: Use non-overlapping windows:

1
T ∑

t
(π̂∗t,j − π̂∗t−k,j)(π̂

∗
t,j − π̂∗t+k,j)

k→∞, k/T→0−−−−−−−→
(infill)

Var(ϵt,j)

▶ Allows for dependent noise and jumps in true π̃∗t,j (disjoint increments are approx. uncorrelated)
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Accounting for Market Microstructure Noise

Result 5

π̂∗t,j = π̃∗t,j + ϵt,j

Ẽt[X̂∗t,t+1,j] = Ẽt[X∗t,t+1,j] + 2Var(ϵt,j)

▶ How to estimate Var(ϵt,j)? Use intraday data: Obtain minute-by-minute option price quotes (for
random sample of 30 trading days) from CBOE

▶ First pass: If ϵt,j is i.i.d. and true π̃∗t,j is an Itô process, then E[(π̂∗t+h,j − π̂∗t,j)
2]

h→0−−→ 2Var(ϵt,j)

[e.g., Zhang, Mykland, Aït-Sahalia (2005)]

▶ Better version [Li & Linton (ECMA, 2021)]: Use non-overlapping windows:

1
T ∑

t
(π̂∗t,j − π̂∗t−k,j)(π̂

∗
t,j − π̂∗t+k,j)

k→∞, k/T→0−−−−−−−→
(infill)

Var(ϵt,j)

▶ Allows for dependent noise and jumps in true π̃∗t,j (disjoint increments are approx. uncorrelated)

▶ Estimate separately for each combination of trading day, expiration date, state in our intraday sample,
then assign fitted value V̂ar(ϵt,j) to end-of-day data to get noise-adjusted excess movement
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Summary: Risk-Neutral Belief Variation Within a Contract
Average One-Day Movement & Uncertainty Resolution
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Note: Averages are local means of noise-adjusted data using all expiration dates and interior state pairs.
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Summary: Excess Movement over Full Contract
Excess Movement vs. Prior: Data and Theoretical Bounds
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Note: Empirical values are local means and use all expiration dates and interior state pairs.
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Empirical Implementation of Theoretical Bound
Lower Bound for SDF Slope

1

5

10

15

20

25

∞

-20% -15% -10% -5% 0 5% 10% 15% 20%

Excess Return θj

ϕ
j:

M
in

.S
D

F
R

at
io

fo
r

θ j
vs

.θ
j+

1

Note: One-sided 95% CIs use block bootstrap and are obtained by inverting a test for ϕj.

▶ Aggregate across interior states: ϕ̂ = 54.7 [CI: (9.8, ∞)]
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Main Estimation Results: Risk Aversion
Lower Bound for Local Relative Risk Aversion
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▶ Aggregate across interior states: γ̂ = 1,075 [CI: (175, ∞)]
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Aggregate Financial-Market Predictors
Regressions for Monthly Average of RN Excess Movement

(1) (2) (3) (4) (5) (6)

Option Bid-Ask Spread 0.24 -0.03
[0.15] [0.11]

Option Volume 0.07 -0.05
[0.09] [0.10]

RN Belief Stream Length 0.28∗ 0.16∗∗∗ 0.18∗∗
[0.14] [0.05] [0.07]

VIX2 0.33∗ 0.58∗ 0.62
[0.16] [0.32] [0.36]

Variance Risk Premium 0.38
[0.24]

Vol. of Risk-Aversion Proxy 0.06
[0.10]

Repurchase-Adj.
∣∣pdt − pd

∣∣ 0.37∗∗∗ 0.17∗∗∗ 0.18∗∗∗
[0.12] [0.05] [0.06]

12-Mo. S&P 500 Return 0.30∗ 0.53∗∗ 0.53∗∗
[0.16] [0.22] [0.21]

R2 0.08 0.08 0.28 0.14 0.37 0.37
Obs. 264 264 264 264 264 264

Notes: ∗∗∗ p<0.01; ∗∗ p<0.05; ∗ p<0.1. Heteroskedasticity- and autocorrelation-robust standard errors in brackets, using equal-weighted periodogram
estimator with 16 d.o.f. [Lazarus et al. (2018)]. All variables normalized to unit s.d., and all regressions include a constant.
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Comovement with SPF Forecast Volatility
Does RN excess movement covary with excess movement in macro forecasts?
▶ Ultimate goal: survey responses←→ price behavior

▶ Today: Some promising reduced-form evidence [feedback welcome]

Forecast data:
▶ Survey of Professional Forecasters (SPF) data from Philly Fed

▶ Individual probability forecasts for future real output growth [“PRGDP”] & GDP deflator [“PRPGDP”]

▶ Available 1968Q4 to present [with some changes in definitions we account for]

▶ Roughly 30–60 participants per survey
▶ Survey elicits probabilities for fixed ranges of outcomes for multiple fixed future end dates. . .
▶ . . . e.g., for real GDP growth 2022→ 2023, mean probabilities as of 2022Q3 (via Philly Fed):
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Comovement with SPF Forecast Volatility
▶ . . . e.g., for real GDP growth 2022→ 2023, mean probabilities as of 2022Q3 (via Philly Fed):
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Comovement with SPF Forecast Volatility
Forecast data and excess movement:
▶ Survey of Professional Forecasters (SPF) data from Philly Fed

▶ Individual probability forecasts for future real output growth [“PRGDP”] & GDP deflator [“PRPGDP”]

▶ We keep the forecast end date fixed and consider Q-to-Q updates of πt,j for each outcome range j

▶ Then calculate individual-level excess movement Xt,t+1,j for each quarter and each range

Lemma 2 (Generalization of Lemma 1)

Under RE, for any DGP, E[Xt,t+1,j] = 0, where Xt,t+1,j = mt,t+1,j − (ut − ut+1,j). This holds for each j,

so it holds as well for (i) Xt,t+1 ≡ ∑j Xt,t+1,j, and (ii) the mean of Xt,t+1 across participants.

▶ We calculate a 4Q moving average of this mean Xt,t+1 [winsorized at 5% on both sides]

▶ Denote the resulting statistic XSPF
t for quarter t

▶ Then compare to that quarter’s average of daily RN excess movement in options, X∗t
▶ New: Also consider excess movement in consensus SPF probabilities for GDP
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Risk-Neutral and SPF Excess Movement: GDP Growth
Quarterly Excess Movement Statistics
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Risk-Neutral and SPF Excess Movement: Consensus GDP Growth
Quarterly Excess Movement Statistics
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Risk-Neutral and SPF Excess Movement: Inflation
Quarterly Excess Movement Statistics
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Risk-Neutral and SPF Excess Movement: Average
Quarterly Excess Movement Statistics
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Final Notes

Summary:
▶ New bounds on admissible rational variation in risk-neutral beliefs implied by asset prices

▶ Bounds do not require keeping track of fundamental value and allow for time-varying discount rates

▶ Given volatility of observed RN beliefs, bounds are routinely violated in the data

▶ RE violations appear likely to be responsible at least in part, though can’t rule out all possible violations
of joint assumptions

▶ Strong comovement with excess movement in individual SPF forecasts

Some next steps:
▶ More on empirical correlates & real outcomes

▶ Long- vs. short-horizon excess movement

▶ Quantitatively realistic positive models?

▶ . . .
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Graphical Intuition: Risk-Neutral Beliefs
Background: Index option prices =⇒ risk-neutral beliefs over future index price

Back to main

▶ Payoff to buying option with strike K + selling strike K + 1 ≈ 1{IndexT ⩾ K}

=⇒ Pricet ≈ E∗t [1{IndexT ⩾ K}] = π∗t (IndexT ⩾ K)
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Derivation of Lemma 1

Consider the conditional expectation of one-period movement from t1 to t1 + 1:

Et1 [mt1,t1+1] = Et1 [(πt1+1 − πt1 )
2]

= Et1 [π
2
t1+1]− 2Et1 [πt1+1]πt1 + π2

t1

= Et1 [π
2
t1+1]− 2πt1 πt1 + π2

t1
(martingale property)

= Et1 [π
2
t1+1]− π2

t1
+ πt1 −Et1 [πt1+1] (same)

= Et1 [(1− πt1 )πt1 − (1− πt1+1)πt1+1] = Et1 [rt1,t1+1],

so Et1 [Xt1,t1+1] = 0. Repeating for all periods and using L.I.E. yields the stated result.

Back to main



Intermediate Result for Bound

Result (Proposition 1)

Define△ ≡ E[X∗ | θ = 0]−E[X∗ | θ = 1]. Under RE, for any DGP,

E[X∗] = (π∗0 − π0)△ =

(
π∗0 −

π∗0
ϕ + (1− ϕ)π∗0

)
(E[X∗|θ = 0]−E[X∗|θ = 1]) .

Key step is in showing E∗[X∗ | θ] = E[X∗ | θ].

Given the above result, the main bound (Proposition 2 in the paper) holds as stated.

Back to main



Aggregating Over Belief Streams
Result (Proposition 8)

Index belief streams by i, and define ϕ ≡ maxπ∗0,i
E[ϕi |π∗0,i]. Over all streams, under RE,

E[X∗i ] ⩽ E

[(
π∗0,i −

π∗0,i

ϕ + (1− ϕ)π∗0,i

)
π∗0,i

]
,

or, fixing a given π∗0,i, E[X∗i ] ⩽
(

π∗0,i −
π∗0,i

E[ϕi]+(1−E[ϕi])π∗0,i

)
π∗0,i.

Key point:

▶ Only observe one draw X∗i per contract, but ∂2(bound for X∗i )
∂ϕ2

i
< 0, so Jensen’s inequality (and L.I.E.)

imply the above result

▶ Therefore min. ϕ solving the above inequality is lower bound of average ratio of SDF across states
=⇒ info on reasonableness of pricing model required under RE

Back to main



General Setting: Details
Previous results can be applied for complete markets.

Now consider general AP case introduced above. Details of setting:

▶ Discrete probability space (Ω,F , P), filtration {Ht}

▶ Setting: Uncertainty over terminal value of market index, Vm
T

▶ Return states {θj} defined by Rm
T ≡ Vm

T /Vm
0 = θj

▶ No arbitrage =⇒ strictly positive SDF Mt,T = MT/Mt

▶ Option prices =⇒ RN beliefs: π∗t (R
m
T = θj) =

Et[MT | Rm
T =θj]

Et[MT ]
πt(Rm

T = θj)

▶ Interpret πt(·) as belief of some agent (“the market”) observing signals generated by P

▶ To map to binary-state setting, localize to conditional beliefs for state pair (θj, θj+1):

π̃∗t,j ≡ π∗t (R
m
T = θj | Rm

T ∈ {θj, θj+1}) =
ϕjπ̃t,j

1 + (ϕj − 1)π̃t,j
,

ϕj ≡
Et[MT | Rm

T = θj]

Et[MT | Rm
T = θj+1]

=⇒ assume constant & ϕj ⩾ 1 [more shortly]



Raw Data: Details and Cleaning
Details of data:
▶ End-of-day prices for calls and puts, Jan. 1996–Dec. 2018

▶ Also obtain underlying index price from OptionMetrics, and hand-collect option settlement values
from CBOE

▶ Calculate risk-free rate using put-call parity following van Binsbergen et al. (2021)

Data cleaning:
▶ Drop any options with: bids of 0, Black-Scholes implied vol. more than 100%, greater than 6 months

to maturity [Constantinides, Jackwerth, Savov (2013)], and any trading date–expiration date combos
with fewer than 3 listed prices

▶ Calculate end-of-day price as average of listed bid and ask prices

▶ Cleaning for conditional risk-neutral probabilities: to avoid noisy measurement, only use date–state
pairs meeting π∗t,Ti,j

+ π∗t,Ti,j+1 ⩾ 5%

Back to main



Spline Details
▶ Calculate ∂

∂v qt,Ti (v) numerically following Malz (2014):

1. Transform call and put price schedules for each date–expiration date set into Black-Scholes IVs

2. Fit clamped cubic splines to interpolate IVs between strike prices for both calls and puts

3. Average the calculated call and put IVs at 1,900 strike prices

4. Invert Black-Scholes implied volatility function to transform resulting IVs back into call prices

5. Numerically difference the resulting smoothed call-price schedule

▶ We only use Black-Scholes implied vols for smoothing and then transform vols back into prices, so
doesn’t require Black-Scholes model to be correct

▶ “Clamped” cubic spline: Sets slope of IV schedule to be zero at boundary strike-price values, and sets
all implied vols below minimum observed strike price to value at minimum price (likewise for max.)

▶ This guarantees monotonically decreasing and convex call price schedule, which maintains
no-arbitrage restrictions

▶ This is an interpolating spline: passes through all observed data (or knot) points

Back to main



Two-State Example: Non-Constant Discount Rates

What would using the underlying price [Shiller (1981)] give us?

▶ Consider extreme DGP: No info revealed until date T, so π∗0 = . . . = π∗T−1

▶ Price of claim to CT is

Et

[
βT−t U′(CT)

U′(Ct)
CT

]
▶ Consider deterministic consumption stream C0 ̸= C1 ̸= . . .

=⇒ arbitrary price variation as Ct changes, but no variation in expected payoff CT

▶ Paper discusses cases with time-varying risk premia



Robustness: Systematic Mean-Reversion vs. Noise
How real is what we’re finding?
▶ Consider a simple statistical model for risk-neutral beliefs:

π̃∗t+1,j = µ + ρ(π̃∗t,j − µ) + νt+1

▶ Setting µ = 1/2, this model yields a prediction that:

E[m∗t,t+1,j − r∗t,t+1,j] = 2(1− ρ)(π̃∗t,j − 1/2)2

=⇒ should see parabola for excess movement vs. prior
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