
The Cyclicality of Risk and Risk Premia*

Christian Skov Jensen and Eben Lazarus

JULY 2025

Abstract
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strongly countercyclical than conditional variance. The ratio of risk premium to
variance is therefore weakly procyclical, unlike the Sharpe ratio. We document
this fact in a broad global equity sample, using a range of methods to time
portfolio formation after the onset of a recession. We also provide supporting
evidence from option markets. We show that the ratio of risk premium to vari-
ance pins down the conditional beta in a regression of the stochastic discount
factor on the market return, and its cyclicality is important for understanding
stylized facts about the equity term structure. We present a stylized model that
reconciles the procyclicality of the price per unit of variance risk with the term
structure of Sharpe ratios to dividend claims.
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1. Introduction

The market’s Sharpe ratio — the ratio of expected excess return to volatility — is well
known to increase in bad times, when prices are low and volatility is high (Campbell
and Cochrane (1999), Lustig and Verdelhan (2012)). In other words, the price per unit
of volatility risk is at least somewhat countercyclical. The cyclicality in the market price
per unit of variance risk, however, has received less attention in previous literature. Since
volatility and variance map one-to-one, it is natural to conjecture that the cyclicalities in
these unit prices of risks are similar. This conjecture turns out to be incorrect. We document
that the price per unit of variance risk does not increase during economic downturns;
in fact, across multiple specifications, it appears to be weakly procyclical rather than
countercyclical. Dividing expected return by variance, rather than volatility, evidently
matters, and this choice has meaningful implications for understanding risk pricing over
the business cycle.

There are multiple possible notions of the price of risk. Why focus on the ratio of
conditional risk premium to variance? We start with a set of general theoretical results
motivating our analysis of this ratio, which we call γt. We show that this ratio pins down
the conditional beta in a regression of the SDF onto the market return. Times with high
γt therefore indicate that someone who is holding the market is exposed to greater SDF
risk for every unit of market risk than normal. That is, a ±1% market return exposes the
investor to greater SDF variation when the conditional beta is higher, and the ratio γt will
be higher at these times as a result. We later use this insight to link the cyclicality of γt

to the returns on equity index option portfolios at different horizons and the equity term
structure.

We then turn to the data. We begin by constructing multiple measures of γt to examine
its cyclical behavior. Since γt is not directly observable in the data, we start by showing that
three fundamentally different approaches to computing the ratio have similar time-series
patterns. Specifically, we compute (1) a realized measure from daily returns within each
month, (2) an expected measure using the methods of Kelly and Pruitt (2013) that relies
on the cross-section of valuation ratios, and (3) an option-implied measure computed
from options written on the stock market. Time-series predictions for the ratio γt from
these three approaches are positively correlated with each other, with pairwise correlations
ranging between 0.27 and 0.42.

Using each of the three measures for the ratio γt, we next investigate their time-series
properties in more detail. We start by focusing on the differences in the price per unit of risk
that an investor can earn in normal times, which we here define as NBER non-recession
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periods, to what can be earned by an investor who enters the market during recessions.
However, as discussed in detail in Lustig and Verdelhan (2012), recessions are typically
determined ex post and are based on negative economic activity that often coincides
with initial turbulence in financial markets. To circumvent the ex post bias related to the
negative economic activity in the beginning of recessions, we ask what an investor can
earn if she has perfect foresight in recessions, meant in the way that she can pinpoint in
real-time when the market has reached its low. She buys the market at its low and holds
the market for twelve months thereafter. As expected, the perfect foresight investor earns
statistically significantly higher Sharpe ratios than the investor who holds the market in
normal times, confirming previous results in Campbell and Cochrane (1999) and Lustig
and Verdelhan (2012).

In contrast, we find that the price per unit of variance risk is not statistically different
for the two investors in the full sample starting in 1926. In the shorter samples from 1964
and 1996, in which we have data to compute the expected and option-implied measures
of γt, we find that the perfect foresight investor earns significantly lower price per unit
of variance risk than the investor who holds the market in normal times. We confirm
these results in a global sample covering 20 stock market indexes around the world using
OECD recession indicators. We also show that an investor without perfect foresight in
recessions who buys the market either one, six, or twelve months into each recession
earns significantly lower γt than the investor who holds the market in normal times. This
holds true despite the fact that γt has a strong, positive unconditional correlation with the
market’s Sharpe ratio. The key distinction is that the Sharpe ratio robustly increases in
bad times, while the price per unit of variance risk does not (and decreases significantly
in many specifications). As a result, we show that the Sharpe ratio is significantly more
countercyclical than γt both statistically and economically.

To further strengthen our main empirical results, we investigate how γt varies with
macroeconomic variables that are typically tied to the state of the economy. We find that
γt is high when recession probabilities are low, when financial markets are experiencing
looser-than-average conditions, and when the economy is in an expansionary state with
increasing inflation. We also find that γt is positively related to future 1- and 2-year growth
in consumption and growth in industrial production, suggesting that the price per unit of
variance risk is high in good times. Lastly, we show that γt is contemporaneous negatively
related to the dividend-price ratio, suggesting that the price per unit of variance risk is
high at times when prices are high. We confirm these results in a global sample and with
various measures for the price per unit of variance risk. The Sharpe ratio, by contrast, is
much more weakly related to these variables.
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Having thoroughly established that γt is indeed at least weakly procyclical in the data,
we next turn to the implications for the equity term structure. We consider three different
notions of the equity term structure: (i) the holding period risk premiums in a CAPM-type
model, (ii) returns on option portfolios at different horizons, and (iii) the term structure
of risk-adjusted returns to dividend claims. We start from a simple CAPM-type model
to show the cyclicality in the one-period price per unit of variance risk is related to the
term structure of holding-period returns. Adding a bit of structure on market variance,
the price per unit of this variance risk, and their correlation, we show that there is a clear
connection between how they correlate and how risk is priced at different horizons. Under
reasonable parameter values that we take from the data, we show that a procyclical price
per unit of variance risk implies an unconditional downward sloping term structure of
holding period returns.

To further extend our term structure results, we next turn to the implications for the
term structure of option portfolio returns at different horizons. We start by looking to
option markets where we consider a binary bet with constant quantity of risk in that it pays
off either 1 or −1 if certain return outcomes realize. We show that the one-period expected
return on this bet depends only on the price per unit of variance risk. We then show that,
if the price per unit of variance risk is negatively correlated to the SDF then a multiperiod
bet will provide a hedge against shocks to the SDF, implying that multiperiod expected
returns should be lower than one period returns. This implies a downward-sloping term
structure of risk prices for option portfolios that fix the quantity of risk. We provide
empirical evidence in favor of these insights. These results are, in effect, an out-of-sample
test of the procyclicality of γt established earlier in the paper: we show that the particular
option-implied term structure considered here is downward-sloping if and only if γt is
procyclical, so the fact that we indeed find a downward-sloping term structure provides
further support to the preceding results.

Finally, we present a stylized model that links the cyclicality in the price per unit of
variance risk to the slope of the term structure of the Sharpe ratio of dividend claims. In
our model, return volatility has three components: fundamental dividend volatility (which
is constant), discount-rate volatility (which increases in the price of fundamental risk), and
non-fundamental volatility (which also increases in the price of fundamental risk). An
increase in the price of fundamental risk therefore increases “pure” market risk that is
not fully connected to fundamentals, increasing market variance without passing through
one-for-one to expected returns. While this is sufficient to generate a procyclical price per
unit of variance risk that decreases in price of fundamental risk, this non-fundamental
volatility effect is not strong enough to obtain a procyclical Sharpe ratio, i.e., Sharpe ratios
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are countercyclical in the model. Further, the greater exposure of long-maturity claims to
discount-rate risk means that their volatility increases without changing their expected
return, generating a downward-sloping Sharpe ratio of dividend claims.

As a result, this stylized model shows how our findings about the cyclicality of the
price per unit of variance risk connect to facts about the dividend term structure. We obtain
both (i) a lower beta of the SDF onto the market in bad times (our main stylized fact), and
(ii) a downward-sloping Sharpe ratio of dividend claims by maturity, both through the
same channel (non-fundamental return risk). Meanwhile, our parameterization maintains
the usual countercyclical Sharpe ratio.

Related literature. Our empirical results on the cyclicality of the price per unit of variance
risk relate most closely to the recent strand of literature that investigates the relationship
between the market excess return or state prices and market variance.1 Indeed, Moreira
and Muir (2017) show that an investor can earn high Sharpe ratios by moving into the
market when volatility decreases, suggesting that the price of risk is inversely related
to volatility. Also, using option prices written on the market, Schreindorfer and Sichert
(2023) show that the stochastic discount factor projected onto the market return is flatter at
times when market volatility is high. Our results are consistent with the findings in this
previous literature, but we extend the literature in several important dimensions. First, we
do not only focus on market variance as a measure of the state of the economy. Instead,
we investigate how the price per unit of market variance risk varies with the business
cycle using a broad set of economic indicators that are often linked to the economic
activity like recession indicators, valuation ratios, and growth in industrial production
and consumption. We also extend the results to an international setting covering 20 stock
markets around the world, showing that the procyclicality of the price per unit of variance
risk is a world-wide phenomenon. Lastly, while the focus of the previous papers are on
the ability of the leading asset pricing models to match their stylized facts, we focus on
bridging the gap between the literature that investigates time variation in the price of risk
with the equity term structure literature.

Our analysis of the term structure of option portfolio returns at different horizons is
related to results in Bliss and Panigirtzoglou (2004) who conduct a similar analysis using
option information but with stronger parametric testing assumptions. More generally,
our option results on both the computation of the time varying γt and the unconditional
option portfolio term structure relate to a longstanding literature that attempts to extract

1While our focus is primarily on the price per unit of variance risk, we reconfirm the countercyclical
patterns in the Sharpe ratio discussed in Campbell and Cochrane (1999) and Lustig and Verdelhan (2012).
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an implied market risk aversion from option prices, see e.g. Ait-Sahalia and Lo (2000),
Jackwerth (2000), and Rosenberg and Engle (2002). Specifically, when computing γt from
option prices, we extend the previous literature by combining the methodology of Bliss
and Panigirtzoglou (2004) with a set of linear constraints from Jensen, Lando, and Pedersen
(2019), which allows us to obtain a γt that is time varying.

The paper proceeds as follows. In Section 2, we motivate our analysis of the price
per unit of variance risk. In Section 3, we discuss how we compute the price per unit of
variance risk empirically. Section 4 presents our main empirical results on the cyclicality of
the price per unit of variance risk. In Section 5, we document how the procyclical patterns
of the price per unit of variance risk relate to the slope of the equity term structure. Section
6 concludes.

2. Theory

In this section, we theoretically motivate our subsequent analysis of the ratio

γt ≡
µt

σ2
t
=

Et[Rm,t+1 − R f ,t+1]

Vart(Rm,t+1)
, (1)

where Rm,t+1 is the gross return on the market and R f ,t+1 is the gross risk-free rate. This
ratio is equivalent to γt = SRt/σt, where SRt ≡ µt/σt is the conditional Sharpe ratio.

Assuming the absence of arbitrage, there exists a strictly positive one-period stochastic
discount factor (SDF) Mt+1 such that Et[Mt+1Rt+1] = 1 for any gross return Rt+1. As is
standard, one can use the definition of the conditional covariance to write this as

Et[Rt+1 − R f ,t+1] = −R f ,t+1Covt(Mt+1, Rt+1). (2)

It is common to rewrite (2) to obtain a single-beta representation for expected returns:
Et[Rt+1 − R f ,t+1] = βR→M,tλM,t, where βR→M,t ≡ Covt(Mt+1,Rt+1)

Vart(Mt+1)
is the slope in a regres-

sion of return Rt+1 onto the SDF, and λM,t ≡ −R f ,t+1Vart(Mt+1). According to this
representation, assets differ only in their quantity of SDF risk βR→M,t, and there is a single
SDF factor risk premium λM,t that is often referred to as the price of risk (e.g., Cochrane,
2005; Campbell, 2018) for all assets.2 While the common risk premium feature is appealing,
this is of course not the only available representation for expected returns, nor the only

2Other notions of the price of risk also exist in other contexts. In continuous-time models with a single
Brownian shock, for example, the market price of risk often refers to the Sharpe ratio for an asset exposed to
that shock.
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possible notion for the price of risk. We take a different — effectively converse — route.

In particular, we rewrite (2) as

Et[Rt+1 − R f ,t+1] = −R f ,t+1 βM→R,t σ2
t , (3)

where βM→R,t ≡ Covt(Mt+1,Rt+1)
Vart(Rt+1)

and σ2
t ≡ Vart(Rt+1). In this representation, the intuitive

labels separating price from quantity of risk are effectively reversed: one can think of σ2
t as

the quantity of asset-specific risk, and the SDF’s exposure to this asset, βM→R,t, is the price
per unit of asset-specific risk.

Specializing (3) to the case of the market return and rearranging, we see that γt — the
ratio of market risk premium to variance — pins down the loading in a regression of the
SDF onto the market. We summarize this in the following result.3

Result 1. The ratio of the risk premium µt to variance σ2
t satisfies

γt = −R f ,t+1βM→R,t,

where βM→R,t ≡
Covt(Mt+1, Rm,t+1)

σ2
t

.

The cyclical behavior of γt = µt/σ2
t therefore speaks to the cyclical exposure of the SDF

to the market. So while we are not the first to study the behavior of γt — among recent
literature, we follow (and extend) Moreira and Muir (2017) most closely in doing so — the
characterization in terms of βM→R,t is novel, and we show below that it allows us to tie
the behavior of γt to the equity term structure. The result tells us that increases in γt must
mean that someone holding the market is exposed to greater SDF risk for every unit of
market risk. That is, a ±1% market return exposes the investor to greater SDF variation
when βM→R,t is higher, and the ratio γt will be higher at these times as a result.

One can also relate βM→R,t and γt to more classical notions of the price of risk, following
the discussion around equation (3). If the market is mean–variance efficient (as, e.g., in the
CAPM), then for an arbitrary asset,4

Et[Rt+1 − R f ,t+1] = γtCovt(Rt+1, Rm,t+1).

Fama (1968) refers to γt as the “market price per unit of risk” as a result of the above
3Note that we slightly abuse notation in continuing to refer to this loading as βM→R,t, as above, even

when specializing to the market return.
4To see this, note that mean–variance efficiency implies that Mt+1 = a − bRm,t+1 (Cochrane, 2005), so

βM→R,t = −b. And from (2), Et[Rt+1 − R f ,t+1] = −R f ,t+1Covt(Mt+1, Rt+1) = bR f ,t+1Covt(Rt+1, Rm,t+1) =
γtCovt(Rt+1, Rm,t+1).
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relationship. Alternatively, if returns are log-normal and the SDF is proportional to
R−γ̃t

m,t+1 — as would be the case, for example, with a representative agent with relative risk
aversion γ̃t facing i.i.d. consumption growth — then in fact γt ≈ γ̃t.5 Friend and Blume
(1975), among others, refer to γt as the market price of risk as a result of a version of this
observation; others who refer to relative risk aversion as synonymous with the price of
risk are effectively doing the same.

We return to these characterizations of γt — both the characterization in terms of the
SDF loading on the market in Result 1, and the characterization as effective market risk
aversion — after presenting our empirical results, which we turn to now.

3. Inferring the conditional price per unit of variance risk

Before going into details about our empirical results, we start by describing how we
compute the price of market variance risk, γt from equation (1). Since γt is not directly
observable, we consider three fundamentally different approaches to infer γt.

Realized conditional price per unit of variance risk — γrealized
t

Our first measure of the price per unit of variance risk is an ex-post measure that relies
on realized within month daily returns. Let R̃s = Rs − R f

s be the excess return on date s.
We compute the realized conditional price per unit of variance risk in month t as

γrealized
t =

∑Nt
s=1 R̃s

Nt
Nt−1 ∑Nt

s=1[R̃s − (∑Nt
s=1 R̃s)]2

(4)

where Nt denotes the number of trading days in month t.6

Expected conditional price per unit of variance risk — γ
expected
t

Our second approach of computing the price per unit of variance risk relies on ex ante
predicted values for the conditional market risk premium and its variance. We compute
the conditional market risk premium using the methodology in Kelly and Pruitt (2013).

5Given Mt+1 ∝ R−γ̃t
m,t+1, we have γ̃t = −Covt(log Mt+1, log Rm,t+1)/σ2

t , where σ2
t is now the variance

of log returns. Thus γ̃tσ
2
t = −Covt(log Mt+1, log Rm,t+1), which by the pricing equation (and under log-

normality) is log Et[Rm,t+1]− log R f ,t+1 ≈ Et[Rm,t+1 − R f ,t+1]. We note that γ̃t in Mt+1 ∝ R−γt
m,t+1 can also

be viewed as a reduced-form variable corresponding to the as-if relative risk aversion over market returns
as of time t (i.e., this representation is more general than the power-utility case). Another way to see this

is to use the standard myopic portfolio choice rule, wm =
Et [Rm,t+1−R f ,t+1]

γ̃tσ
2
t

, where wm is the share of wealth

invested in the market. Setting wm = 1 in equilibrium, we again obtain γ̃t = γt.
6We thank Theis Ingerslev Jensen for sharing daily excess returns on international stock market indexes.
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Under the two assumptions: (i) the expected log return and log growth rates are linear
in a set of latent factors, and (ii) these factors evolve according to a first-order vector
autoregression, Kelly and Pruitt (2013) show how to infer the conditional market risk
premium from the cross-section of valuation ratios. The main reason why we choose this
estimator as our ex ante predictor of the market risk premium is that the estimator does
well in predicting market returns both in- and out-of-sample. Kelly and Pruitt (2013) find
that they can predict the one-month market risk premium on the U.S. market portfolio
with an R2 of 2.38 in-sample and an R2 of 0.93 out-of-sample. A minor benefit is that the
method is build around valuation ratios and the predicted expected returns are therefore
likely to fluctuate with the business cycle as we would expect.

Consistent with previous literature that consider time-variation in market variance (see
e.g. Campbell et al. (2018)), we compute conditional expected market variance assuming
that the variance follows a first-order autoregressive process. We compute the predicted
variance via the relationship

Ṽart(Rm,t+1) = θ0 + θ1Vart−1(Rm,t) (5)

where

Vart−1(Rm,t) =
Nt

Nt − 1

Nt

∑
s=1

[R̃s − (
Nt

∑
s=1

R̃s)]
2 (6)

is the realized variance in month t. We infer the values of the parameters θ0 and θ1 in
equation (5) from a linear regression of realized variance on its one period lagged value.

Combining the predictions from Kelly and Pruitt (2013) about the conditional market
risk-premium with the AR(1) variance prediction, we compute γ

expected
t as in equation (1).

Option implied conditional price per unit of variance risk — γ
option
t

As the third an final approach for computing the price per unit of variance risk, we look
to option markets.7 The premise for this approach is that the projection of the stochastic
discount factor onto the market return, Mt+1|Rm,t+1 = δtR

γt
m,t+1, prices the market and

derivatives written on the market. This premise is common in previous option literature,
see e.g. Bliss and Panigirtzoglou (2004). Under this premise, we can relate the state price
density (πm,t+1(x)) of market returns to the physical probability density (pm,t+1(x)) and a
risk adjustment in the following way:

πm,t+1(x) = pm,t+1(x)δtx−γt (7)

7The empirical methodology in this section was first reported in Chapter 3 of Jensen (2018), which this
paper now supersedes.
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Using insights from Breeden and Litzenberger (1978), we can use option prices to back
out risk-neutral densities, say f ∗t (Rm,t+1) = πm,t+1(x)R f

t . These densities reflect the time t
real-time risk-adjusted probabilities over the potential future market outcomes.

Now, from Equation (7), we can write the stock market’s physical probability distribu-
tion function, say Fm,t(x), as

Fm,t+1(x) =
∫ x

−∞
pm,t+1(y)dy =

∫ x

−∞

πm,t+1(y)y−γt

δt
dy (8)

If we knew the true values of the parameters δt and γt then we could directly infer the
stock market probability distribution from the observable state price density. However, the
true values of the parameters are not directly observable and we therefore have to come
up with a way to infer them. To achieve this task and infer the true values of δt and γt, we
follow Bliss and Panigirtzoglou (2004) and use the so-called Berkowitz test, cf. Berkowitz
(2001). The idea behind the Berkowitz test is that, for the true values of δt and γt, the
distribution of ut+1 = Fm,t(Rm,t+1) is uniform and the distribution yt+1 = Φ−1(ut+1) is
standard normal. Therefore, to conduct the Berkowitz test, we estimate the coefficients in
the regression model:

yt+1 = a + βyt + ϵt+1, ϵt+1 ∼ N(0, σ2) (9)

and perform a likelihood ratio test of the joint hypothesis that a = β = 0 and σ2 = 1.8 It is
worth noticing that, even though there might be momentum effects in returns, then we
will still want b = 0 because the true distribution should take these momentum effects into
account. The Berkowitz likelihood ratio test for non-overlapping returns is:

LR = −2(LL(0, 0, 1)− LL(a, β, σ2)) ∼ χ2
3 (10)

where LL(a, β, σ2)) is the log likelihood of Equation (9). The likelihood ratio test statistic,
LR, is chi-square distributed with three degrees of freedom.

To find the values of δt and γt, we minimize the Berkowitz test statistic in Equation

(10) under the constraint that, for all dates t, the equation
∫ ∞
−∞

πt(y)y−γm,t

δm,t
dy = 1 must hold.

This constraint ensures that the resulting physical return distributions integrate to one at

8We use non-overlapping monthly horizon distributions and returns. The hypothesis that b = 0 is
therefore natural. For the case with overlapping returns see e.g. Bliss and Panigirtzoglou (2004) for a
thorough discussion of the test.
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all points in time. Written in mathematical terms, the optimization problem is:

min
δt

− 2
(

LL(0, 0, 1)− LL(a, β, σ2)
)

(11)

s.t. γt solves
∫ ∞

−∞

πt(y)y−γt

δt
dy = 1, for all t (12)

For a given value of δt, the constraints provide enough equations to solve for the
time-varying γt. Specifically, for a given level of δt, at any point in time, we only have to
solve for γt. If γt was linear in the constraint, then solving for the parameter would be
straightforward. However, γt enters non-linearly in the constraint and we need to address
this non-linearity. The generalized recovery methodology of Jensen, Lando, and Pedersen
(2019) provides us with the argument we need. If we assume that there is a solution to
the constraint for one given γt, then that solution is almost surely unique. Practically, this
means that there will be at most one solution to the constraint equation.9

To optimize over the parameter, δt, we need to make an assumption on its functional
form. We allow δt to be time varying through the time variation in the gross risk-free rate.
Specifically, we assume that δt =

1
R f

t
+ c where R f

t is the time t gross risk-free rate and c

is a time-invariant parameter. This functional form of δm,t is conveniently simple while
nesting the risk-neutral distribution as a solution if c = 0. To minimize Equation (11), we
search over a grid of values for c and pick the c which provides the lowest Berkowitz test
statistic. Importantly, for each value of c, the constraints ensure that we can infer a time
varying level of γt. For different values of c, the γt time series will differ and consequently
also the physical distributions, which gives us the variation in the Berkowitz test statistics
that we need for our optimization.

We set γ
option
t to be the optimized γt from the optimization problem in 11. That is,

γ
option
t takes the values that best reconciles the ex ante observable option prices with the

ex post realized returns.

The Sharpe ratios. We compute the Sharpe ratios by multiplying the estimated price
per unit of variance risks by the conditional volatility. For the realized Sharpe ratio, we
multiply γrealized

t with the within month standard deviation of returns. For the expected
Sharpe ratio, we multiply γ

expected
t with the expected volatility from the AR(1) model.

Lastly, for the option Sharpe ratio, we multiply γ
option
t with the option implied volatility

9Our methodology is closely related to the methodology used in Bliss and Panigirtzoglou (2004). In
short, the difference in the two methodologies is that, they optimize over a constant level of stock market γ
whereas we optimize over the stock market time preference parameter δt and allow γt to be time-varying
through the constraints in Equation (11).
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computed from equation (7) using γ
option
t as the exponent.

Pairwise correlations. Figure 1 shows the estimated Sharpe ratio in panel (a) and prices
per unit of variance risk in panel (b) for the US stock market. As reported in Table 1, the
estimates for the prices of risks are highly correlated with correlations ranging from 0.27
to 0.42. In the table, we also report correlations for γPCA

t and SRPCA
t . These are the first

principal components for the price per unit of variance risk measures and the Sharpe ratio
measures respectively. The first principal components capture a large part of the variation
in the three measures with individual correlations to the measures ranging from 0.41 to
0.80. These principal components suggests that there is a strong similarity in the variation
in the measures.

4. Cyclicality of risk prices

In this section, we investigate how γt varies over the business cycle. We start by investigat-
ing how risk prices change during recessions. Thereafter, we investigate if risk prices are
different in and out of recession periods. Lastly, we investigate how the risk prices vary
with macroeconomic variables that are typically tied to economic activity. In the following,
we devote a subsection to each analysis.

4.1. Do risk prices increase from the onset of a recession to the end of

the recession?

Figure 2 sets the stage for this analysis. The figure shows risk prices implied from options
written on the US stock market index. The dashed black line is the implied Sharpe ratio of
market returns and in the dashed blue line we plot the implied price per unit of variance
risk. In the figure, we standardize both measures to make them comparable. A value
of one should therefore be interpreted as a value that is one standard deviation above
the average level for the measure. Both risk prices are clearly time varying and move
together in a linear sense such that their correlation is 0.54 in our sample. Focusing on the
shaded areas, which represent NBER recession months, the arrows show the increase or
decrease in the risk prices from the onset of the recession to the end of the recession. The
black arrows are the Sharpe ratio and the blue arrows are the price per unit of variance
risk. In all three recessions in this sample, we find that the Sharpe ratio of market returns
increased relatively more than the price per unit of variance risk. Actually, in all recessions
the Sharpe ratio increased while the price per unit of variance risk decreased in the more
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recent covid period. Focusing on the financial crisis, the Sharpe ratio increased by almost
two standard deviations, which corresponds to an annualized increase in the Sharpe ratio
of 0.34. Looking at Figure 2, we conjecture that the Sharpe ratio increases both statistically
and economically in recessions while the price per unit of variance risk does not.

To strengthen our conjecture, we next test if the Sharpe ratio indeed increases in
recessions. The first and second rows of Table 2 report the results of this analysis for the
Sharpe ratio. Using either of our three measures, we compute the difference in the Sharpe
ratio from the onset of each recession to the end of the recession. The table reports t-tests
for the hypothesis that the difference is zero. Using either of the three measures, we find
that the difference is on average positive, ranging from 0.58 to 1.28, which corresponds to
an annualized average increase of 0.10 to 0.22 in the Sharpe ratio during recessions. For
the realized and the expected measures, this difference is statistically significant. These
are also the measures for which we have the most observations. For the option measure,
the t-stat is 2.80 and the 10% critical value with only three observations is 2.92. In the last
column, we report the results using the first principal component of the three measures.
Here, we find that the difference is statistically significant even though we have only a few
observations.

The third and fourth columns of Table 2 report the results for the price per unit of
variance risk. For this risk price, we find that the difference is mildly positive in two
specifications and it is even negative for the option measure. Only for the realized measure
is the risk price statistically positive. These results suggest to us that the price per unit of
variance risk does not go up from the onset of a recession to the end of the recession.

Lastly, columns five and six report tests for the difference in the standardized changes
to the Sharpe ratio and the price per unit of variance risk. Here we find that the difference
in the changes int he risk prices during recessions is statistically significant in three of our
four speifications and the point estimate is positive in all of them. These results speak
to the cyclicality of the risk prices in that the Sharpe ratio is countercyclical in the sense
that it increases during recessions from its pre-recession values while the price per unit of
variance risk is acyclical in that there are only mild differences from the onset of a recession
to the end of a recession in this risk price.

4.2. Are risk prices highest in recessions?

Recessions are typically determined ex post and are defined by a significant decline
in economic activity. During such periods, we often observe large declines in industrial
production, employment, and gross domestic product. In many recessions, we also observe
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initial large declines in the stock market. This is particularly the case if the recession was
driven or initiated by financial activity as in the Great Financial Crisis of 2007-2009.

Directly comparing the price of risk for an investor who invests in normal times,
non-recession periods, to the price of risk for an investor who invests during the ”full”
recessions therefore suffers from an ex post bias in the sense that recessions are ex post
determined by the decline in economic activity. However, following the ideas of Lustig
and Verdelhan (2012), we can ask how the price of risk in normal times relate to the price
of risk in recessions where the investor enters the market at specific points during the
recessions. To this end, we start from the following narrative. Suppose an investor wants
to enter the market in a recession. If the investor could choose that point in time ex post
of the recession, when would the investor enter the market? The natural answer is, the
investor would choose to enter the market when the market has reached its low point in
the recession. This investor is our starting point. We say that this investor has ”perfect
foresight” in that she can pinpoint when the market is at its low in recessions. This investor
enters the market at its low and holds the market for twelve consecutive months thereafter.

Table 3 reports the results for the Sharpe ratio for the investor with perfect foresight
during NBER recessions and for the investor who invests in normal times, which for
this table is NBER non-recession months. We compute the statistic for three different
samples: (i) the full sample going back to 1926, (ii) a post 1964 sample, and (iii) a post 1996
sample. We compute the unconditional Sharpe ratio for the investor with perfect foresight
in recessions by bundling the monthly excess returns over all the recessions, the twelve
months after the low in each recession, and computing the unconditional expected excess
return and unconditional volatility using these monthly returns. The first part of the table
reports the results for the unconditional Sharpe ratio and our results support evidence
from Lustig and Verdelhan (2012) that, at least in some specifications, the Sharpe ratio is
higher in recessions than in normal times. We find that this is true in all three samples and
the difference is statistically significant in the two longest samples. Standard errors are
bootstrapped using 10.000 samples.

The second part of Table 3 reports the average realized conditional monthly Sharpe
ratio for the investors. We compute the conditional Sharpe ratios using within month
daily excess returns to infer the conditional expected excess return and the conditional
volatility. The average conditional Sharpe ratio is higher for the investor with perfect
foresight and the difference is statistically significant in the two longest sample. The third
and fourth part of the table report results for the conditional expected Sharpe ratio and
the conditional option implied Sharpe ratio. The expected Sharpe ratio has on average
lower Sharpe ratios for the perfect foresight investor but the option implied measure is
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positive and statistically significant at the 10% level. Overall, the results presented in Table
3 support the notion that the Sharpe ratio is countercyclical.

Next, we turn to the price per unit of variance risk. These results are reported in Table 4.
The first part of the table reports the result for the unconditional price per unit of variance
risk. Similarly to how we compute the unconditional Sharpe ratio, we bundle returns
for the perfect foresight investor who invests after the market low in each recession and
holds the market for twelve months thereafter. We then compute the unconditional price
per unit of variance risk as the ratio of the average excess returns over the variance of
these returns. In the longer samples, we find that the difference is positive and statistically
significant, meaning that in these samples we find that the price per unit of variance risk is
unconditionally higher than in normal times.

Turning to the conditional prices per unit of variance risk, we find similar results
for the long sample and for the realized measure. Here the coefficient is positive and
statistically significant at the 10% level. In all other conditional specifications, for realized,
expected, and option implied measures and various sample lengths, we find that the point
coefficient is negative and it is statistically significant in three of the five specifications.
These results suggest that conditional price per unit of variance is lower in recessions than
in normal times. Overall, our results on the price per unit of variance risk for the perfect
foresight investor suggests that it is likely procyclical or in some specifications only weakly
countercyclical or acyclical.

However, most investors do not have perfect foresight and might not move into the
market at its exact low in recessions. A more realistic and implementable strategy is to
enter the market a certain number of months into each recession, similarly to the real
time method of Lustig and Verdelhan (2012). Since the more realistically implementable
investment strategies do not necessarily enter the market at its low, it is likely that they will
underperform the investor with perfect foresight and therefore have lower risk prices. Next,
we investigate if this statement holds true by comparing how different implementable
strategies perform relative to the normal times investor.

Table 5 reports the differences in the Sharpe ratio for the investor without perfect
foresight that enters the market six months into each recession and holds the market for
twelve months thereafter to the Sharpe ratio for the normal times investor. We find that
the Sharpe ratio is highest for the normal times investor in six of our nine specifications
and it is statistically significantly negative in two of these tests. These results suggest that
for the more realistic trading strategy where the investor enters the market six months
into each recession, the Sharpe ratio that the investor earns is largely indistinguishable for
what is earned in normal times, if anything it is likely to be lower than what the normal
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times investor earns. These results remain if we consider other timings like one or twelve
months into each recession instead of six months.

When looking at Table 6, that reports the results for the price per unit of variance risk,
we find that this risk price is negative in eight of the nine specifications and it is statistically
significant in five of these. These are all the specifications fo rthe conditional price per
unit of variance risk in the modern sample starting in 1964. Our results for the price per
unit of variance risk show that the investor who invests in normal times earn significantly
higher risk prices than the investor who enters six months into each recession. As for the
Sharpe ratio, these results remain for other timing windows for the investor who enters in
recessions.

The previous tables report the results for our US sample. Next, we broaden to an
international setting where we have recession data from the OECD database. Merging this
data with our return data, we end up with a sample of 20 stock market indexes around the
world, including the OECD sample for the US.

Table 7 reports the pooled sample differences in the monthly prices of risk during
normal times, which for this table is OECD non-recession months, and the recession period
trading strategies from Tables 3 to 6, using OECD recession indicators. The first row reports
the results for the investor who has perfect foresight in recessions. The results in the first
columns show that if we can perfectly pinpoint the low in recessions around the world,
then we can earn higher Sharpe ratios in recessions than out of recessions, consistent with
previous results in Campbell and Cochrane (1999) and Lustig and Verdelhan (2012). The
second and third column confirms the results of Table 6, that the investor with perfect
foresight in recessions earn a price per unit of variance risk that is similar to that of
the normal times investor. The remaining rows confirm that realistically implementable
trading strategies have lower risk prices in recessions.

To sum up, Tables 3 through 7 provide the following insights. Investors who can
perfectly time the market in recessions, that is, invest at its low, can earn Sharpe ratios
that are higher than those earned in normal times. However, the price per unit of variance
risk earned by the investor with perfect foresight is at best equal to what is earned in
normal times. This last finding, which is novel to this paper, holds for both conditional and
unconditional measures of price per unit of variance risk, is robust to different definitions
of recessions (NBER and OECD indicators), and holds for a pooled international sample.
Importantly, we also find that realistic trading strategies that enter the market in recession
periods earn lower price per unit of variance risk than what is earned in normal times
while the results for the Sharpe ratio are largely indistinguishable for realistic trading
strategies in recessions and the normal times invsetor.
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Next, we investigate how the conditional risk prices vary with macroeconomic variables
that capture the state of the economy.

4.3. Do risk prices move with the business cycle?

In this section, we further study the cyclical fluctuations risk prices by linking their
fluctuations to variables that capture the state of the financial sector and the overall macro
economy. As in the previous section, we first focus on our US sample and thereafter extend
the results to a broader international setting.

We start by considering the relation between risk prices and Chicago Fed financial and
macroeconomic indicators. The NFCI is the national financial condition indicator, which is
comprised of several subcategories built to capture risk, credit conditions, and financial
and non-financial leverage. High values of the variables are historically associated with
tighter-than-average conditions in financial markets, i.e., bad times. The first five rows of
Table 8 report the results of regressions on the form:

Price of riskt = α + β × Financial Risk Indicatort + ϵt (13)

The results for the Sharpe ratio, which are shown in the first three columns of Table 8,
we find that the realized and expected measures are generally negatively related to the
financial indicators while the option measure is positively related to most indicators but
the positive coefficients are not statistically significant. The last three columns of the
table reports the results for the price per unit of variance risk. Here, we find that all
measures are generally negatively related to the financial risk indicators and ten of the
fifteen specifications are statistically significant. These results suggest that the price per
unit of variance risk moves strongly procyclically with these risk indicators while the
Sharpe ratio moves only mildly with the risk indicators.

To extend the recession results from the previous tables, in row six of Table 8, we also
report results of the relationship between risk prices and the recessions probability of
Chauvet and Piger (2008). We find that, when the probability of a recession is high then the
price per unit of variance risk is low, lending further evidence of its procyclicality. Results
are generally weaker for the Sharpe ratio.

In row seven, we extend the results to the Chicago Fed National Activity Index, CFNAI,
which is an index build to capture overall economic activity and inflationary pressure. A
high value of the CFNAI is generally associated with good economic conditions with high
consumption growth, low unemployment, and high industrial production. We find that
price per unit of variance risk is positively related to CFNAI and the effect is statistically
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significant in tho of the three measures of the price per unit of variance risk. For the Sharpe
ratio, we find no clear relationship between any measure and the CFNAI.

Next, we turn to consumption growth. Due to the fact that in the US we have monthly
data and in our international sample we have quarterly observations, we divide our analy-
sis into two parts, a US part and an international part. We obtain data on US consumption
from the St. Louis Fed database on monthly personal consumption expenditures of non-
durable and service goods. We deflate consumption with the CPI. The last column of
Table 8 reports the results when regressing the risk prices onto the future eight month
consumption growth. Both for the Sharpe ratio and the price per unit of variance risk,
we find only mild positive relationships between the measures and consumption growth
for the realized and expected measures while the option measures have negative but
insignificant coefficients..

In Table 9, we move to an international setting where in the first part, we report the
results of a pooled panel regression of the risk prices onto the subsequent eight quarter
consumption growth (s = 4 or s = 8):

Risk pricei = αi + β × consumption growthi
q+1,q+s + ϵi

q+1,q+s (14)

where i represent the different countries and Risk pricei is the average of the monthly
measures within quarter q. We cluster standard errors by country and quarter and include
country fixed effects. We use Final Consumption Expenditure, Real, Unadjusted, Domestic
Currency from the IMF database as our proxy for aggregate consumption. The first row
reports the results when we pool the raw data and the second row reports results where
we standardize both risk prices and consumption growth within each country before
pooling the data. In all panel regression specification, we find that the price per unit of
variance risk is positively related to future consumption growth and the slope coefficients
are statistically significant for the realized measure. For the Sharpe ratio, we find similar
results.

We next study how the risk prices vary with valuation ratios, which are standard
measures of the state of the economy in previous asset pricing literature (see e.g. Campbell
and Cochrane (1999) and Gormsen and Jensen (2024)). We measure valuation ratios
through country-level dividend-price ratios and book-to-market ratios. In the second aprt
of Table 9, we report the results of panel regressions on the form:

Risk pricei = αi + β × valuation ratioi
t + ϵi

t (15)

where we regress the risk prices onto the contemporaneous valuation ratio. We include
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country fixed effects and cluster standard errors by country and time. The first row for
the dividend-price section reports the panel regression results when we pool the raw
data for all countries. The second row reports the results where we standardize (mean
zero and variance one) both the risk prices and the valuation ratio within each country
before pooling. We find that the price per unit of variance risk is negatively related to
the contemporaneous level of the dividend-price ratio, suggesting that investors can earn
higher price per unit of variance risk in good times when market prices are high. For the
Sharpe ratio, we find similar results, but they are mildly weaker for the expected measures.

Finally, we also consider how the risk prices vary with the growth in industrial produc-
tion. The third part of Table 9 reports panel regressions on the form:

Risk pricei = αi + β × Industrial productioni
t+1,t+s + ϵi

t (16)

where s = 8 are months. The first row of the industrial production part of the table reports
results using the raw data and the second row reports the results when we standardize
the data input within country before pooling the data. Our data on industrial production
is from the OECD database. We find that the price per unit of variance risk is positively
related to future growth in industrial production in all our regression specifications and
the slopes are all statistically significant. The coefficients are also positive for the Sharpe
ratio but less statistically significant for the expected measure. In these panel regressions,
we again add country fixed effects and cluster standard errors by country and time. These
results show that the risk prices are high in good times when economic activity as measures
by the growth in industrial production is high.

5. Implications for the equity term structure

We now proceed to show that our results on the cyclicality of the price per unit of variance
risk, γt, have implications for the behavior of the equity term structure. More specifically,
we consider three separate notions of the term structure of equity claims. We start by
investigating the unconditional holding period risk premiums in a CAPM-type model
where market variance and the price per unit of variance risk correlate. Next, we show
that our results have direct implications for the returns on equity index option portfolios at
different horizons, which we provide preliminary evidence for in the data. Lastly, we show
how our results relate to — and can be reconciled with — facts about the term premium
on dividend claims at different horizons.
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5.1. Holding period risk premiums in a CAPM-type model

This subsection serves the purpose of showing that even in a simple CAPM-type model
it is natural to connect the cyclicality in γt, the price per unit of variance risk, to the
unconditional equity term structure. In this subsection, we specifically look at term
structure of holding period risk premiums, which is not the same as the term structure of
one-period returns to dividend claims that are often discussed in the literature (e.g. van
Binsbergen, Brandt, and Koijen (2012)). We turn to the returns on dividend claims later in
the section.

We start from the common, Cochrane (2005), notation of the CAPM stochastic discount
factor:

Mt,t+1 = At,t+1 − Bt,t+1Rt,t+1 (17)

where Rt,t+1 is the gross return on the market, At,t+1 = 1/R f
t,t+1 + Bt,t+1Et[Rt,t+1], Bt,t+1 =

Et[Rt,t+1−R f
t,t+1]

σ2
t,t+1

/R f
t,t+1 = γt,t+1/R f

t,t+1, and R f
t,t+1 is the one period gross risk-free rate. Note

that the ”slope” parameter, Bt,t+1, is directly related to the price per unit of variance risk
(not the Sharpe ratio).

Given the stochastic discount factor in (17), we can write the conditional expected
excess market return in the usual way:

Et[Rt,t+1 − R f
t,t+1] = −R f

t,t+1covt(Rt,t+1, Mt,t+1) (18)

= γt,t+1σ2
t,t+1 (19)

In a similar fashion, we assume that there is a representation of the two period market risk
premium as:

Et[Rt,t+2 − R f
t,t+2] = γt,t+2σ2

t,t+2 (20)

Here, γt,t+2 is the time t price per unit of variance risk over the period until time t + 2.

We now write the unconditional market risk premium at different horizons as:

E[Rt,t+1 − R f
t,t+1] = E[γt,t+1]E[σ2

t,t+1] + Cov[γt,t+1, σ2
t,t+1] (21)

E[Rt,t+2 − R f
t,t+2] = E[γt,t+2]E[σ2

t,t+2] + Cov[γt,t+2, σ2
t,t+2] (22)

At first glance, it seems natural that the covariance between the price per unit of variance
risk and the market variance is important for the unconditional term structure of equity
returns.
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Now, to make progress, we impose structure on σ2
t and γt,t+1:

σ2
t,t+1 = a + ρσ2

t−1,t + ϵt,t+1 (23)

γt,t+1 = γ + θγt−1,t + bσ2
t,t+1 +∇t,t+1 (24)

Variance is an AR(1) and the price of risk is an AR(1) augmented with a component that
makes variance and the price of risk correlated (bσ2

t,t+1). If b < 0 then they are negatively
correlated since all shocks (∇t,t+1 and ϵt,t+1) are independent (with each other and over
time).

Using equation (24) iteratively and assuming that both the market variance and the
price per unit of variance risk are stationary, we arrive at an expression for the one period
unconditional risk premium as:10

E[Rt,t+1 − R f
t,t+1] = E[γt,t+1]E[σ2

t,t+1] +
b

1 − θρ
Var(σ2

t,t+1) (25)

Turning to the two period unconditional risk premium, we assume that returns are
uncorrelated over time such that the two period variance is the sum of one period variances:

σ2
t,t+2 = σ2

t,t+1 + σ2
t+1,t+2 (26)

We next set γt,t+2 to be the predicted value one period ahead:

γt,t+2 ≡ Et[γt+1,t+2] = γ + θγt,t+1 + bEt[σ
2
t+1,t+2] (27)

= γ + θγt,t+1 + b[a + ρσ2
t,t+1] (28)

This choice implies that the unconditional term structure of the price per unit of variance
risk is flat, similar to that of the unconditional variance.

Inserting (26) and (28) into the covariance in equation (22), we arrive at an expression
for the ”annualized” (divided by 2) two period risk premium as:

E[Rt,t+2 − R f
t,t+2]/2 = E[γt,t+1]E[σ2

t,t+1] + b(1 + ρ)

[
ρ +

θ

1 − θρ

]
Var(σ2

t,t+1)/2 (29)

since γt,t+2 ≡ Et[γt+1,t+2] and the unconditional expectation is E[γt+1,t+2] = E[γt,t+1]. We
furthermore have that E[σ2

t,t+2] = E[σ2
t,t+1 + σ2

t+1,t+2] = 2E[σ2
t,t+1]. With this expression,

10Note that the unconditional covariance becomes an infinite sum: Cov[γt,t+1, σ2
t,t+1] =

bVar(σ2
t,t+1)∑∞

n=0(θρ)n = b
1−θρ Var(σ2

t,t+1) when |θ| < 1 |ρ| < 1.
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we can write the difference in the ”annualized” holding period risk premium as:

E[Rt,t+2 − R f
t,t+2]/2 − E[Rt,t+1 − R f

t,t+1] = b(1 + ρ)

[
ρ +

θ

1 − θρ

]
Var(σ2

t,t+1)/2 − b
1 − θρ

Var(σ2
t,t+1)

(30)

This equality leads us to Result 2:

Result 2 (Cyclicality in γt,t+1 and the slope of the term structure). The equity term structure
is:
(i) downward sloping if:

b
[
(1 + ρ)[ρ + θ(1 − ρ2)]− 2

]
< 0 (31)

(ii) upward sloping if:
b
[
(1 + ρ)[ρ + θ(1 − ρ2)]− 2

]
> 0 (32)

(iii) flat if:
b
[
(1 + ρ)[ρ + θ(1 − ρ2)]− 2

]
= 0 (33)

The proof is in the body of the text above.

Result 2 highlights that the time varying relationship between market variance and the
price per unit of this variance risk is important for the term structure of holding period
returns. In the data, we find that b < 0, that is, cov(γt,t+1, σ2

t,t+1) < 0. So for the term
structure to be downward sloping, for example, we need (1 + ρ)[ρ + θ(1 − ρ2)] > 2. This
inequality holds if θ and ρ are ”large”. For example, if θ = 0.90, and ρ = 0.75. Loosely
speaking, the inequality in equation (31) holds when ρθ > 0.7. Looking at the persistence
in the data, we find that θ = 0.91 (using the expected price per unit of variance risk measure
described in Section 3) and ρ = 0.61. The persistence in the variance largely depends on
the sample, when including large spikes like in the financial crisis of 2008-2009 and the
Covid-19 period, the persistence tends to be lower and the R2 of a simple regression of
variance onto its lagged value tends to go down relative to what we find when excluding
these extremes. A more realistic specification of the variance process that features jumps
or non-linear terms, like a leverage effect, should be able to capture these extreme periods.
However, this added complexity is outside the scope of our analysis.

Overall, Result 2 is important because it highlight that, even in a simple CAPM-type
model with little structure on market variance the price per unit of this variance risk, we
can clearly connect the cyclicality in the one period risk price to how risk is priced at
different horizons.
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5.2. Option-implied risk prices by horizon

Next, we turn to option markets and show that the term structure of returns to particularly
interesting option portfolios is directly related to the cyclciality in the price per unit of
variance risk. We start by going through our theoretical setting and we present empirical
evidence thereafter.

Theory

To simplify exposition, we consider an economy in which returns and the SDF are condi-
tionally jointly log-normal, with

rm,t+1 ≡ log Rm,t+1 = µR,t + σε,tεt+1 −
1
2

σ2
ε,t, (34)

mt+1 ≡ log Mt+1 = −r f ,t − γtrm,t+1 + ση,tηt+1 −
[

1
2
(σ2

η,t + γt(1 + γt)σ
2
ε,t)− γtµR,t

]
,

(35)

where εt+1 and ηt+1 are standard normal and independent (both over time and with respect
to each other). The last terms in both lines are Jensen’s inequality corrections to ensure that
log Et[Rm,t+1] = µR,t and log Et[Mt+1] = −r f ,t. Writing the unexpected part of mt+1 as a
linear combination of a projection onto the market and an orthogonal term is without loss of
generality in this setting. Define σ2

t = Vart(rm,t+1). Since µR,t − r f ,t = −Covt(mt+1, rm,t+1),
it follows that (µR,t − r f ,t)/σ2

t = γt. This motivates our use of γt to refer to the loading of
the log SDF onto the market.

We now consider options. No arbitrage implies the existence of a risk-neutral density
f ∗t (Rm,t+1) such that

f ∗t (Rm,t+1) = R f ,tEt[Mt+1|Rm,t+1] ft(Rm,t+1), (36)

where ft(Rm,t+1) is the objective physical density. As observed by Schreindorfer and
Sichert (2023), f ∗t (Rm,t+1)/R f ,t can be thought of as the price of the Arrow-Debreu se-
curity that pays 1 if the return Rm,t+1 is realized and 0 otherwise, while ft(Rm,t+1) can
be thought of as its expected payoff.11 This implies that the log expected return of the
Arrow-Debreu security is − log Et[Mt+1|Rm,t+1]. Using the characterization in (34)–(35)
and the assumption of log-normality, this implies that the log expected excess return is

11This is loose only insofar as these are continuous densities. To formalize this fully, one can either
consider a discretized version of the state space (as we will do in the empirical analysis) or define the
Arrow-Debreu (AD) payoff to be a Dirac delta function.
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equal to

− log Et[Mt+1|Rm,t+1]− r f ,t = γtrm,t+1 − γt

(
µR,t −

1
2

σ2
ε,t

)
. (37)

Now consider a strategy that goes short one unit of the AD security for return state
Rm,t+1 = ω1, and long one unit of the AD security for state Rm,t+1 = ω2, where ω2 > ω1.
This strategy can be thought of as a conditional binary bet: it involves a payoff of 1 if
Rm,t+1 = ω2, a payoff of -1 if Rm,t+1 = ω1, and 0 otherwise. Denote the return on this
strategy by Rω,t+1. Using (37), the log expected return on the strategy is

log Et[Rω,t+1] = log Et[Mt+1|Rm,t+1 = ω1]− log Et[Mt+1|Rm,t+1 = ω2]

= γt(ω2 − ω1). (38)

Intuitively, γt is the market price per unit of variance risk. This strategy fixes the quantity
of risk: it pays off either 1 or -1, and importantly, it holds fixed the return outcomes ω1 and
ω2. For example, if ω1 = 0% and ω2 = 2%, the bet is always over a 2-percentage-point
range over the index value as of t + 1 regardless of what the value of σ2

t is. The expected
return therefore depends only on the price of risk γt.

Equation (38) characterizes the one-period (or short-horizon) log expected return on
the above option strategy. We now consider the two-period (long-horizon) return on
this strategy, in order to characterize the term structure of expected returns. To maintain
notation, continue to set the option expiration date to T = t+ 1, but now step back to period
t − 1, two periods from expiration. The strategy’s log expected return as of tomorrow (date
t) will, as in (38), be higher given a positive shock to γt. If Covt−1(γt, Mt) < 0 — that is, if
the price per unit of risk is higher in good times, as we found empirical evidence for in the
previous section — then this implies that the return on the strategy from t − 1 to t will be
positive in bad times.12 The strategy thus provides a hedge against shocks to Mt, implying
that its two-period expected return should be lower than its one-period expected return.13

This implies a downward-sloping term structure of risk prices for option portfolios that fix

12Note that the unexpected return on the strategy from t − 1 to t depends on not just the expected
return from t to t + 1, but also on log ft(ω2)− log ft(ω1): the unexpected log return, from (36), depends on
log f ∗t (ω2)− log f ∗t (ω2) = log Et[Mt+1|Rm,t+1 = ω2]− log Et[Mt+1|Rm,t+1 = ω1] + log ft(ω2)− log ft(ω1).
One concern might be that log ft(ω2)− log ft(ω1) decreases in bad times enough to in fact make the strategy
have a negative unexpected return in these times. But as shown in Appendix B.1, one can guarantee that
log ft(ω2)− log ft(ω1) increases in bad times (thereby guaranteeing that the unexpected return is higher in
these times) by focusing on sufficiently high return states ω1 and ω2. (And more generally, the change in
log ft(ω2)− log ft(ω1) is likely to be quite small in practice.) So this is not, in our view, a first-order concern.

13A full formal analysis of the two-period expected return would require fully specifying the dynamics of
all the state variables γt, σ2

t , and so on.
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the quantity of risk in the sense described above. We now turn to index options data for
suggestive empirical evidence along these lines.

Evidence14

We now seek to estimate returns on the fixed-quantity-of-risk strategy Et[Rω,T], varying
the horizon T − t. Our test of interest is whether this average return decreases in the
horizon T − t, which (following the discussion above) would provide indirect ex ante
evidence that γt is higher in good times.

As in the first line of (38), estimating Et[Rω,t+1] is equivalent to estimating the ratio
Et[MT |Rm,T=ω1]
Et[MT |Rm,T=ω2]

. This ratio of SDF realizations across return states, holding fixed the differ-
ence in returns, can be estimated using risk-neutral probabilities f ∗t (ω) ≡ f ∗t (Rm,0→T = ω)

obtained from index option prices. In particular, we use the same Breeden and Litzenberger
(1978)–based approach as described in Section 3 to back out a discretized distribution
f ∗t (ω) across possible returns ω realized over the life of the option. We then translate these
into a set of conditional probabilities over binary outcomes — in particular, the probability
that the index return from 0 to T will be ω1 conditional on it being either ω1 or ω2. To
estimate Et[MT |Rm,T=ω1]

Et[MT |Rm,T=ω2]
, we then use the fact that

π∗
t

1 − π∗
t
= ϕt,T

πt

1 − πt
, (39)

where π∗
t ≡ f ∗t (Rm,0→T = ω1 | Rm,0→T ∈ {ω1, ω2}),

πt ≡ ft(Rm,0→T = ω1 | Rm,0→T ∈ {ω1, ω2}),

ϕt,T ≡ Et[MT|Rm,T = ω1]

Et[MT|Rm,T = ω2]
.

While we can measure π∗
t from index options data directly, we must estimate πt across

horizons by using the fact that it must be an unbiased forecast of the terminal outcome
1(Rm,0→T = ω1 | Rm,0→T ∈ {ω1, ω2}) by definition. That is, we are effectively estimating
the price of risk embedded in the π∗

t values across horizon such that the implied πt values
have zero average forecast error for the terminal index outcome. We provide formal details
of this approach in the appendix (see Appendix B.2).

For implementation, we use S&P 500 index options data from the OptionMetrics
database for the period 1996–2018. This yields data for 5,537 trading dates and 991

14The empirical results described here were originally reported in Lazarus (2022), which this paper now
supersedes.
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expiration dates. We drop any options with bid prices of zero (or less than zero), with
Black-Scholes implied volatility of greater than 100 percent, or with greater than 12 weeks
to maturity (given the relative lack of observations and statistical power beyond this
maturity), and calculate each option’s end-of-day price as the midpoint between its bid
and ask prices.

For each observed expiration date T and associated initial option trading date 0, we
define the relevant (sub)set of possible terminal index returns as

Ω = R f
0,T exp

({
[−0.10,−0.08), [−0.08,−0.06), . . . , [0.06, 0.08), [0.08, 0.10)

})
.

In words, state ω1 is said to be realized when the gross index-price appreciation, in excess
of the risk-free rate R f

0,T, is between exp(−0.1) and exp(−0.08), or equivalently when the
log excess return is between -10% and -8%, and analogously for ω2, and so on. We exclude
all terminal states more than 10% out of the money (where moneyness is relative to a zero
excess return) in either direction. Note that the states are equally spaced, and all binary
bets (e.g., ω2 vs. ω3, or ω5 vs. ω6) have the same fixed 2-percentage point range of return
outcomes within a given option contract, as required by construction. For a given option
contract (i.e., a given set of option prices observed from 0 to T), we consider only (ωi, ωi+1)

pairs for which the realized index return was either ωi or ωi+1. (Without this conditioning,
the conditional physical probabilities would be undefined.) This leaves 549 observations
(tuples (t, T, i)) at the one-day horizon, which declines monotonically to 222 observations
at the 60-day horizon (equivalently, the 12-week horizon), which motivates our focus on 1-
to 12-week horizons.

We present the option-implied prices of risk by horizon κ = T − t in Figure 3. As the
graph shows, the estimated price of risk is significantly downward-sloping as one increases
the horizon κ. In other words, one needs a lower price of risk to rationalize the returns on
fixed-quantity-of-risk bets at longer horizons. Equivalently, these bets have lower expected
returns at longer horizons. As discussed at the end of the previous subsection, this implies
that Covt−1(γt, Mt) < 0, so that the price per unit of risk is higher given good shocks. This
is required in order for the strategy to provide a hedge against shocks to Mt and have
lower expected returns at longer horizons.

These results are, in effect, an out-of-sample test in support of the procyclicality of γt

established earlier in the paper. As discussed theoretically above, the option-implied term
structure considered here is downward-sloping if and only if γt is procyclical ex ante. The
fact that we indeed find a downward-sloping term structure therefore provides further
support to the preceding results based on ex post returns on the market.
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That said, due to the relatively short horizon necessitated by our data sample and
cleaning, the evidence obtained from this estimation is at most suggestive: there is a
downward-sloping term structure of implied expected returns on the above option strategy
over a matter of weeks, implying that γt is procyclical at least at a weekly to monthly data
frequency. Whether this speaks to slightly lower frequencies of data aggregation remains
an interesting question for future work.

5.3. Additional implications for the equity term structure

The preceding discussion considered option-implied risk prices by horizon, which consti-
tute a particular equity term structure in which one holds fixed the riskiness of the claim
in question and varies the horizon. This is slightly different than the notion of the equity
term structure studied in much of the recent literature (e.g., van Binsbergen, Brandt, and
Koijen, 2012), which considers index dividends at different horizons and studies their
(risk-adjusted) returns. While the two concepts are somewhat distinct, all our findings
(for both equity returns and option-implied risk prices) can be reconciled with stylized
facts about the standard equity term structure. We consider a model building off of that of
Lettau and Wachter (2007), but with time-varying volatility in both discount-rate shocks
and dividend-growth shocks. We will see that a very stripped down model of this form
will produce a generally procyclical price of variance risk but a countercyclical Sharpe
ratio, and it will also predict a downward-sloping term structure of risk-adjusted returns.15

The aggregate dividend is denoted by Dt, and let dt = log Dt. We assume that log
dividend growth follows

∆dt+1 = g − 1
2

x2
t σ2

z + σdεd,t+1 + xtσzεz,t+1, (40)

where εd,t+1 and εz,t+1 are standard normal and independent of each other and over time.
Relative to the specification in Lettau and Wachter (2007), we include an additional shock
xtσzεz,t+1, whose volatility is time-varying and increasing in xt. This xt variable will also,
for parsimony, represent the price of risk. The shock εd,t+1 will be priced (i.e., it will
enter the SDF), while the shock with time-varying volatility will not be. This should be
thought of as a stripped-down way to model the idea that returns on dividend strips
include additional “non-fundamental” volatility in bad times, reverse-engineered here

15Because such a model features a downward-sloping term structure of risk-adjusted returns in spite of
the time variation in volatility, it also by implication would feature a downward-sloping term structure for
strategies that hold fixed the quantity of risk, thereby reconciling with the results in the previous section.
And if, in addition, we included a small price of risk on discount-rate shocks, one could reconcile this model
with the countercyclical term premium as in Gormsen (2021).
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by including an unpriced shock in dividend growth that becomes more important in bad
times.16

As above, the price of risk is driven by a single state variable xt, which follows

xt+1 = (1 − ϕx)x + ϕxxt +
√

xtσxεx,t+1, (41)

where εx,t+1 is i.i.d. standard normal and independent of εd,t+1 and εz,t+1. The time-varying
volatility of the price of risk, governed by the square-root process implied by (41), is a
further distinction from Lettau and Wachter (2007). Assume that x > 0 and ϕx ∈ (0, 1), so
that xt is positive with probability one in a continuous-time limit of the model. We also
assume that σzx ⩾ σd so that in (40), “non-fundamental” dividend shocks are at least as
important as “fundamental” dividend shocks in steady state.

The log stochastic discount factor mt+1 = log Mt+1 is directly specified as

mt+1 = −r f − 1
2

x2
t − xtεd,t+1, (42)

where r f is the constant log risk-free rate. Intuitively, investors dislike exposure to “funda-
mental” dividend-growth shocks εd,t+1, and the degree to which they dislike this exposure
is governed by risk aversion (the conditional price of risk) xt. All other risks are unpriced
directly. This is an extreme assumption, but again it clarifies economic intuition.

We can solve explicitly for the prices and returns of zero-coupon equity (i.e., n-maturity
dividend claims).17 The price of the n-maturity claim at time t is Pn,t, and let pn,t = log Pn,t.
One-period returns are Rn,t+1 = Pn−1,t+1/Pn,t. Since Et[Mt+1Rn,t+1] = 1, we have the
following recursive relation for prices:

Pn,t = Et[Mt+1Pn−1,t+1], (43)

with boundary condition P0,t = Dt given that the dividend is paid out at maturity.

Guess a log-linear solution for the price-dividend ratio:

Pn,t

Dt
= exp(An + Bx,nxt) . (44)

16As an additional twist relative to Lettau and Wachter (2007), we also rule out time variation in the
conditional mean of (exponentiated) dividend growth. Including such time variation would allow for a
downward-sloping term structure of expected returns (rather than a constant term structure of expected
returns but downward-sloping Sharpe ratios and CAPM alphas, as ours will feature). Since this is relatively
unimportant for our analysis, we simplify by omitting such time variation.

17The price and return for aggregate equity then follows straightforwardly from the zero-coupon solutions,
but in order to examine intuition, we maintain focus on the zero-coupon claims.
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Under this conjecture, the price-dividend ratio is

Pn,t

Dt
= Et

[
Mt+1

Dt+1

Dt
exp(An−1 + Bx,n−1xt+1)

]
. (45)

Using the assumed conditional log-normality in (40)–(41), we can match coefficients of (44)
and (45) to obtain

An = An−1 − r f + g + Bx,n−1(1 − ϕx)x +
1
2

σ2
d , (46)

Bx,n = Bx,n−1

(
ϕx +

1
2

Bx,n−1σ2
x

)
− σd, (47)

with boundary conditions A0 = Bx,0 = 0. This verifies the conjecture. Note that Bx,n < 0
for all n under the weak condition that σdσ2

x < 2ϕ, so that the price-dividend ratio decreases
(times are bad) when the price of risk increases.

The log return on the strip of maturity n is thus

rn,t+1 = log
(

Pn−1,t+1

Dt+1

Dt

Pn,t

Dt+1

Dt

)
= g − 1

2
x2

t σ2
z + σdεd,t+1 + xtσzεz,t+1 + An−1 + Bx,n−1xt+1 − An − Bx,nxt. (48)

The conditional variance of this log return follows as

σ2
n,t = Vart(rn,t+1) = σ2

d + σ2
z x2

t + |Bx,n−1|2σ2
x xt. (49)

The excess expected return, meanwhile, is

Et[rn,t+1 − r f ] +
1
2

σ2
n,t = −Covt(rn,t+1, mt+1) = σdxt, (50)

so the term structure of expected returns is flat.

Putting (49) and (50) together, the Sharpe ratio is

SRn,t ≡
Et[rn,t+1 − r f ] + 1

2 σ2
n,t

σn,t
=

σdxt√
σ2

d + σ2
z x2

t + |Bx,n−1|2σ2
x xt

. (51)

Note first that this is decreasing in maturity n, so we obtain a downward-sloping term
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structure of Sharpe ratios. In addition, the Sharpe ratio is countercyclical:

∂SRn,t

∂xt
∝
(

σ2
d +

1
2

B2
x,n−1σ2

x xt

)
> 0. (52)

The countercyclical price of risk passes through to generate a countercyclical Sharpe ratio,
as is standard.

But the ratio of expected returns to variance, meanwhile, is

γn,t ≡
Et[rn,t+1 − r f ] + 1

2 σ2
n,t

σ2
n,t

=
σdxt

σ2
d + σ2

z x2
t + |Bx,n−1|2σ2

x xt
, (53)

which varies with xt according to

∂γn,t

∂xt
∝
(

σ2
d − σ2

z x2
t

)
. (54)

This value can be either positive or negative, and it will be negative if and only if σzxt > σd.
So for xt large enough, we obtain a procyclical price per unit of variance risk: further positive
shocks to xt increase non-fundamental return volatility enough to offset the increase in
expected returns. Under the maintained assumption that σzx > σd, this procyclicality
holds around steady state, though this is not particularly important for our analysis. We
predict in general that there will be a countercyclical γn,t for a part of the state space (in
good times, when xt is small), as we observe in the time-series data. But in bad enough
times, non-fundamental return volatility is large enough to make the price per unit of
variance risk decrease given further increases in xt.

Intuitively, expected returns go up with the price of risk, but the importance of non-
fundamental risk for returns also increases. While return volatility increases, the beta of the
SDF onto the market decreases during these times because of the rise in non-fundamental
return risk. In other words, return volatility has three components: fundamental dividend
volatility (which is constant, σd), discount-rate volatility (which increases in

√
xt), and

non-fundamental volatility (which increases in xt). An increase in xt therefore increases
“pure” market risk that is not fully connected to fundamentals, increasing market variance
without passing through one-for-one to expected returns. While this is sufficient to
generate a procyclical γn,t that decreases in xt (at least for large xt), this non-fundamental
volatility effect is not strong enough to obtain a procyclical Sharpe ratio. Further, the
greater exposure of long-maturity claims to discount-rate risk means that their volatility
increases without changing their expected return, generating a downward-sloping Sharpe
ratio of dividend claims.
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As a result, this stylized model shows how our findings about the cyclicality of γn,t

connect to facts about the dividend term structure. We obtain both (i) a lower beta of the SDF
onto the market in bad times (our main stylized fact), and (ii) a downward-sloping Sharpe
ratio of dividend claims by maturity, both through the same channel (non-fundamental
return risk). Meanwhile, our parameterization maintains the usual countercyclical Sharpe
ratio.

With respect to the cyclicality of the term structure, speaking to the countercyclicality
documented by Gormsen (2021) could be achieved by assuming, similar to Gormsen, that
the discount-rate shock εx,t+1 also enters into the SDF, with a small average price of risk
for this shock but an increase in the quantity of this risk in bad times.18

6. Conclusion

We show that there is a reverse cyclicality in two seemingly similar risk prices, the price
per unit of volatility risk, the Sharpe ratio of market market returns, and the price per
unit of variance risk. In a global sample covering 20 stock markets around the world, we
show that the Sharpe ratio is countercyclical, consistent with conventional wisdom, but the
price per unit of variance risk is procyclical. This implies that every unit of return variance
matters less for investors in bad times than in good times, as we show theoretically. The
procyclicality of the price per unit of variance risk has implications for the term structure
of expected returns on constant risk option portfolios and for the equity term structure
more generally. We provide a theoretical link between the cyclicality in the price per unit
of variance risk and the equity term structure and provide empirical evidence in favor of
our theory.

18Such a model would also allow us to speak to the preceding subsection’s results on risk prices for
strategies that hold fixed the quantity of risk. That analysis required that Covt(γt+1, Mt+1) < 0, but in the
current simple case, γd,t in (53) has no covariance with the SDF. Adding an xt+1 shock to the SDF would
accordingly also accommodate the previous analysis and allow for a more formal tie between the two sets of
results.
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Figure 1: Time variation in risk prices. Subfigure (a) shows the Sharpe ratio of the S&P
500 index. Subfigure (b) shows the price per unit of variance risk. The grey shaded areas
are NBER recession periods. We standardize the measures to make them easily comparable
in the figure. Shaded area is NBER recession periods.
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Figure 2: Prices of risk. This figure shows the option implied price per unit of variance risk
and the option implied Sharpe ratio for the S&P 500 index. The measures are standardized
to make them easily comparable in the figure. Shaded aread are NBER recession periods.
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Figure 3: Estimates of Risk Prices by Horizon. This figure shows the option-implied
price of risk by horizon. Point estimates are constructed using two-step GMM, using the
five-day-lagged observation as an instrument as described in Appendix B.2, on the sample
counterparts of the moment conditions described in the appendix in order to minimize
forecast error. The price of risk parameter is constrained to be equal for all days within a
given weekly horizon to expiration. Error bars show 95% confidence intervals, constructed
using procedure in Appendix B.2.
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Table 1: Pairwise correlations of risk prices.
This table reports the pairwise correlations of the price per unit of variance risk (γt) and the
Sharpe ratio (SRt) for the S&P 500 index. We compute four measures for each of the risk
prices: (i) a 12-months moving average of the monthly realized measure γrealized

t , using
daily returns to compute conditional expected excess returns and volatilities, (ii) γ

expected
t ,

as an expected measure using Kelly and Pruitt (2013) for expected excess returns and an
AR(1) process for the variance, (iii) γ

option
t , an option implied measure estimated from

options written on the S&P 500 index, and (iv) γPCA
t , the first principal component of the

three previous measures.

γ
expected
t γ

option
t γPCA

t SRrealized
t SRexpected

t SRoption
t SRPCA

t

γrealized
t 0.42 0.29 0.46 0.84 0.30 −0.09 0.28

γ
expected
t 0.27 0.66 0.43 0.91 −0.03 0.66

γ
option
t 0.78 0.28 0.22 0.54 0.51

γPCA
t 0.42 0.59 0.25 0.77

SRrealized
t 0.39 0.08 0.41

SRexpected
t 0.13 0.80

SRoption
t 0.54
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Table 2: Pre-recession to end-of-recession changes in prices of risk.
This table reports the average changes in the risk prices of the S&P 500 index from the
month before the onset of a recession to the end of the last month in the recession. We
standardize the risk measures to make them comparable. A coefficient of 1 should be
interpreted as a one unconditional standard deviation increase in the risk price. The
annualized standard deviation of the Sharpe ratio is about 0.17 in both the expected and
option implied samples. The average annualized Sharpe ratio is about 0.48 for both the
expected and option implied samples. Statistical significance at the 10% level is shown in
bold.

Realized Expected Option PCA
∆ Sharpe ratio (∆SRt) 1.28 0.58 1.18 1.28
t-stat 4.44 2.46 2.80 3.19

∆ Price per unit of variance risk (∆γt) 0.77 0.09 −0.06 0.04
t-stat 2.98 0.51 −0.08 0.05

∆SRt - ∆γt 0.51 0.49 1.24 1.24
t-stat 3.23 3.27 2.35 3.55

No. recessions 16 8 3 3

37



Table 3: Cyclicality in the Sharpe Ratio of market returns — With perfect foresight in
recessions.
This table compares the Sharpe ratio for the US stock market in normal times (NBER
non-recession months) to the months in recessions after the stock market reached its low
during the recession. Specifically, we compare the prices of risk for an investor who only
invests in good times to that of an investor who has perfect foresight during recessions in
the sense that she can pinpoint when the market has reached its low. This investors buys
the market at its low and holds the market for twelve months. We compute unconditional
measures by bundling monthly returns based on each trading strategy and compute within
bundle expected excess returns and variance. The ”Difference” rows report the difference
between recession periods and normal times. Statistical significance at the 10% level is
shown in bold. t-statistics are corrected for heteroscedasticity and autocorrelation using
Newey West standard errors.

Full sample Post 1964 sample Post 1996 sample
Unconditional Sharpe Ratio
In recessions (after stock market low) 0.51 0.59 0.49
In normal times 0.17 0.15 0.20
Difference (recession - normal) 0.34 0.44 0.29
Standard error 0.10 0.16 0.27

Conditional realized Sharpe Ratio
In recessions (after stock market low) 3.39 2.62 1.85
In normal times 1.61 1.49 1.42
Difference (recession - normal) 1.78 1.13 0.43
t-stat 4.45 2.19 0.52

Conditional expected Sharpe Ratio
In recessions (after stock market low) 0.36 0.20
In normal times 0.53 0.46
Difference (recession - normal) −0.17 −0.26
t-stat −1.69 −1.15

Conditional option implied Sharpe Ratio
In recessions (after stock market low) 0.55
In normal times 0.45
Difference (recession - normal) 0.10
t-stat 1.91

Summary statistics
No. recession periods 16 8 3
No. recession months after market low 192 96 36
No. normal times months 865 556 277
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Table 4: Cyclicality in the price per unit of variance risk — With perfect foresight in
recessions.
This table compares the price per unit of variance risk for the US stock market in normal
times (NBER non-recession months) to the months in recessions after the stock market
reached its low during the recession. Specifically, we compare the prices of risk for an
investor who only invests in good times to that of an investor who has perfect foresight
during recessions in the sense that she can pinpoint when the market has reached its low.
This investors buys the market at its low and holds the market for twelve months. We com-
pute unconditional measures by bundling monthly returns based on each trading strategy
and compute within bundle expected excess returns and variance. The ”Difference” rows
report the difference between recession periods and normal times. Statistical significance
at the 10% level is shown in bold. t-statistics are corrected for heteroscedasticity and
autocorrelation using Newey West standard errors.

Full sample Post 1964 sample Post 1996 sample
Unconditional price per unit of variance risk
In recessions (after stock market low) 7.69 10.77 7.55
In normal times 3.62 3.27 4.12
Difference (recession - normal) 4.07 7.50 3.44
Standard error 2.44 3.76 5.95

Conditional realized price per unit of variance risk
In recessions (after stock market low) 40.40 21.53 11.20
In normal times 26.04 23.32 15.98
Difference (recession - normal) 14.36 −1.79 −4.78
t-stat 1.75 −0.31 −0.96

Conditional expected price per unit of variance risk
In recessions (after stock market low) 1.59 0.72
In normal times 3.35 2.95
Difference (recession - normal) −1.77 −2.23
t-stat −3.65 −2.46

Conditional option implied price per unit of variance risk
In recessions (after stock market low) 2.54
In normal times 3.20
Difference (recession - normal) −0.65
t-stat −2.06

Summary statistics
No. recession periods 16 8 3
No. recession months after market low 192 96 36
No. normal times months 865 556 277
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Table 5: Cyclicality in the Sharpe Ratio of market returns — Without perfect foresight in
recessions.
This table compares the Sharpe ratio for the US stock market in normal times (NBER
non-recession months) to what is earned in recessions for an investor who buys the market
six months into each recession and holds the market for twelve months thereafter. We
focus exclusively on recessions where the sixth month after the onset of a recession is still
a recession month. We compute unconditional measures by bundling monthly returns
based on each trading strategy and compute within bundle expected excess returns and
variance. The ”Difference” rows report the difference between recession periods and
normal times. Statistical significance at the 10% level is shown in bold. t-statistics are
corrected for heteroscedasticity and autocorrelation using Newey West standard errors.

Full sample Post 1964 sample Post 1996 sample
Unconditional Sharpe Ratio
In recessions (after stock market low) 0.23 0.12 −0.16
In normal times 0.18 0.18 0.24
Difference (recession - normal) 0.04 −0.06 −0.39
Standard error 0.11 0.16 0.32

Conditional realized Sharpe Ratio
In recessions (after stock market low) 2.40 1.13 −0.09
In normal times 1.63 1.55 1.51
Difference (recession - normal) 0.77 −0.42 −1.60
t-stat 1.31 −0.64 −1.90

Conditional expected Sharpe Ratio
In recessions (after stock market low) 0.27 0.17
In normal times 0.53 0.45
Difference (recession - normal) −0.25 −0.28
t-stat −2.79 −1.48

Conditional option implied Sharpe Ratio
In recessions (after stock market low) 0.55
In normal times 0.46
Difference (recession - normal) 0.09
t-stat 1.13

Summary statistics
No. recession periods 16 8 3
No. recession months after market low 180 84 24
No. normal times months 877 578 296
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Table 6: Cyclicality in the price per unit of variance risk — Without perfect foresight in
recessions.
This table compares the price per unit of variance risk for the US stock market in normal
times (NBER non-recession months) to what is earned in recessions for an investor who
buys the market six months into each recession and holds the market for twelve months
thereafter. We focus exclusively on recessions where the sixth month after the onset of
a recession is still a recession month. We compute unconditional measures by bundling
monthly returns based on each trading strategy and compute within bundle expected
excess returns and variance. The ”Difference” rows report the difference between recession
periods and normal times. Statistical significance at the 10% level is shown in bold.
t-statistics are corrected for heteroscedasticity and autocorrelation using Newey West
standard errors.

Full sample Post 1964 sample Post 1996 sample
Unconditional price per unit of variance risk
In recessions (after stock market low) 3.63 1.82 −1.83
In normal times 3.73 3.74 4.90
Difference (recession - normal) −0.09 −1.92 −6.72
Standard error 2.33 3.35 6.63

Conditional realized price per unit of variance risk
In recessions (after stock market low) 33.81 10.99 1.03
In normal times 25.68 23.33 16.14
Difference (recession - normal) 8.14 −12.34 −15.12
t-stat 0.87 −1.70 −3.62

Conditional expected price per unit of variance risk
In recessions (after stock market low) 1.24 0.68
In normal times 3.29 2.83
Difference (recession - normal) −2.05 −2.16
t-stat −4.29 −2.61

Conditional option implied price per unit of variance risk
In recessions (after stock market low) 2.03
In normal times 3.18
Difference (recession - normal) −1.15
t-stat −3.54

Summary statistics
No. recession periods 16 8 3
No. recession months after market low 180 84 24
No. normal times months 865 556 277
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Table 7: Cyclicality in the price of risk - Pooled international evidence.
For 20 stock market indexes, this table reports the results of pooled panel regressions of the
differences in the conditional monthly price per unit of variance risk during normal times
(OECD non-recession months) to that of an investor who invests for twelve months during
recessions, starting either: (i) after the stock market reached its low during the recession,
(ii) one month into each recession, (iii) six months into each recession, or (iv) twelve months
into each recession. We report differences as recession − normal times, a positive value
means that the price of risk is higher in recessions. We first compute conditional prices of
risk within each month and thereafter investigate the average conditional prices of risk in
normal times versus in recessions. We compute the price per unit of variance risk in two
ways: (i) a realized measure γrealized

t , using daily returns to compute conditional expected
excess returns and volatilities and (ii) γ

expected
t , as an expected measure using Kelly and

Pruitt (2013) for expected excess returns and an AR(1) process for the variance. Statistical
significance at the 5% level is shown in bold. We include stock index fixed effects and
cluster standard errors by index and date.

Sharpe ratio γrealized
t γ

expected
t

Market low in recession 0.17 0.99 −0.41
t-stat 2.48 0.65 −1.26

One month into recession −0.33 −7.45 −1.05
t-stat −5.04 −5.07 −3.53

Six months into recession −0.29 −6.80 −1.15
t-stat −4.64 −5.14 −3.96

Twelve months into recession −0.15 −3.61 −0.91
t-stat −2.35 −2.45 −3.21
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Table 8: Consumption growth, financial and macroeconomic conditions, and the price of
risk.
This table reports the results of regressions:

Price of riskt = α + β × Indicatort + ϵt (55)

t-statistics are corrected for heteroscedasticity and autocorrelation using Newey West
standard errors. Data on financial risk indicator is at the monthly horizon and obtained
from the Chicago fed database. NFCI is the national financial condition indicator. Accord-
ing to the Chicago fed, ”Risk” captures volatility and funding risk in the financial sector.
Credit captures credit conditions and leverage consists of debt and equity measures. High
values of the variables are historically associated with tighter-than-average conditions
in financial markets, i.e., bad times. CFNAI is the Chicago Fed National Activity Index,
build to capture movements in economic expansions and contractions as well as periods
of increasing and decreasing inflationary pressure. A low value of this variable is typically
associated with economic contractions. The ”Rec. prob.” variable is the recessions proba-
bility of Chauvet and Piger (2008). Consumption is the St. Louis Fed monthly growth in
personal consumption expenditures of non-durable and service goods, deflated with the
CPI. Statistical significance at the 10% level is shown in bold.

Sharpe ratio Price per unit of variance risk

Indicator SRrealized
t SRexpected

t SRoption
t γrealized

t γ
expected
t γ

option
t

NFCI −0.16 −0.02 0.02 −5.47 −0.65 −0.88
t-stat −2.86 −2.32 1.56 −3.02 −4.03 −2.30
Risk −0.16 −0.02 0.02 −5.43 −0.60 −0.96
t-stat −2.98 −1.82 1.44 −2.98 −3.42 −2.67
Credit −0.01 −0.02 0.02 −1.49 −0.49 −1.11
t-stat −0.16 −1.62 1.05 −0.62 −2.08 −2.28
Leverage −0.17 −0.01 0.01 −6.21 −0.34 −0.17
t-stat −3.05 −0.65 1.04 −3.36 −0.97 −0.35
Non-fin. leverage −0.08 0.01 −0.02 −1.78 0.18 −0.67
t-stat −1.82 0.58 −2.29 −1.04 0.70 −4.03
Recession prob. −0.46 −0.07 0.03 −22.71 −2.18 −1.50
t-stat −1.98 −1.89 1.10 −3.49 −2.96 −3.65

CFNAI 0.04 0.01 −0.00 3.24 0.28 0.10
t-stat 0.82 1.65 −0.91 1.52 1.73 1.72
Consumption 5.24 0.26 −0.02 352.12 8.41 −7.23
t-stat 1.90 0.64 −0.11 1.56 0.97 −1.35
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Table 9: Further international evidence for macro variables.
This table reports the results of panel regressions on the form:

Risk pricei
t = α + β × macro variablei

t+1,t+s + ϵq (56)

where i denotes indexes for the up to 20 international stock market indexes in our sample
and macro variablei

t+1,t+s is either the: (i) eight quarters growth in consumption, (ii) the
contemporaneous value of the market dividend-to-price ratio, or (iii) eight months growth
in industrial production. t-statistics are corrected for heteroscedasticity and autocorrelation
using Newey West standard errors. Statistical significance at the 10% level is shown in
bold. ’Standardized’ rows report results where we standardize both the risk price and the
macro variable within each country before we pool the data for the regression. ’Raw’ rows
report results where we pool data without standardizing.

Sharpe ratio Price per unit of variance risk

SRrealized
t SRexpected

t γrealized
t γ

expected
t

Consumption growth
Raw 0.14 −0.10 73.43 3.35
t-stat 3.61 −0.23 3.29 0.48

Standardized 0.17 0.01 0.14 0.05
t-stat 4.66 0.14 3.61 0.47

Dividend-price ratio
Raw −4.46 −0.34 −99.20 −11.28
t-stat −2.35 −0.55 −2.07 −1.72

Standardized −0.09 0.03 −0.08 −0.04
t-stat −3.84 0.58 −3.12 −0.81

Industrial production
Raw 3.47 0.22 58.50 5.10
t-stat 4.67 1.33 3.62 1.83

Standardized 0.15 0.07 0.10 0.08
t-stat 4.43 1.36 3.62 1.78
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Appendix

A. Details for Section 3

A.1. Inferring risk-neutral distributions from options

We compute risk-neutral distributions using a spline approach as suggested in Figlewski (2018). On each
last trading day of the month, we compute the spline that best fits the observed volatility surface under the
two conditions that: (i) the left part of the surface is monotonically decreasing (options with moneyness less
than 1) and (ii) the resulting risk-neutral distribution is non-negative. Given a fitted spline, we compute the
risk-neutral distribution as the second derivative of the resulting Black-Scholes prices. When we have option
data with exactly one month maturity, we simply compute the distribution at this horizon. When we do
not have such horizons, we compute distributions for the closest days (from above and below) for which
there is data. We then linearly interpolate the distributions for these horizons to obtain a monthly horizon
distribution.

There are of course many other ways in which we can compute risk-neutral distributions. For example,
we can use a parametric approach like in Bates (2000), the ”fast-and-stable” method of Jackwerth (2004), or a
number of alternative ways to essentially just smooth implied volatilities to obtain a smooth continuous
price function that we can numerically differentiate. Since the Berkowitz (2001) test relies heavily on the first
and second moments of the recoverd risk-neutral distributions, which are almost identical using either of
these methods, we are confident that alternative methods will yield similar cyclicalities in option implied
prices of market variance risk when using the approach described in Section 3.

B. Details for Section 5.2

B.1. Theory

This appendix continues the discussion in footnote 12 on sufficient conditions to guarantee that the unex-
pected return on the fixed-quantity-of-risk strategy is higher in bad times. As in that footnote, the unexpected
log return on the strategy from t − 1 to t depends on log f ∗t (ω2) − log f ∗t (ω2) = log Et[Mt+1|Rm,t+1 =

ω2]− log Et[Mt+1|Rm,t+1 = ω1] + log ft(ω2)− log ft(ω1) (using (36)). The log-normal density assumption
gives that

log ft(ω2)− log ft(ω1)

= − log(ω2) + log(ω1)−

(
log(ω2)− µR,t +

1
2 σ2

t

)2
−
(

log(ω1)− µR,t +
1
2 σ2

t

)2

2σ2
t

.

This decreases in µR,t and it may either increase or decrease in σ2
t , so one concern (as raised in the footnote)

might be that log ft(ω2) − log ft(ω1) decreases in bad times enough to in fact make the strategy have
a negative unexpected return in these times. But since γt decreases in bad times, we must have that
dγt ∝ dµt − γtd(σ2

t ) < 0 in these times, or dµt/d(σ2
t ) < γt. So in order for log ft(ω2)− log ft(ω1) to increase
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in bad times so that the unexpected return is guaranteed to be positive, one can see (after some algebra) that
it is sufficient to have

log(ω1) + log(ω2)

2
1
σ2

t
> γt − dµt/d(σ2

t ) > 0.

One can always find large enough return states to guarantee that this is the case, meaning that the unexpected
return will always be higher in bad times as long as we’re focusing on sufficiently high ω1 and ω2.

B.2. Empirical evidence: implementation

We begin with equation (39). We are interested in how the price of risk ϕt,T changes on average with the
horizon T − t, for multiple possible return state pairs (ω1, ω2). We therefore assume that for arbitrary pairs
of return states (ω1, ω2) and (ω3, ω4), if ω2/ω1 = ω4/ω3, then the associated ϕ values are equivalent (i.e.,
ϕt,T,ω1,ω2 = ϕt,T,ω3,ω4). This is in effect an assumption of scale independence (as would hold under, e.g.,
CRRA preferences), since we will use a set of equally spaced return states for empirical implementation.
Second, we assume that ϕt,T = ϕT−t, so that the SDF ratio depends only on the horizon T − t. Both
assumptions are in effect for the purposes of notational simplification so that we may pool estimates across
return-state pairs and expiration dates below.

To derive moment conditions for estimation, we begin by rearranging (39) as

πt =
π∗

t
π∗

t + ϕT−t(1 − π∗
t )

. (57)

This equation says how the risk-neutral probability and ϕT−t together pin down the (unobserved) physical
probability, which by definition must be unbiased: πt = Et[1{Rm,0→T = ω1} | Rm,0→T ∈ {ω1, ω2}]. Using
this unbiasedness property,

Et

[
1{Rm,0→T = ω1} −

π∗
t

π∗
t + ϕT−t(1 − π∗

t )

∣∣∣∣ Rm,0→T ∈ {ω1, ω2}
]
= 0. (58)

Note that the random variable 1{Rm,0→T = ω1} is observable as of date T, as it simply indexes whether the
terminal index return is equal to ω1. Thus every value in (58) is in principle observable aside from πT−t, so
applying the law of iterated expectations to this equation yields a nonlinear moment condition for ϕT−t that
can be estimated using the generalized method of moments (GMM).

One possible concern with such estimation is the likelihood of price measurement error affecting the
measured risk-neutral probabilities in (58) given, for example, market microstructure noise. The GMM
framework here, however, allows us to account for this noise without needing to estimate its magnitude
separately. To discuss this estimation, we first generalize the notation slightly, and allow for arbitrary return
states indexed by j, (ωj, ωj+1). We then assume that the observed conditional risk-neutral belief π̂∗

t,j is
measured with additive error with respect to the true value π∗

t,j used in (58):

π̂∗
t,j = π∗

t,j + ϵt,j, (59)

where E[ϵt+k,j π∗
t+k′ ,j | Rm,0→T ∈ {ωj, ωj+1}] = 0 for all k, k′, and ϵt,j follows an MA(q) for some value q.
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Using this and then Taylor expanding the observed analogue for the second ter in (58), we obtain

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)
=

π∗
t,j

π∗
t,j + ϕT−t(1 − π∗

t,j)
+ ϵt,j +O

((
ϵt,j + (ϕT−t − 1)

)2
)

︸ ︷︷ ︸
higher-order terms

(60)

as ϵt,j → 0 and ϕT−t → 1,19 where the latter limit ϕT−t = 1 corresponds to the case of risk-neutrality as seen
in (39).

Thus equation (58) can be re-expressed up to higher-order terms as

Et

[
1{Rm,0→T = ω1} −

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)

∣∣∣∣∣ Rm,0→T ∈ {ωj, ωj+1}
]
= −ϵt,j. (61)

The risk-neutral probabilities used on the left side of this equation are now the observable values (inclusive
of noise, unlike the ideal values used in (39)). Since ϵt,j is assumed to follow an MA(q) as discussed above,
we can then form a set of unconditional moments by instrumenting using lagged values of π̂∗

t,j, for any lags
greater than q.

That is, defining the N-dimensional instrument vector

Zt,j ≡


π̂∗

t−q−1,j
...

π̂∗
t−q,j

 (62)

for some q > q, we can then obtain the time-unconditional orthogonality condition

E

[(
1{Rm,0→T = ωj} −

π̂∗
t,j

π̂∗
t,j + ϕT−t(1 − π̂∗

t,j)
1
{

Rm,0→T ∈ {ωj, ωj+1}
})

Zt,j

]
= 0. (63)

This unconditional moment restriction is now amenable to empirical estimation over many expiration dates
T, horizons T − t, and state pairs j. One can set the sample version of (63) to zero over all pairs t = τ1, T = τ2

such that τ2 − τ1 = κ, in order to identify ϕκ . One can then stack the moment condition for values of
κ = 1, 2, . . ., to obtain horizon-dependent risk-price estimates.

For empirical estimation, we define the set of return states (and, by implication, return-state pairs) Ω
as discussed in the main text. (A given return state is realized if the excess log return is in a given 2-ppt
range.) We use the S&P index options data set (and associated data filters) described in the main text, and we
estimate risk-neutral densities as described in the appendix of Lazarus (2022) (see Section 3 for an intuitive
discussion of such risk-neutral estimation). We restrict ϕT−t to be fixed by weeks to expiration, so ϕ1 is,
e.g., the one-week-horizon estimated risk price. Finally, we use the five-day-lagged observed risk-neutral
probability π̂∗

t−5,j as an instrument in the moment equation for π̂∗
t,j; following the discussion above, this is

equivalent to assuming an MA(4) measurement-noise process and setting q = q + 1 = 5.

Estimation for the ϕκ values shown in Figure 3 is then conducted with two-step GMM. The first-stage
weight matrix is Z′Z/T , where Z is the data matrix for the instruments and T is the number of observations.
The second-stage weight matrix is then clustered by blocks of 8 time-adjacent observations. The figure

19More formally, one may write the remainder term as O((∥ϵt,j∥ + (ϕT−t − 1))2) as ∥ϵt,j∥ → 0 and
ϕT−t → 1, where ∥ϵt,j∥ indexes the bounds on ϵt,j.
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presents the resulting estimates, which are downward-sloping by horizon; see the main text for additional
discussion.
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